Pendakian Bukit (Hill Climbing)
|
|
|
- Yulia Salim
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Pendakian Bukit (Hill Climbing) Metde ini hampir sama dengan metde pembangkitan & pengujian, hanya saja prses pengujian dilakukan dengan menggunakan fungsi heuristik. Pembangkitan keadaan berikutnya sangat tergantung pada feedback dari prsedur pengetesan. Tes yang berupa fungsi heuristic ini akan menunjukkan seberapa baiknya nilai terkaan yang diambil terhadap keadaan-keadaan lainnya yang mungkin. Simple Hill Climbing Algritma 1. Mulai dari keadaan awal, lakukan pengujian: jika merupakan tujuan, maka berhenti; dan jika tidak, lanjutkan dengan keadaan sekarang sebagai keadaan awal. 2. Kerjakan langkah-langkah berikut sampai slusinya ditemukan, atau sampai tidak ada peratr baru yang akan diaplikasikan pada keadaan sekarang: Cari peratr yang belum pernah digunakan; gunakan peratr ini untuk mendapatkan keadaan yang baru. Evaluasi keadaan baru tersebut. Jika keadaan baru merupakan tujuan, keluar. Jika bukan tujuan, namun nilainya lebih baik daripada keadaan sekarang, maka jadikan keadaan baru tersebut menjadi keadaan sekarang. Jika keadaan baru tidak lebih baik daripada keadaan sekarang, maka lanjutkan iterasi. Cnth : Traveling Salesman Prblem (TSP) Serang salesman ingin mengunjungi n kta. Jarak antara tiap-tiap kta sudah diketahui. Ingin diketahui rute terpendek dimana setiap kta hanya bleh dikunjungi tepat 1 kali.
2 Operatr yang akan kita gunakan, adalah menukar urutan psisi 2 kta dalam suatu lintasan. Apabila ada n kta, dan kita ingin mencari kmbinasi lintasan dengan menukar psisi urutan 2 kta, maka kita akan mendapatkan sebanyak : n! 2t(n-2)l Sehingga kalau ada 4 kta, kita bisa memperleh : kmbinasi. Keenam kmbinasi ini akan kita pakai semuanya sebagai peratr, yaitu: * Tukar 1, 2 (menukar urutan psisi kta ke-1 dengan kta ke-2). * Tukar 2, 3 (menukar urutan psisi kta ke-2 dengan kta ke-3). * Tukar 3, 4 (menukar urutan psisi kta ke-3 dengan kta ke-4). * Tukar 4, 1 (menukar urutan psisi kta ke-4 dengan kta ke-1). * Tukar 2, 4 (menukar urutan psisi kta ke-2 dengan kta ke-4). * Tukar 1, 3 (menukar urutan psisi kta ke-1 dengan kta ke-3). Pada Gambar 2.22 terlihat bahwa, pada keadaan awal, lintasan terpilih adalah ABCD (=19). Pada level pertama, hill climbing akan mengunjungi BACD (=17) yang ternyata memiliki nilai heuristic lebih kecil dibandingkan dengan ABCD (17<19), sehingga BACD menjadi pilihan selanjutnya dengan peratr
3 terpakai Tukar1,2. Pada level kedua, hill climbing akan mengunjung ABCD. Karena peratr Tukar 1, 2 sudah digunakan leh BACD, maka dipilih nde yang lain yaitu BCAD (=15). Karena nilai heuristik BCAD lebih kecil dibanding dengan BACD (15<17), maka nde BCAD akan menjadi pilihan selanjutnya dengan peratr Tukar2,3. Kemudian hill climbing akan mengunjungi CBAD (=20). Karena nilai heuristik CBAD lebih besar jika dibanding dengan BCAD (20>17), maka dipilih nde lain. Pencarian menuju ke nde BACD, karena peratr Tukar2,3 sudah pernah digunakan leh BCAD, maka dipilih nde lain. Kunjungan berikutnya ke nde BCDA (=18). Niiai inipun masih lebih besar dari niiai heuristic BCAD, sehingga dipilih nde lain. Nde vang dikunjungi berikutnya adalah DCAB (=19). Nilai heuristic DCAB ternyata juga lebih besar dibanding dengan BCAD, sehingga pencarian dilarrjutkan di nde lainnya lagi, yaitu BDAC (=14). Nilai heuristik ini sudah lebih kecil daripada nilai heuristik nde BCAD (14<15), maka sekarang nde ini yang akan diekplrasi. Pencarian pertama ditemukan nde DBAC (=21), yang lebih besar daripada nilai BDAC. Nilai heuristik yang lebih kecil diperleh pada nde BDCA (=13). Sehingga nde BDCA ini akan diekplrasi. Pencarian pertama sudah mendapatkan nde dengan nilai heuristik yang kebih kecil, yaitu DBCA (=12). Sehingga nde ini diekplrasi juga. Dari hasil ekplrasi dengan pemakaian semua peratr, ternyata sudah tidak ada nde yang memiliki nilai heuristik yang lebih kecil disbanding dengan nilai heuristik DBCA, sehingga sebenarnya nde DBCA (=12) inilah lintasan terpendek yang kita cari (SOLUSI). Misalkan kita tidak menggunakan semua peratr, melainkan kita hanya menggunakan 4 peratr pertama saja, yaitu : * Tukar 1,2 (menukar urutan psisi kta ke'1 dengan kta ke'2). * Tukar 2, 3 (menukar urutan psisi kta ke-2 dengan kta ke'3). * Tukar 3,4 (menukar urutan psisi kta ke-3 dengan kta ke'4). * Tukar 4, 1 (menukar urutan psisi kta ke-4 dengan kta ke'l). maka pencarian dengan simple hill climbing ini dapat dilihat pada Gambar Lintasan terpendek yang diperleh adalah B-C-A-D yaitu sebesar 15. Disini kita akan terjebak pada nilai minimum lcal yang disebabkan leh kurangnya peratr yang kita gunakan. Kita tidak dapat memperleh nilai minimum glbalnya yaitu sebesar 12.
4 Steepest Ascent Hill Climbing Steepest-ascent hill climbing sebenarnya hampir sama dengan simple hill climbing, hanya saja gerakan pencarian tidak dimulai dari psisi paling kiri. Gerakan selanjutnya dicari berdasarkan nilai heuristik terbaik. Dalam hal ini urutan penggunaan peratr tidak menentukan penemuan slusi. Steepest-ascent hill climbing sebenarnya hampir sama dengan simple hill climbing, hanya saja gerakan pencarian tidak dimulai dari psisi paling kiri. Gerakan selanjutnya dicari berdasarkan nilai heuristik terbaik. Dalam hal ini urutan penggunaan peratr tidak menentukan penemuan slusi. Algritma 1. Mulai dari keadaan awal, lakukan pengujian: jika merupakan tujuan, maka berhenti; dan jika tidak, lanjutkan dengan keadaan sekarang sebagai keadaan awal. 2. Kerjakan hingga tujuan tercapai atau hingga iterasi tidak memberikan perubahan pada keadaan sekarang. 3. Tentukan SUCC sebagai nilai heuristic terbaik dari successrsuccessr. 4. Kerjakan untuk tiap peratr yang digunakan leh keadaan sekarang: 5. Gunakan peratr tersebut dan bentuk keadaan baru. 6. Evaluasi keadaan baru tersebut. Jika merupakan tujuan, keluar. Jika bukan, bandingkan nilai heuristiknya dengan SUCC. Jika lebih baik, jadikan nilai heuristic keadaan baru tersebut sebagai SUCC. Namun jika tidak lebih baik, nilai SUCC tidak berubah. 7. Jika SUCC lebih baik daripada nilai heuristic keadaan sekarang, ubah nde SUCC menjadi keadaan sekarang.
5 Pada Gambar 2.24, terlihat bahwa, keaclaan awal, iintasan terpiiih adalah ABCD (19). Pada level pertama, hili climbing akan rnemiiih nilai heuristik terbaik dari keenam succesr yang ada, yaitu: BACD(17), ACBD(12), ABDC(I8), DBCA(12), ADCB (18) atau CBAD(20). Tentu saja yang terpilih adalah ACBD, karena memiliki nilai heuristik paling kecil (=12;. Dari ACBD ini akan dipilih nilai heuristik terbaik dari succesrnya yaitu: CABD(15), ABCD(19), ACDB(13), DCBA(19), ADBC(16) atau BCAD(15). Ternyata dari keenam successr tersebut memiliki nilai heuristik yang lebih besar disbanding dengan ACBD. Sehingga tidak akan ada perubahan nilai keadaan (tetap ACBD). Hasil yang diperleh, lintasannya adalah ACBD (12).
Pencarian. Kecerdasan Buatan Pertemuan 3 Yudianto Sujana
Pencarian Kecerdasan Buatan Pertemuan 3 Yudianto Sujana Metode Pencarian dan Pelacakan Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses
KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM
KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Generate And Test Hill Climbing Best First Search PENCARIAN HEURISTIK Kelemahan blind search : 1.
BAB III METODE PELACAKAN/PENCARIAN
BAB III METODE PELACAKAN/PENCARIAN Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses mencari solusi dari suatu permasalahan melalui sekumpulan,
KECERDASAN BUATAN. Simple Hill Climbing. Disusun Oleh:
KECERDASAN BUATAN Simple Hill Climbing Disusun Oleh: 1. Lutvi Maulida Al H. (081112006) 2. Nurul Fauziah (081112021) 3. Anggraeni Susanti (081112055) 4. Syahrul Bahar Hamdani (081211232012) Departemen
BAB IV TEKNIK PELACAKAN
BAB IV TEKNIK PELACAKAN A. Teknik Pelacakan Pelacakan adalah teknik untuk pencarian :sesuatu. Didalam pencarian ada dua kemungkinan hasil yang didapat yaitu menemukan dan tidak menemukan. Sehingga pencarian
SISTEM PENENTUAN LINTASAN TERPENDEK TRAVELING SALESMAN PROBLEM DENGAN ALGORITMA SIMPLE HILL CLIMBING
SISTEM PENENTUAN LINTASAN TERPENDEK TRAVELING SALESMAN PROBLEM DENGAN ALGORITMA SIMPLE HILL CLIMBING Abdul Mukthi Chifdhi 1, Dwi Puspitasari 2 Teknik Informatika, Teknologi Informasi, Politeknik Negeri
BAB 2 TINJAUAN PUSTAKA
5 BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas landasan teori, penelitian terdahulu, kerangka berpikir, dan hipotesis yang mendasari penyelesaian Traveling Salesman Problem dalam menentukan lintasan
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA SIMPLE HILL CLIMBING
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA SIMPLE HILL CLIMBING Dinda Novitasari 1, Arista Welasari 2, W. Lisa Yunita 3, Nur Alfiyah 4, dan Chasandra P. 5 Program Studi Informatika, PTIIK,
PENCARIAN RUTE TERPENDEK ARENA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) MENGGUNAKAN ALGORITMA HILL CLIMBING
ABSTRAK PENCARIAN RUTE TERPENDEK ARENA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) MENGGUNAKAN ALGORITMA HILL CLIMBING Pamor Gunoto Dosen Tetap Program Studi Teknik Elektro Universitas Riau Kepulauan (UNRIKA)
Metode Pencarian & Pelacakan dengan Heuristik
Metode Pencarian & Pelacakan dengan Heuristik Pencarian Buta (Blind Search) Breadth-First Search Depth-First Search Pencarian Terbimbing (Heuristics Search) Generate & Test Hill Climbing Best-First Search
Case Study : Search Algorithm
Case Study : Search Algorithm INF-303 Kecerdasan Buatan Jurusan Informatika FMIPA UNSYIAH Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc Website: http://informatika.unsyiah.ac.id/irvanizam Contoh
HEURISTIC SEARCH. Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc
HEURISTIC SEARCH Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc Jurusan Informatika Universitas Syiah Kuala http://informatika.unsyiah.ac.id/irvanizam Travelling Salesmen Problem Seorang salesman
Teknik Pencarian Heuristik
Teknik Pencarian Heuristik Generate and Test Hill Climbing Best First Search Problem Reduction Constraint Satisfaction Means End Analysis Referensi Sri Kusumadewi - bab 2 Rich & Knight bab 3 Teknik Pencarian
memberikan output berupa solusi kumpulan pengetahuan yang ada.
MASALAH DAN METODE PEMECAHAN MASALAH (Minggu 2) Pendahuluan Sistem yang menggunakan kecerdasan buatan akan memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada.
BAB II TINJAUAN PUSTAKA. ditentukan oleh pemilik kos sedangkan lama waktu penyewaan ditentukan sendiri
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Studi Tentang Kos-kos Kos merupakan salah satu tempat penyedia jasa penginapan atau tempat tinggal sementara yang terdiri dari beberapa kamar dan setiap
INTELEGENSI BUATAN. Pertemuan 2,3 Problem, Space, Search. M. Miftakul Amin, M. Eng. website :
INTELEGENSI BUATAN Pertemuan 2,3 Problem, Space, Search M. Miftakul Amin, M. Eng. e-mail: [email protected] website : http://mafisamin.web.ugm.ac.id Jurusan Teknik Komputer Jurusan Teknik Komputer
METODE PENCARIAN DAN PELACAKAN
METODE PENCARIAN DAN PELACAKAN SISTEM INTELEGENSIA Pertemuan 4 Diema Hernyka S, M.Kom Materi Bahasan Metode Pencarian & Pelacakan 1. Pencarian buta (blind search) a. Pencarian melebar pertama (Breadth
Contoh 4/7/ HEURISTIC METHOD. Pencarian Heuristik
07/04/2016 3. HEURISTI METHO KEERASAN BUATAN Pertemuan : 05-06 INFORMATIKA FASILKOM UNIVERSITAS IGM Pencarian Heuristik Kelemahan blind search : Waktu akses lama Memori yang dibutuhkan besar Ruang masalah
LAMPIRAN 1. Proses Pembuatan Kopi Tanpa Ampas. Green Bean Kopi Tempur. Jadi. Digiling. Diseduh. Jadi. Hasil Seduhan Kopi Tempur. Disaring.
LAMPIRAN 1. Proses Pembuatan Kopi Tanpa Ampas Dis ang rai Green Bean Kopi Tempur Jadi Mesin Penyangrai Digiling Hasil Sangrai Biji Kopi Tempur Jadi Mesin Penggiling Diseduh Bubuk Kopi Tempur Jadi Kompor
Search Strategy. Search Strategy
Search Strategy Search Strategy Salah satu hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian (search) Pada dasarnya ada 2 Teknik pencarian : 1. Metode Buta (Uninformed
Pencarian Rute Terpendek pada Tempat Wisata di Kota Bogor Menggunakan Metode Heuristik
Pencarian Rute Terpendek pada Tempat Wisata di Kota Bogor Menggunakan Metode Heuristik Irwansyah Saputra Jurusan Ilmu Komputer, STMIK Nusa Mandiri Jakarta [email protected] Abstrak: Pencarian rute
BAB 2 LANDASAN TEORI Visualisasi
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan tentang landasan dari konsep dan teori yang digunakan untuk mendukung pembuatan aplikasi yang dibuat. Landasan teori serta konsep yang akan dijelaskan
PENYELESAIAN TRAVELLING SALESMAN PROBLEM MENGGUNAKAN METODE SIMPLE HILL CLIMBING
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 0, No. (2015), hal 17 180. PENYELESAIAN TRAVELLING SALESMAN PROBLEM MENGGUNAKAN METODE SIMPLE HILL CLIMBING Kristina Karunianti Nana, Bayu Prihandono,
Combinatorics. Aturan Jumlah. Teknik Menghitung (Kombinatorik) Contoh
Combinatorics Teknik Menghitung (Kombinatorik) Penjumlahan Perkalian Kombinasi Adalah cabang dari matematika diskrit tentang cara mengetahui ukuran himpunan terbatas tanpa harus melakukan perhitungan setiap
7. LAMPIRAN Formula Adonan Arem-Arem 1 kilogram beras 3 liter santan Kara yang diencerkan 1 sachet royco rasa daging ayam Daun pandan
7. LAMPIRAN 7.1. Formula Arem-Arem, untuk 5 arem-arem (Lampiran 1) 7.1.1. Formula Isian Daging Ayam 25 gram bawang merah 5 gram bawang putih 5 gram cabai merah 5 gram daging ayam 1 gram gula pasir 1 sendok
Artificial Intelegence/ P_3 EKA YUNIAR
Artificial Intelegence/ P_3 EKA YUNIAR Pokok Bahasan Teknik Pencarian Heuristik Generate And Test Hill Climbing Best First Searching Problem Reduction Constrait Satisfaction Means End Analysis Teknik Pencarian
HEURISTIC SEARCH UTHIE
HEURISTIC SEARCH Pendahuluan Pencarian buta biasanya tidak efisien karena waktu akses memori yang dibutuhkan cukup besar. Untuk mengatasi hal ini maka perlu ditambahkan suatu informasi pada domain yang
Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015
Sistem Kecerdasan Buatan Masalah, Ruang Masalah dan Pencarian Solusi Bahan Bacaan : Sri Kusumadewi, Artificial Intelligence. Russel, Artificial Intelligence Modern Approach 2 bagian utama kecerdasan buatan
UJI KECOCOKAN ( MATCHING TEST
7. LAMPIRAN Lampiran 1.Worksheet, Scoresheet dan Hasil Seleksi Panelis Terlatih WORKSHEET UJI KECOCOKAN (MATCHING TEST) Jenis Uji Sensori : kecocokan Tanggal Pengujian : Jenis Sampel : larutan rasa dasar
ANALISA ALGORITMA GENETIKA DALAM TRAVELLING SALESMAN PROBLEM SIMETRI. Lindawati Syam M.P.Siallagan 1 S.Novani 2
ANALISA ALGORITMA GENETIKA DALAM TRAVELLING SALESMAN PROBLEM SIMETRI Lindawati Syam M.P.Siallagan 1 S.Novani 2 Jurusan Teknik Informatika, FT, Jl. Dipati Ukur Bandung ABSTRAK Masalah Travelling Salesman
Sudaryatno Sudirham. Permutasi dan Kombinasi
Sudaryato Sudrham Permutas da Kombas Permutas Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda
7. LAMPIRAN Perhitungan. Perhitungan jumlah fortifikan yang ditambahkan : AKG zat besi wanita = 18 mg/hari
7. LAMPIRAN 7.1. Perhitungan Perhitungan jumlah fortifikan yang ditambahkan : AKG zat besi wanita = 18 mg/hari 20 % AKG = 20% x 18 mg/hari = 3,6 mg/hari Jumlah kandungan zat besi dalam fortifikan kedelai
7. LAMPIRAN Lampiran 1. Proses Pembuatan Torakur. a b c d
7. LAMPIRAN Lampiran 1. Proses Pembuatan Torakur a b c d h g Keterangan: a) tomat Tomdari segar, b) pemotongan menjadi 4 bagian, c) perendaman dengan, larutan garam, d) perendaman dengan CaCl, e) pemasakan
Penerapan Metode Hill Climbing Pada Sistem Informasi Geografis Untuk Mencari Lintasan Terpendek
Jurnal Sistem Informasi Bisnis 01(2015) On-line : http://ejournal.undip.ac.id/index.php/jsinbis 19 Penerapan Metode Hill Climbing Pada Sistem Informasi Geografis Untuk Mencari Lintasan Terpendek Eka Vickraien
KATA PENGANTAR. DAFTAR TABEL.. xviii. 1.1 Latar Belakang Masalah 1
DAFTAR ISI Halaman HALAMANJUDUL LEMBAR PENGESAHAN PEMBIMBING LEMBAR PERNYATAAN KEASLIAN HASIL TUGAS AKHIR LEMBAR PENGESAHAN PENGUJI HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR ABSTRAKSI DAFTAR ISI
Contoh. Teknik Menghitungdan Kombinatorial. Contoh. Combinatorics
Contoh Teknik Menghitungdan Kombinatorial Berapa banyak pelat nomor bisa dibuat dengan mengunakan 3 huruf dan 3 angka? Berapa banyak pelat nomor bisa dibuat dengan menggunakan 3 huruf dan 3 angka tapi
7. LAMPIRAN. Lampiran 1. Hasil Analisa Data Karakteristik fisik nugget ikan nila
7. LAMPIRAN Lampiran 1. Hasil Analisa Data Karakteristik fisik nugget ikan nila 43 44 Karakteristik kimia nugget ikan nila 45 46 47 Karakteristik sensori nugget ikan nila 48 49 Lampiran 2. Worksheet Uji
ANALISA KEBUTUHAN WAKTU PADA PROSES PENYELESAIAN TRAVELING SALESMAN PROBLEM
ANALISA KEBUTUHAN WAKTU PADA PROSES PENYELESAIAN TRAVELING SALESMAN PROBLEM Hari Murti 1, R. Soelistijadi 2, Sugiyamto 3 Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Stikubank
Aplikasi Teori Peluang dalam Permainan Poker
Aplikasi Teori Peluang dalam Permainan Poker Rien Nisa and 13510098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
KUISIONER. 2. Apakah anda pernah mengkonsumsi Jelly (dalam kemasan cup dan siap dikonsumsi) a) Ya, alasannya
7. LAMPIRAN Lampiran 1. Lembar Kuisioner Pendahuluan KUISIONER Nama : Umur : Jenis kelamin : Waktu pelaksanaan: 1. Apa yang anda ketahui tentang Jelly? 2. Apakah anda pernah mengkonsumsi Jelly (dalam kemasan
PENERAPAN ALGORITMA STEEPEST ASCENT HILL CLIMBING DAN LINEAR CONGRUENT METHOD (LCM) DALAM GAME SLIDE PUZZLE PENGENALAN SEMBILAN SUNAN BERBASIS ANDROID
Seminar Nasional APTIKOM (SEMNASTIKOM), FaveHotel Jayapura, 3 November 2017 PENERAPAN ALGORITMA STEEPEST ASCENT HILL CLIMBING DAN LINEAR CONGRUENT METHOD (LCM) DALAM GAME SLIDE PUZZLE PENGENALAN SEMBILAN
Permainan Bergenre Petualangan (Adventure Game) Berbasis Android Dengan Konten Pembelajaran Huruf Hijaiyah/Bahasa Arab
Permainan Bergenre Petualangan (Adventure Game) Berbasis Android Dengan Konten Pembelajaran Huruf Hijaiyah/Bahasa Arab Fresy Nugroho (1), Fachrul Kurniawan (2) (1)(2) Jurusan Teknik Informatika, Fakultas
Modul Bahan Ajar KECERDASAN BUATAN
Modul Bahan Ajar KECERDASAN BUATAN DIAN EKA RATNAWATI, S.Si.M.Kom DEWI YANTI LILIANA,S.Kom,M.Kom REKYAN REGASARI MP, ST.MT LAILIL MUFLIKHAH, S.Kom.M.Sc PROGRAM TEKNOLOGI INFORMASI DAN ILMU KOMPUTER UNIVERSITAS
APLIKASI SIMULATED ANNEALING UNTUK MENYELESAIKAN TRAVELLING SALESMAN PROBLEM
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2015), hal 25 32. APLIKASI SIMULATED ANNEALING UNTUK MENYELESAIKAN TRAVELLING SALESMAN PROBLEM Edi Samana, Bayu Prihandono, Evi Noviani
Perancangan Kriptografi Block Cipher 64 Bit Berbasis pada Pola Terasering Artikel Ilmiah
Perancangan Kriptografi Block Cipher 64 Bit Berbasis pada Pola Terasering Artikel Ilmiah Peneliti : Onie Dhestya Nanda Hartien (672012058) Prof. Ir. Danny Manongga, M.Sc., Ph.D. Program Studi Teknik Informatika
I. KECERDASAN BUATAN Pengampu : Idhawati Hestiningsih
I. KECERDASAN BUATAN Pengampu : Idhawati Hestiningsih DEFINISI Kecerdasan buatan (Artificial Intelligence) : Bagian dari ilmu komputer yang mempelajari bagaimana membuat mesin (komputer) dapat melakukan
Penggunaan Teori Kombinatorial dalam CAPTCHA
Penggunaan Teori Kombinatorial dalam CAPTCHA Gilbran Imami, 13509072 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
PENGEMBANGAN PRODUK & EVALUASI SENSORIS
PENGEMBANGAN PRODUK & EVALUASI SENSORIS Sakunda Anggarini, STP, MP, MSc Tim Pemgampu MK. TPPHP Fakultas Teknologi Pertanian Universitas Brawijaya 2014 OUTLINE Produk & Siklus Hidup Produk Konsep Pengembangan
Pilihlah satu jawaban yang paling tepat untuk pertanyaan-pertanyaan dibawah ini
Mata Kuliah : Kecerdasan Buatan Sifat : Hari / Tanggal : Waktu : Kelompok : Dosen : Pilihlah satu jawaban yang paling tepat untuk pertanyaan-pertanyaan dibawah ini 1. Pernyataan yang benar tentang system
I. PENGANTAR KECERDASAN BUATAN
I. PENGANTAR KECERDASAN BUATAN 1 DEFINISI Kecerdasan buatan (Artificial Intelligence) : Bagian dari ilmu komputer yang mempelajari bagaimana membuat mesin (komputer) dapat melakukan pekerjaan seperti dan
Artikel Ilmiah. Diajukan Kepada Fakultas Teknologi Informasi Untuk Memperoleh Gelar Sarjana Komputer
Analisis Iterated Cipher Berdasarkan Avalanche Effect Pada Rancangan Skema Transposisi (P-Box) dan S-Box Crypton (Suatu Tinjauan Optimasi Putaran pada Block Cipher) Artikel Ilmiah Diajukan Kepada Fakultas
BAB I PENDAHULUAN. generasi pertama pada tahun 1972 dikenal dengan game konsol yang dikeluarkan
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan game dari masa ke masa dibagi menjadi 9 generasi, dari generasi pertama pada tahun 1972 dikenal dengan game konsol yang dikeluarkan oleh perusahaan
PENYELESAIAN MASALAH 8 PUZZLE DENGAN ALGORITMA HILL CLIMBING STEPEST ASCENT LOGLIST HEURISTIK BERBASIS JAVA
Seminar Nasional Teknologi Informasi dan Komunikasi 2012 (SENTIKA 2012) ISSN: 209-915 PENYELESAIAN MASALAH PUZZLE DENGAN ALGORITMA HILL CLIMBING STEPEST ASCENT LOGLIST HEURISTIK BERBASIS JAVA Azizah Zakiah
Lampiran 1. Worksheet Uji Ranking Hedonik Konsentrasi Rumput Laut. Worksheet Uji Ranking Hedonik ABCD 11 BCDA 12 CDAB 13 DABC 14 ACBD 15
7. LAMPIRAN Lampiran 1. Worksheet Uji Ranking Hedonik Konsentrasi Rumput Laut Tanggal uji : Jenis sampel : Nugget Lele Rumput Laut Worksheet Uji Ranking Hedonik Identifikasi sampel Nugget Lele Rumput Laut
ALGORITMA PENCARIAN. 1. Iterative-Deepening Depth-First Search (IDS) Nama : Gede Noverdi Indra Wirawan Nim : Kelas : VI A
Nama : Gede Noverdi Indra Wirawan Nim : 0915051050 Kelas : VI A ALGORITMA PENCARIAN Algoritma pencarian (searching algorithm) adalah algoritma yang menerima sebuah argumen kunci dan dengan langkah-langkah
Lampiran 1. Lembar Worksheet dan Scoresheet Penentuan Komposisi Selai Pepaya
LAMPIRAN Lampiran 1. Lembar Worksheet dan Scoresheet Penentuan Komposisi Selai Pepaya WORKSHEET Identifikasi sampel : Selai pepaya matang dengan perbandingan gula dan sari buah 1:1 Selai pepaya matang
PENERAPAN METODE STEEPEST ASCENT HILL CLIMBING PADA MODEL PENCARIAN RUTE TERDEKAT FASILITAS PELAYANAN DARURAT DI KOTA BOGOR BERBASIS ANDROID
PENERAPAN METODE STEEPEST ASCENT HILL CLIMBING PADA MODEL PENCARIAN RUTE TERDEKAT FASILITAS PELAYANAN DARURAT DI KOTA BOGOR BERBASIS ANDROID Lipian Alfha Zemma, Herfina, Arie Qur ania Program Studi Ilmu
Implementasi S-Box AES Dan Komparasi Rancangan Permutation Box (P-Box) Dalam Skema Super Enkripsi. Artikel Ilmiah
Implementasi S-Box AES Dan Komparasi Rancangan Permutation Box (P-Box) Dalam Skema Super Enkripsi Artikel Ilmiah Peneliti : Orlando Walaiya (682012043) Alz Danny Wowor, S.Si., M.Cs. Program Studi Sistem
Masalah, Ruang Masalah dan Pencarian
Masalah, Ruang Masalah dan Pencarian Review : Sistem yang menggunakan AI Komputer Input Masalah Pertanyaan dll Basis Pengetahuan Motor Inferensi Output Jawaban Solusi Untuk membangun sistem yang mampu
Pengembangan Produk Baru & Evaluasi Sensoris
Pengembangan Produk Baru & Evaluasi Sensoris 2013 OUTLINE Konsep & Definisi Pengembangan Produk Baru Siklus Hidup Produk Tahapan Pengembangan Produk Baru Evaluasi Sensoris Konsep & Definisi Pengembangan
Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika
ب س م ا ه لل الر ح ن الر ح ي السالم عليكم ورحمة هللا وبركاته fakultas ilmu komputer program studi informatika Masalah, Ruang Keadaan dan Pencarian Ruang Masalah / Keadaan Suatu ruang yang berisi semua
Kecerdasan Buatan Pendahuluan kecerdasan tiruan Artificial Intelligence kecerdasan buatan
1 Kecerdasan Buatan Tujuan : 1. Mengenal konsep dasar kecerdasan buatan, teknologi, dan area penerapan kecerdasan buatan. 2. Mampu merancang suatu sistem cerdas (intelligent system) dengan menggunakan
PROTOTIPE IMPLEMENATSI ALGORITHMA HILLCLIMBING UNTUK MEMBUAT JADWAL PRODUKSI GARMENT DI PT XX
PROTOTIPE IMPLEMENATSI ALGORITHMA HILLCLIMBING UNTUK MEMBUAT JADWAL PRODUKSI GARMENT DI PT XX Heribertus Himawan1), Dwi Setyawan2) 1), 2) Teknik Informatika Udinus Semarang Jl Nakula I No 5-11, Semarang
ALGORITMA PENCARIAN (HEURISTIC)
ALGORITMA PENCARIAN (HEURISTIC) Farah Zakiyah Rahmanti, M.T Diperbarui 2016 Overview Pengertian Pencarian Heuristik Generate and Test Hill Climbing Best First Searching Latihan Pencarian Heuristik Merupakan
Kompresi Pohon dengan Kode Prüfer
Kmpresi Phn dengan Kde Prüfer Ygi Salm Mangntang Pratama(13511059) 1 Prgram Studi Teknik Infrmatika Seklah Teknik Elektr dan Infrmatika Institut Teknlgi Bandung, Jl. Ganesha 10 Bandung 40132, Indnesia
Lampiran 1. Gambar Nugget Jamur Berbasis Tepung Kacang Hijau
7. LAMPIRA Lampiran 1. Gambar ugget Jamur Berbasis Tepung Kacang Hijau A B C D Gambar 15. (a) ugget Komersial, (b) ugget Jamur Berbasis Tepung Kacang Hijau 50%, (c) ugget Jamur Berbasis Tepung Kacang Hijau
Penerapan Algoritma Backtracking dalam Permainan Futoshiki Puzzle
Penerapan Algritma Backtracking dalam Permainan Futshiki Puzzle Juli Savigny, 13513084 Prgram Studi Teknik Infrmatika Seklah Teknik Elektr dan Infrmatika Institut Teknlgi Bandung, Jl. Ganesha 10 Bandung
SEARCHING. Blind Search & Heuristic Search
SEARCHING Blind Search & Heuristic Search PENDAHULUAN Banyak cara yang digunakan untuk membangun sistem yang dapat menyelesaikan masalah-masalah di AI. Teknik penyelesaian masalah yang dapat dipakai untuk
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari hari, selalu dilakukan perjalanan dari satu titik atau lokasi ke lokasi yang lain dengan mempertimbangkan efisiensi waktu dan biaya sehingga
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
16 BAB 1 PENDAHULUAN 1.1 Latar Belakang Asuransi merupakan penjaminan yang berlaku dalam masyarakat modern. Masyarakat modern sekarang ini menginginkan rasa aman (safety) bagi kelangsungan kehidupannya.
Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING
SEARCHING MENDEFINISIKAN MASALAH SEBAGAI SUATU RUANG KEADAAN Secara umum, untuk mendeskripsikan suatu permasalahan dengan baik harus: 1 Mendefinisikan suatu ruang keadaan. 2 Menerapkan satu atau lebih
LESSON 5 : INFORMED SEARCH Part I
LESSON 5 : INFORMED SEARCH Part I 3.1 Pengantar Kita telah menunjukan beberapa metda pencarian yang berbeda. Di bagian bagian awal bab ini kita telah menunjukan beberapa metde pencarian buta (blind search).
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu permasalahan optimasi kombinatorial yang terkenal dan sering dibahas adalah traveling salesman problem. Sejak diperkenalkan oleh William Rowan Hamilton
03/03/2015. Agenda Teknik Dasar Pencarian Teknik Pemecahan Masalah Strategi Pencarian Mendalam Pencarian Heuristik
Prio Handoko, S. Kom., M.T.I. Program Studi Teknik Informatika Universitas Pembangunan Jaya Jl. oulevard - intaro Jaya Sektor VII Tangerang Selatan anten 154 Kompetensi asar Mahasiswa mendapatkan pemahaman
PENGGUNAAN METODE HILL CLIMBING UNTUK PENCARIAN SEKOLAH DASAR DI KECAMATAN CIMAHI TENGAH
JURNAL LPKIA, Vol.1 No.1, Januari 2015 PENGGUNAAN METODE HILL CLIMBING UNTUK PENCARIAN SEKOLAH DASAR DI KECAMATAN CIMAHI TENGAH 1 Yaya Supriatna 1 Program Studi Teknik Informatika STMIK LPKIA Jln. Soekarno
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA BRANCH AND BOUND
PENYEESAIAN TRAVEING SAESMAN PROBEM DENGAN AGORITMA BRANCH AND BOND Yogo Dwi Prasetyo Pendidikan Matematika, niversitas Asahan e-mail: [email protected] Abstract The shortest route search by
Metode Searching. Blind/Un-informed Search. Heuristic/Informed Search. Breadth-First Search (BFS) Depth-First Search (DFS) Hill Climbing A*
SEARCHING Russel and Norvig. 2003. Artificial Intelligence: a Modern Approach. Prentice Hall. Suyanto, Artificial Intelligence. 2005. Bandung:Informatika Program Studi Ilmu Komputer FPMIPA UPI RNI IK460(Kecerdasan
DEPARTEMEN MATEMATIKA
PEMADANAN BILATERAL DENGAN RANCANG GAN BUJURSANGKAR LATIN MUHAMAD SYAZALI G54104023 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKAA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2008 ABSTRACT MUHAMAD
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH
Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 17 24. PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH Fatmawati, Bayu Prihandono, Evi Noviani INTISARI
PENERAPAN METODE HILL CLIMBING UNTUK PENCARIAN RUTE LOKASI KULINER TERDEKAT DI SUMATERA UTARA BERBASIS ANDROID
PENERAPAN METODE HILL CLIMBING UNTUK PENCARIAN RUTE LOKASI KULINER TERDEKAT DI SUMATERA UTARA BERBASIS ANDROID Muhammad Shodiq 1, Nelly Astuti Hasibuan 2, Sony Bahagia Sinaga 3 1 Mahasiswa Teknik Informatika
Studi Pohon Steiner dan Penggunaannya dalam Perancangan Chip dan Jaringan
Studi Phn Steiner dan Penggunaannya dalam Perancangan Chip dan Jaringan Samuel Simn NIM: 15060 Prgram Studi Teknik Infrmatika ITB, Bandung Email: [email protected] Abstrak Makalah ini membahas
BAB I PENDAHULUAN. wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat
BAB I PENDAHULUAN A. Latar Belakang Masalah Objek pariwisata di Yogyakarta sudah semakin beragam mulai dari wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat wisatawan dapat dibuat
PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM
PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM Nico Saputro dan Suryandi Wijaya Jurusan Ilmu Komputer Universitas Katolik Parahyangan [email protected]
TUGAS AKHIR PERENCANAAN SISTEM DITRIBUSI HASIL PRODUKSI BUKU PADA PT. BINA PUTRA MANDIRI
TUGAS AKHIR PERENCANAAN SISTEM DITRIBUSI HASIL PRODUKSI BUKU PADA PT. BINA PUTRA MANDIRI Diajukan Sebagai Syarat Memperoleh Gelar Sarjana Teknik Jurusan Teknik Industri Fakultas Teknik Universitas Muhammadiyah
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Definisi Graf Graf adalah pasangan himpunan (V, E), dan ditulis dengan notasi G = (V, E), V adalah himpunan tidak kosong dari verteks-verteks {v 1, v 2,, v n } yang
Pengukuran adalah penempatan angka (atau bilangan) pada objek atau peristiwa menurut aturan. SKALA merupakan bagian dari aturan penempatan angka itu
BAB IV SKALA A. DASAR PENGERTIAN. a. Pengukuran adalah penempatan angka (atau bilangan) pada objek atau peristiwa menurut aturan. SKALA merupakan bagian dari aturan penempatan angka itu b. c. Rencana konsisten
Kombinatorik: Prinsip Dasar dan Teknik
Kombiatorik: Prisip Dasar da Tekik Drs. Sahid, MSc. Jurusa Pedidika Matematika FMIPA Uiversitas Negeri Yogyakarta [email protected] March 27, 2009 1 Atura Pejumlaha (Atura Disjugtif) Jika utuk melakuka
Sebelumnya... Best-First Search Greedy Search A* Search, karena boros memory, dimunculkan variannya (sekilas): IDA* SMA* D* (DWA*) RBFS Beam
Sebelumnya... Best-First Search Greedy Search A* Search, karena boros memory, dimunculkan variannya (sekilas): IDA* SMA* D* (DWA*) RBFS Beam Kecerdasan Buatan Pertemuan 04 Variasi A* dan Hill Climbing
(a) Nugget ayam kontrol, (b) Nugget ayam 10% rumput laut, (c) Nugget ayam 20% rumput laut, (d) Nugget ayam 30% rumput laut
7. LAMPIRAN Lampiran 1. Gambar Nugget Ayam Rumput Laut Gambar 10. (a) Nugget ayam kontrol, (b) Nugget ayam 10% rumput laut, (c) Nugget ayam 20% rumput laut, (d) Nugget ayam 30% rumput laut (a) (b) (c)
7. LAMPIRAN. selama 15 menit.
7. LAMPIRAN Lampiran. Pembuatan Media a. Media Malt Extract Agar (MEA) Sebanyak 7, g MEA ditimbang kemudian dilarutkan dengan aquades sebanyak 55 ml di dalam gelas piala. Medium tadi dipanaskan dengan
BAB 1 PENDAHULUAN. tempat tujuan berikutnya dari sebuah kendaraan pengangkut baik pengiriman melalui
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam masalah pengiriman barang, sebuah rute diperlukan untuk menentukan tempat tujuan berikutnya dari sebuah kendaraan pengangkut baik pengiriman melalui darat, air,
