d x Gambar 2.1. Balok sederhana yang mengalami lentur

Ukuran: px
Mulai penontonan dengan halaman:

Download "d x Gambar 2.1. Balok sederhana yang mengalami lentur"

Transkripsi

1 II DEFEKSI DN ROTSI OK TERENTUR. Defleksi Semua balok yang terbebani akan mengalami deformasi (perubahan bentuk) dan terdefleksi (atau melentur) dari kedudukannya. Dalam struktur bangunan, seperti : balok dan plat lantai tidak boleh melentur terlalu berlebihan untuk mengurangi/meniadakan pengaruh psikologis (ketakutan) pemakainya. da beberapa metode yang dapat dipergunakan untuk menyelesaikan persoalanpersoalan defleksi dan deformasi pada balok, diantaranya adalah : metode integrasi ganda ( doubel integrations ), luas bidang momen ( Momen rea Method ), dan metode luas bidang momen sebagai beban. Metode integrasi ganda sangat cocok dipergunakan untuk mengetahui defleksi sepanjang bentang sekaligus. Sedangkan metode luas bidang momen sangat cocok dipergunakan untuk mengetahui defleksi dalam satu tempat saja. sumsi yang dipergunakan untuk menyelesaiakan persoalan tersebut adalah hanyalah defleksi yang diakibatkan oleh gaya-gaya yang bekerja tegak-lurus terhadap sumbu balok, defleksi yang terjadi relative kecil dibandingkan dengan panjang baloknya, dan irisan yang berbentuk bidang datar akan tetap berupa bidang datar walaupun terdeformasi.. Metode Integrasi Ganda Suatu struktur sedehana yang mengalami lentur dapat digambarkan sebagaimana gambar., dimana y adalah defleksi pada jarak x, dengan x adalah jarak lendutan yang ditinjau, adalah jarak mn, d sudut mon, dan r adalah jari-jari lengkung. O d r y m n d x Gambar.. alok sederhana yang mengalami lentur

2 erdasarkan gambar.. didapat besarnya = r tg d karena besarnya drelatif sangat kecil maka tg ddsajasehingga persamaannya dapat ditulis menjadi : = r.d atau d r Jika bergerak kekanan maka besarnya d akan semakin mengecil atau semakin berkurang sehingga didapat persamaan : d r endutan relatif sangat kecil sehingga r d dy d y dy tg, sehingga didapat persamaan : M M d y Persamaan tegangan, sehingga didapat persamaan r Sehingga didapat persamaan d y M Persamaan. jika dilakukan dua kali integral akan didapat persamaan dy dm V y dv q (.) Untuk mempermudah pemahaman tentang pemakaian metode integrasi ganda, akan dicoba diaplikasikan pada struktur balok sederhana. Contoh.. Sebuah balok sederhana yang menahan beban merata seperti pada gambar. Dari gambar. besarnya momen pada jarak x sebesar M x = R. x - q x M x = q. x - q x Persamaan tersebut disubstitusi ke dalam persamaan. sehingga didapat 8

3 d y q x qx Diintegral terhadap x sehingga didapat d y q x qx dy qx qx C q M x MD x Gambar.. alok Sederhana dengan beban merata Momen maksimum terjadi pada x = maksimum, dy 0, sehingga persamaannya menjadi q q 0 C q q 0 C 8 C q Sehingga persamaan di atas akan menjadi dy qx qx q, dan pada tempat tersebut terjadi defleksi Dari persamaan tersebut diintergralkan kembali terhadap x sehingga menjadi dy qx qx q 9

4 qx y qx q x C Pada x = 0, lendutan y = 0, sehingga didapat C, dan persamaannya menjadi Pada x = 0 = C C = 0 y y y qx y qx qx x qx q x 0 x x x akan diperoleh lendutan maksimum sehingga didapat max q y max q 8 8 y max q Sehingga lendutan maksimum yang terjadi di tengah bentang didapat : 5 q y max 8 (.) Contoh.. Stuktur cantilever dengan beban merata seperti pada gambar.. q M x MD Gambar.. alok Cantilever dengan eban Merata 0 x

5 Dari gambar. besarnya momen pada jarak x sebesar M x = - q x Persamaan tersebut disubstitusi ke dalam persamaan. sehingga didapat d y qx Diintegral terhadap x sehingga didapat d y qx dy qx C Momen maksimum terjadi pada x =, dan pada tempat tersebut tidak terjadi defleksi, dy 0, sehingga persamaannya menjadi qx 0 C C q Sehingga persamaan di atas akan menjadi dy qx q Dari persamaan tersebut diintergralkan kembali terhadap x sehingga menjadi dy qx q qx y q x C Pada x =, lendutan y = 0, sehingga didapat C q q 0 C C q 8 Persamaannya menjadi

6 y qx q x q y 8 q x x Pada x = 0 akan diperoleh lendutan maksimum sehingga didapat y max y max q q 0 0 Sehingga lendutan maksimum cantilever (pada ujung batang) didapat : q y max 8 (.) Contoh.. Struktur cantilever dengan titik seperti pada gambar. P M x MD x Gambar.. alok Cantilever dengan eban Titik Dari gambar. besarnya momen pada jarak x sebesar M x = - Px Persamaan tersebut disubstitusi ke dalam persamaan. sehingga didapat d y Px Diintegral terhadap x sehingga didapat d y Px

7 dy Px C Momen maksimum terjadi pada x =, dan pada tempat tersebut tidak terjadi defleksi, dy 0, sehingga persamaannya menjadi P 0 C C P Sehingga persamaan di atas akan menjadi dy Px P Dari persamaan tersebut diintergralkan kembali terhadap x sehingga menjadi dy Px P Px y Px y P x C C Pada x =, lendutan y = 0, sehingga didapat C C P 0 C P Persamaannya menjadi y Px y P y q x x x x x P Pada x = 0 akan diperoleh lendutan maksimum sehingga didapat y q 0 0

8 y max P Sehingga lendutan maksimum cantilever dengan bebat titik (pada ujung batang) didapat : q y max 8 (.) Contoh.. Struktur balok sederhana dengan beban titik, seperti pada gembar.5 P a b M x MD Gambar.5. alok Sederhana dengan beban titik Dari gambar.5 besarnya reaksi dukungan dan momen sebesar Pb R, dan M x = M x = Pbx Pbx - P(x-a) Pa R untuk x a untuk x a Persamaan tersebut disubstitusi ke dalam persamaan. persamaan garis elastis sehingga didapat : x untuk x a d y Pbx d y Pbx untuk x a P(x a) Diintegral terhadap x sehingga didapat

9 dy Pbx C dy Pbx P(x a) C Pada x = a, dua persamaan di atas hasilnya akan sama. Jika diintegral lagi mendapatkan persamaan : Pbx y Cx C untuk x a Pbx P(x a) y Cx C untuk x a Pada x = a, maka nilai C harus sama dengan C, maka C = C, sehingga persamaannya menjadi : Pbx y P(x a) C x C Untuk x = 0, maka y = 0, sehingga nilai C = C = 0 Untuk x =, maka y = 0, sehingga persamaan di atas dapat ditulis menjadi : Pb P( a) 0 esarnya a = b Pb C C Pb Pb b C 0 Sehingga setelah disubstitusi menghasilkan persamaan : y Pbx b x untuk x a P x a b x Pbx y untuk x a (.5). Metode uas idang Momen Pada pembahasan di atas telah dihasilkan lendutan yang berupa persamaan. Hasil tersebut masih bersifat umum, namun mempunyai kelemahan apabila diterapkan pada 5

10 struktur dengan pembebanan yang lebih kompleks, maka dirasa kurang praktis, karena harus melalui penjabaran secara matematis. Metode luas bidang momen inipun juga mempunyai kelemahan yang sama apabila dipakai pada konstruksi dengan pembebanan yang lebih kompleks. Namun demikian metode ini sedikit lebih praktis, karena proses hitungan dilakukan tidak secara matematis tetapi bersifat numeris. O d r y m n d d x M MD Gambar.. Gambar alok yang mengalami entur Dari gambar. tersebut didapat persamaan d r M = atau dapat ditulis menjadi M d (.) Dari persamaan. dapat didefinisikan sebagai berikut :

11 Definisi I : Elemen sudut d yang dibentuk oleh dua tangen arah pada dua titik yang berjarak, besarnya sama dengan luas bidang momen antara dua titik tersebut dibagi dengan. Dari gambar., apabila adalah panjang balok, maka besarnya sudut yang dibentuk adalah : b b h h b = bh (a) Segi empat b 8 b = bh/ (b) Segi tiga b h h b = (/)bh b = bh/ (c) Parabola pangkat (d) Parabola Pangkat n n b b n h h b n bh n b bh n (e) Parabola pangkat n (f) Parabola Pangkat n Gambar.7. etak titik berat 7

12 0 M erdasarkan garis singgung m dan n yang berpotongan dengan garis vertikal yang melewati titik, akan diperoleh : M.x ' " d x.d (.7) Nilai M. = uas bidang momen sepanjang. M.x. = Statis momen luas bidang M terhadap titik yang berjarak x dari elemen M. Sehingga dari persamaan.7 dapat didefinisikan sebagai berikut : Definisi II : Jarak vertikal pada suatu tempat yang dibentuk dua garis singgung pada dua Jarak ' titik suatu balok besarnya sama dengan statis momen luas bidang momen terhadap tempat tersebut dibagi dengan. 0 M.x Untuk menyelesaikan persamaan tersebut yang menjadi persoalan adalah letak titik berat suatu luasan, karena letak titik berat tersebut diperlukan dalam menghitung statis momen luas M..x. etak titik berat dari beberapa luasan dapat dilihat pada gambar.7. Untuk mempermudah pemahaman tentang pemakaian metode luas bidang momen, akan dicoba diaplikasikan pada struktur balok sederhana. Contoh.5. alok Sederhana dengan eban Merata Hitung defleksi maksimum ( C ) yang terjadi pada struktur balok sederhana yang menahan beban merata, sebagaimana digambarkan pada gambar.8, dengan metode luas bidang momen. Penyelesaian : esarnya momen di C akibat beban merata sebesar M C = etak titik berat dari tumpuan sebesar = q 8 erdasarkan definisi I besarnya sudut terhadap titik C adalah sebesar :

13 C C uas. q. 8 bidang momen C q erdasasrkan definisi II besarnya jarak lendutan vertikal di C sebesar : CC = C = C Statis 5. q.. 8 momen luas bidang C 5q 8 q C C C C / 5. 8 MD 5. 8 Gambar.8. alok sederhana yang menahan beban merata Contoh.. Cantilever dengan eban Merata Hitung defleksi maksimum ( ) yang terjadi pada struktur cantilever yang menahan beban merata, sebagaimana digambarkan pada gambar.9, dengan metode luas bidang momen. Penyelesaian : esarnya momen di akibat beban merata sebesar M = - q 9

14 etak titik berat ke titik sebesar = erdasarkan definisi I besarnya sudut terhadap titik adalah sebesar : uas. q q bidang momen erdasasrkan definisi II besarnya jarak lendutan vertikal di sebesar : = =. q 8 Statis q. momen luas bidang q q MD Gambar.9. Cantilever yang menahan beban merata Contoh.7. Cantilever dengan eban Titik Hitung defleksi maksimum ( ) yang terjadi pada struktur cantilever yang menahan beban titik, sebagaimana digambarkan pada gambar.0, dengan metode luas bidang momen. 0

15 P P MD Gambar.0. Cantilever yang menahan beban titik Penyelesaian : esarnya momen di akibat beban merata sebesar M = - P etak titik berat ke titik sebesar = erdasarkan definisi I besarnya sudut terhadap titik adalah sebesar : uas.p P bidang momen erdasasrkan definisi II besarnya jarak lendutan vertikal di sebesar : = = Statis.P. P momen luas bidang Contoh.8. alok Sederhana dengan eban Titik

16 Hitung defleksi maksimum ( C ) yang terjadi pada struktur balok sederhana yang menahan beban titik, sebagaimana digambarkan pada gambar., dengan metode luas bidang momen. P C C C C / P MD. Gambar.. alok sederhana yang menahan beban titik Penyelesaian : esarnya momen di C akibat beban merata sebesar M C = etak titik berat dari tumpuan sebesar =. P erdasarkan definisi I besarnya sudut terhadap titik C adalah sebesar : C uas. C P C bidang. P momen erdasasrkan definisi II besarnya jarak lendutan vertikal di C sebesar : CC = C = C C. P 8 Statis. P. momen luas bidang

17 . Metode uas idang Momen Sebagai eban Dua metoda yang sudah dibahas di atas mempunyai kelemehana yang sama, yaitu apabila konstruksi dan pembebanan cukup kompleks. Metode idang Momen Sebagai eban ini pun dirasa lebih praktis dibanding dengan metode yang dibahas sebelumnya. Metode ini pada hakekatnya berdasar sama dengan metode luas bidang momen, hanya sedikit terdapat perluasan. Untuk membahas masalah ini kita ambil sebuah konstruksi seperti tergambar pada gambar., dengan beban titik P, kemudian momen dianggap sebagai beban. Dari gambar., W adalah luas bidang momen, yang besarnya Pab W.. Pab erdasarkan definisi II yang telah dibahas pada metode luas bidang momen, maka didapat: = Statis Pab momen b Pab b luas bidang momen terhadap Pada umumnya lendutan yang terjadi cukup kecil, maka berdasarkan pendekatan geometris akan diperoleh :. atau Pab b R Dengan cara yang sama akan dihasilkan : Pab a R Dengan demikian dapat diambil kesimpulan bahwa : Sudut tangen di dan besarnya sama dengan reaksi perletakan dibagi. erdasarkan gambar. sebenarnya yang akan dicari adalah defleksi pada titik C sejauh x meter dari dukungan (potongan i-j-k) yaitu sebesar Zc. Zc = ij = ik jk

18 erdasarkan geometri, maka besarnya ik =. x, maka R ik x Sedangkan berdasarkan definisi II adalah statis momen luasan -m-n terhadap bidang m- n dibagi, maka jk = luas m x n. a b i P j k x MD m Pab x n Pab W R Pab b ( b) Pab a R Gambar.. Konstruksi alok Sederhana dan Garis Elastika Sehingga lendutan Z C yang berjarak x dari, adalah : Zc = ij = ik jk x ZC R x luas mn. (.8)

19 erdasarkan persamaan.8 didapat definisi III sebagai berikut : Definisi III : endutan disuatu titik didalam suatu bentangan balok sedrhana besarnya sama dengan momen di titik tersebut dibagi dengan apabila bidang momen sebagai beban. Untuk mempermudah pemahaman tentang pemakaian metode luas bidang momen sebagai beban, akan dicoba diaplikasikan pada struktur balok sederhana. Contoh.9. alok Sederhana dengan eban Merata Hitung defleksi maksimum ( C ) yang terjadi pada struktur balok sederhana yang menahan beban merata, sebagaimana digambarkan pada gambar., dengan metode luas bidang momen sebagai beban. q (a) C C C C / (b) 5. 8 MD (c) Gambar.. alok sederhana yang menahan beban merata Penyelesaian : angkah untuk menyelesaikan permasalahan ini adalah mencari momen terlebih dahulu, hasilnya sebagaimana digambarkan pada gambar..b. Hasil momen tersebut kemudian dijadikan beban, sebagaimana diperlihatkan pada gambar..c. Kemudian dicari atau dihitung besarnya reakasi dan momennya. esarnya adalah sebesar R 5

20 akibat beban momen dibagi dengan, sedangkan adalah sebesar R akibat beban momen dibagi dengan, dan besarnya max adalah sebesar M C akibat beban momen dibagi dengan. Untuk lebih jelasnya dapat dilihat pada penyelesaian dibawah ini. erdasarkan gambar..a. didapat momen sebagaimana digambarkan pada gambar..b, yang besarnya sebesar M C = q 8 Dari bidang momen yang didapat pada gambar..b dibalik dan dijadikan beban sebagaimana digambarkan pada gambar..c. Dari gambar..c didapat reaksi yang besarnya : R 8 R q q (besarnya sama dengan mn = W) Dengan demikian sudut kelengkunagannya dapat dihitung, yaitu sebesar : R q Dari gambar..c. didapat juga momen dititik C, yaitu sebesar : M C q q 5q esanya max dapat dihitung yaitu sebesar : M c C C 5q 8. Deformasi Deformasi (perubahan bentuk) balok disebabkan oleh beberapa faktor, diantaranya adalah : kibat beban luar yang bekerja (seperti beban merata, terpusat, segitiga, dan sebagainya), momen pada salah satu ujung balok, dan perpindahan (translasi) relatif ujung balok terhadap ujung balok yang lain.. Deformasi kibat eban Merata Deformasi yang terjadi pada struktur balok yang menahan beban merata sebagaimana digambarkan pada gambar., dapat dihitung dengan metode luas bidang momen sebagai beban.

21 M max = esarnya momen maksimum (di tengah bentang) akibat beban merata sebesar q. Dari hasil tersebut digambarkan bidang momennya berupa MD (ending 8 Moment Diagram), seperti gambar.b, kemudian MD tersebut dipergunakan sebagai beban, seperti gambar.c, sehingga didapat reaksi perletakan pada tumpuan dan, yaitu sebesar luas bidang momen tersebut dibagi dua : R uas bidang momen R = esarnya sudut di titik dan yaitu sebesar : R = q R = q. q. 8 q = dengan E adalah Modulus Elastis dan I adalah Momen Inersia. q (a) / M max MD (b) M max (c) Gambar.. alok sederhana yang menahan beban merata. Deformasi kibat Momen Pada Salah Satu Ujung alok Struktur balok yang menahan beban momen di ujung sebagaimana digambarkan pada gambar.5. didapat bidang momennya berupa MD. 7

22 M (a) M MD (b) Gambar.5. alok sederhana yang menahan beban momen di Ujung MD tersebut, dipergunakan sebagai beban sehingga didapat reaksi perletakan pada tumpuan dan, yaitu sebesar: R uas bidang momen =...M = R uas bidang momen =...M = esarnya sudut di titik dan yaitu sebesar : R = M R = M M. M. Jika beban momen terletak pada ujung sebagaimana tergambar pada gambar., maka besarnya sudut di titik dan yaitu sebesar : R = M R = M M (a) MD M (b) Gambar.. alok sederhana yang menahan beban momen di Ujung 8

23 . Deformasi kibat Perpindahan (Translasi). Jika suatu balok mengalami perpindahan ujung sebesar sebagaimana pada gambar.7, maka besarnya sudut di titik dan yaitu sebesar : Gambar.7. alok yang mengalami translasi terhadap ujung yang lain. Deformasi kibat eban Terpusat di Tengah entang Deformasi yang terjadi pada struktur balok yang menahan beban terpusat di tengah bentang digambarkan sebagaimana pada gambar.8, dapat dihitung dengan metode luas bidang momen sebagai beban. P (a) M max (b) MD Gambar.8. alok sederhana yang menahan beban merata esarnya momen maksimum (di tengah bentang) akibat beban merata sebesar M max = P. Dari hasil tersebut digambarkan bidang momennya berupa MD, kemudian MD tersebut dipergunakan sebagai beban sehingga didapar reaksi perletakan pada tumpuan dan, yaitu sebesar luas bidang momen tersebut dibagi dua : R ' ' uas bidang momen R =. P. esarnya sudut di titik dan yaitu sebesar : P = 9

24 R ' = q R ' = q 5. Deformasi kibat eban Segitiga Deformasi yang terjadi pada struktur balok yang menahan beban segitiga digambarkan sebagaimana pada gambar.9. Metode yang relatif lebih mudah adalah dengan metode integrasi ganda. q (a) q (b) R = / q x R = / q Gambar.9. alok sederhana yang menahan beban merata esarnya momen akibat beban segitiga sebesar M x = R.x qx.x.. x q.x = q.x.x.. x esarnya : = q.x q.x d y q.x. = M x = q. x 0

25 Intergrasi I : dy q.x. = q.x Integrasi II : q.x = q.x C q.x.y = q.x C q.x 0 5 = q.x C.x C erdasarkan persamaan tersebut : Jika x = 0 maka y = 0, sehingga didapat C = 0 5 q. Jika x = maka y = 0, sehingga didapat 0 = q. C. C 0 dy. = q.x q.x 7 0 C = q 7 q 0 Nilai x dihitung dari ke, sehingga terletak pada x = 0, pada titik tersebut y = 0. Sedangkan terletak pada x =, dan pada titik tersebut y = 0. Jika x dan y tersebut disubstitusi kedalam persamaan di atas maka nilai dan akan didapat. dy. = q. q. 7 0 q q.. = q. q 7q. = 0 7q. 0 = 5q 0 7q 0 = 8q 0

26 = 8 0 q dy. =. = q.0 q.0 q.0 q q q = 7 0 q Untuk kondisi balok dengan pembebanan yang lain, hasilnya dipaparkan pada Tabel.. Contoh.0

27

28 Contoh..

29 5

30

31 Tabel.. Rumus-rumus Deformasi Ujung alok kibat eban uar Gambar Pembebanan Struktur Deformasi Ujung Deformasi Ujung P P P / / P a b q P.a.( a ) P.b.( b ) q q q / / 9q 7q 8 8 M 0 M M q M M = 8 0 q = 7 0 q 7

32 C. Soal atihan Hitung dan Gambarkan SFD dan MD nya struktur tergambar dibawah ini. 8

BAB VI DEFLEKSI BALOK

BAB VI DEFLEKSI BALOK VI DEFEKSI OK.. Pendahuluan Semua alok akan terdefleksi (atau melentur) dari kedudukannya apaila tereani. Dalam struktur angunan, seperti : alok dan plat lantai tidak oleh melentur terlalu erleihan untuk

Lebih terperinci

LENDUTAN (Deflection)

LENDUTAN (Deflection) ENDUTAN (Deflection). Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat ditentukan dari sifat penampang dan beban-beban luar. Pada prinsipnya tegangan pada balok akibat beban

Lebih terperinci

Besarnya defleksi ditunjukan oleh pergeseran jarak y. Besarnya defleksi y pada setiap nilai x sepanjang balok disebut persamaan kurva defleksi balok

Besarnya defleksi ditunjukan oleh pergeseran jarak y. Besarnya defleksi y pada setiap nilai x sepanjang balok disebut persamaan kurva defleksi balok Hasil dan Pembahasan A. Defleksi pada Balok Metode Integrasi Ganda 1. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di bawah pengaruh gaya terpakai.

Lebih terperinci

DRAFT ANALISIS STRUKTUR Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar

DRAFT ANALISIS STRUKTUR Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar 2. Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar 2.1, dengan y adalah defleksi pada jarak yang ditinjau x, adalah sudut kelengkungan

Lebih terperinci

Pertemuan V,VI III. Gaya Geser dan Momen Lentur

Pertemuan V,VI III. Gaya Geser dan Momen Lentur Pertemuan V,VI III. Gaya Geser dan omen entur 3.1 Tipe Pembebanan dan Reaksi Beban biasanya dikenakan pada balok dalam bentuk gaya. Apabila suatu beban bekerja pada area yang sangat kecil atau terkonsentrasi

Lebih terperinci

STRUKTUR STATIS TAK TENTU

STRUKTUR STATIS TAK TENTU . Struktur Statis Tertentu dan Struktur Statis Tak Tentu Struktur statis tertentu : Suatu struktur yang mempunyai kondisi di mana jumlah reaksi perletakannya sama dengan jumlah syarat kesetimbangan statika.

Lebih terperinci

IV. DEFLEKSI BALOK ELASTIS: METODE INTEGRASI GANDA

IV. DEFLEKSI BALOK ELASTIS: METODE INTEGRASI GANDA IV. DEFEKSI BAOK EASTIS: ETODE INTEGRASI GANDA.. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di baah pengaruh gaya terpakai. Defleksi Balok

Lebih terperinci

Bab 6 Defleksi Elastik Balok

Bab 6 Defleksi Elastik Balok Bab 6 Defleksi Elastik Balok 6.1. Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat diteritukan dan sifat penampang dan beban-beban luar. Untuk mendapatkan sifat-sifat penampang

Lebih terperinci

sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik

sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik da beberapa macam sistem struktur, mulai dari yang sederhana sampai dengan yang kompleks; sistim yang paling sederhana tersebut disebut dengan konstruksi statis tertentu. Contoh : contoh struktur sederhana

Lebih terperinci

RENCANA PEMBELAJARAAN

RENCANA PEMBELAJARAAN RENN PEMEJRN Kode Mata Kuliah : RMK 114 Mata Kuliah : Mekanika Rekayasa IV Semester / SKS : IV / Kompetensi : Mampu Menganalisis Konstruksi Statis Tak Tentu Mata Kuliah Pendukung : Mekanika Rekayasa I,

Lebih terperinci

Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT

Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT Jenis Jenis Beban Apabila suatu beban bekerja pada area yang sangat kecil, maka beban tersebut dapat diidealisasikan sebagai beban terpusat, yang merupakan gaya tunggal. Beban ini dinyatakan dengan intensitasnya

Lebih terperinci

3- Deformasi Struktur

3- Deformasi Struktur 3- Deformasi Struktur Deformasi adalah salah satu kontrol kestabilan suatu elemen balok terhadap kekuatannya. iasanya deformasi dinyatakan sebagai perubahan bentuk elemen struktur dalam bentuk lengkungan

Lebih terperinci

BAB II METODE DISTRIBUSI MOMEN

BAB II METODE DISTRIBUSI MOMEN II MTO ISTRIUSI MOMN.1 Pendahuluan Metode distribusi momen diperkenalkan pertama kali oleh Prof. Hardy ross pada yahun 1930-an yang mana merupakan sumbangan penting yang pernah diberikan dalam analisis

Lebih terperinci

V. DEFLEKSI BALOK ELASTIS: METODE-LUAS MOMEN

V. DEFLEKSI BALOK ELASTIS: METODE-LUAS MOMEN V. DEFEKSI BOK ESTIS: METODE-US MOMEN Defleksi alok diperoleh dengan memanfaatkan sifat diagram luas momen lentur. Cara ini cocok untuk lendutan dan putaran sudut pada suatu titik sudut saja, karena kita

Lebih terperinci

BAB II PELENGKUNG TIGA SENDI

BAB II PELENGKUNG TIGA SENDI BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya

Lebih terperinci

Persamaan Tiga Momen

Persamaan Tiga Momen Persamaan Tiga omen Persamaan tiga momen menyatakan hubungan antara momen lentur di tiga tumpuan yang berurutan pada suatu balok menerus yang memikul bebanbeban yang bekerja pada kedua bentangan yang bersebelahan,

Lebih terperinci

Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method)

Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method) ahan jar nalisa Struktur II ulyati, ST., T Pertemuan VI,VII III. etode Defleksi Kemiringan (The Slope Deflection ethod) III.1 Uraian Umum etode Defleksi Kemiringan etode defleksi kemiringan (the slope

Lebih terperinci

MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT

MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT MAKALAH PRESENTASI DEFORMASI LENTUR BALOK Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT Oleh : M. Rifqi Abdillah (150560609) PROGRAM STUDI SI TEKNIK SIPIL JURUSAN

Lebih terperinci

5- Persamaan Tiga Momen

5- Persamaan Tiga Momen 5 Persamaan Tiga Momen Pada metoda onsistent eformation yang telah dibahas sebelumnya, kita menjadikan gaya luar yaitu reaksi perletakan sebagai gaya kelebihan pada suatu struktur statis tidak tertentu.

Lebih terperinci

Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu

Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu.1 Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan

Lebih terperinci

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss Golongan struktur 1. Balok (beam) adalah suatu batang struktur yang hanya menerima beban tegak saja, dapat dianalisa secara lengkap apabila diagram gaya geser dan diagram momennya telah diperoleh. 2. Kerangka

Lebih terperinci

DEFORMASI BALOK SEDERHANA

DEFORMASI BALOK SEDERHANA TKS 4008 Analisis Struktur I TM. IX : DEFORMASI BALOK SEDERHANA Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada prinsipnya tegangan pada balok

Lebih terperinci

1 M r EI. r ds. Gambar 1. ilustrasi defleksi balok

1 M r EI. r ds. Gambar 1. ilustrasi defleksi balok Defleksi balok-balok yang dibebani secara lateral Obtaiend from : Strength of Materials Part I : Elementary Theory and Problems by S. Timoshenko, D. Van Nostrand Complany Inc., 955. Persamaan diferensial

Lebih terperinci

MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU

MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU MOU 3 1 MOU 3 : METO PERSMN TIG MOMEN 3.1. Judul :METO PERSMN TIG MOMEN UNTUK MENYEESIKN STRUKTUR STTIS TIK TERTENTU Tujuan Pembelajaran Umum Setelah membaca bagian ini mahasiswa akan memahami bagaimanakah

Lebih terperinci

KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA

KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA 1 KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA A. Tujuan Instruksional Setelah selesai mengikuti kegiatan belajar ini diharapkan peserta kuliah STATIKA I dapat : 1. Menghitung reaksi, gaya melintang,

Lebih terperinci

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,

Lebih terperinci

Pertemuan III,IV,V II. Metode Persamaan Tiga Momen

Pertemuan III,IV,V II. Metode Persamaan Tiga Momen Pertemuan III,IV,V II. etode Persamaan Tiga omen II. Uraian Umum etode Persamaan Tiga omen Analisa balok menerus, pendekatan yang lebih mudah adalah dengan menggunakan momen-momen lentur statis yang tak

Lebih terperinci

BAB II METODE KEKAKUAN

BAB II METODE KEKAKUAN BAB II METODE KEKAKUAN.. Pendahuluan Dalam pertemuan ini anda akan mempelajari pengertian metode kekakuan, rumus umum dan derajat ketidak tentuan kinematis atau Degree Of Freedom (DOF). Dengan mengetahui

Lebih terperinci

RANCANGAN BUKU AJAR MATA KULIAH : ANALISA STRUKTUR 1 : TINJAUAN MATA KULIAH. 1. Deskripsi Singkat

RANCANGAN BUKU AJAR MATA KULIAH : ANALISA STRUKTUR 1 : TINJAUAN MATA KULIAH. 1. Deskripsi Singkat RNCNGN UKU JR MT KUIH : NIS STRUKTUR SKS HSN : SKS : TINJUN MT KUIH. Deskripsi Singkat Mata kuliah nalisa Struktur merupakan mata kuliah wajib bagi mahasiswa program strata Teknik Sipil di semester. Mata

Lebih terperinci

TUGAS MAHASISWA TENTANG

TUGAS MAHASISWA TENTANG TUGAS MAHASISWA TENTANG o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK KANTILEVER. o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK SEDERHANA. Disusun Oleh : Nur Wahidiah 5423164691 D3 Teknik

Lebih terperinci

Catatan Materi Mekanika Struktur I Oleh : Andhika Pramadi ( 25/D1 ) NIM : 14/369981/SV/07488/D MEKANIKA STRUKTUR I (Strengh of Materials I)

Catatan Materi Mekanika Struktur I Oleh : Andhika Pramadi ( 25/D1 ) NIM : 14/369981/SV/07488/D MEKANIKA STRUKTUR I (Strengh of Materials I) Catatan Materi Mekanika Struktur I Oleh : ndhika Pramadi ( 25/D1 ) MEKNIK STRUKTUR I (Strengh of Materials I) Mekanika Struktur / Strengh of Materials / Mechanical of Materials / Mekanika ahan. Pengertian

Lebih terperinci

STRUKTUR STATIS TERTENTU

STRUKTUR STATIS TERTENTU MEKNIK STRUKTUR I STRUKTUR STTIS TERTENTU Soelarso.ST.,M.Eng JURUSN TEKNIK SIPIL FKULTS TEKNIK UNIVERSITS SULTN GENG TIRTYS PENDHULUN Struktur Statis Tertentu Suatu struktur disebut sebagai struktur statis

Lebih terperinci

BAB IV DIAGRAM GAYA GESER (SHEAR FORCE DIAGRAM SFD) DAN DIAGRAM MOMEN LENTUR (BENDING MOMENT DIAGRAM BMD)

BAB IV DIAGRAM GAYA GESER (SHEAR FORCE DIAGRAM SFD) DAN DIAGRAM MOMEN LENTUR (BENDING MOMENT DIAGRAM BMD) IV IGRM GY GESER (SHER FORE IGRM SF) N IGRM MOMEN LENTUR (ENING MOMENT IGRM M) alok adalah suatu bagian struktur yang dirancang untuk menumpu beban yang diterapkan pada beberapa titik di sepanjang struktur

Lebih terperinci

Ditinjau sebuah batang AB yang berada bebas dalam bidang x-y:

Ditinjau sebuah batang AB yang berada bebas dalam bidang x-y: OK SEDERHN (SIME EM) OK SEDERHN (SIME EM) Ditinjau sebuah batang yang berada bebas dalam bidang x-y: Translasi Jika pada batang tsb dikenakan gaya (beban), maka batang menjadi tidak stabil karena mengalami

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

METODE SLOPE DEFLECTION

METODE SLOPE DEFLECTION TKS 4008 Analisis Struktur I TM. XVIII : METODE SLOPE DEFLECTION Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada 2 metode sebelumnya, yaitu :

Lebih terperinci

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya BABH TINJAUAN PUSTAKA Pada balok ternyata hanya serat tepi atas dan bawah saja yang mengalami atau dibebani tegangan-tegangan yang besar, sedangkan serat di bagian dalam tegangannya semakin kecil. Agarmenjadi

Lebih terperinci

ANSTRUK STATIS TAK TENTU (TKS 1315)

ANSTRUK STATIS TAK TENTU (TKS 1315) ANSTRUK STATIS TAK TENTU (TKS 1315) JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER GATI ANNISA HAYU, ST, MT, MSc. Gati Annisa Hayu, ST, MT, MSc. WINDA TRI WAHYUNINGTYAS, ST, MT, MSc MODUL 4 DEFORMASI

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD Modul ke: 02 Fakultas FTPD Program Studi Teknik Sipil STATIKA I Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT Reaksi Perletakan Struktur Statis

Lebih terperinci

Mekanika Rekayasa III

Mekanika Rekayasa III Mekanika Rekayasa III Metode Hardy Cross Pertama kali diperkenalkan oleh Hardy Cross (1993) dalam bukunya yang berjudul nalysis of Continuous Frames by Distributing Fixed End Moments. Sebagai penghargaan,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Definisi Balok Statis Tak Tentu

Definisi Balok Statis Tak Tentu Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan hanya dengan menggunakan persamaan statika. Dalam

Lebih terperinci

BUKU AJAR ANALISA STRUKTUR II DISUSUN OLEH : I PUTU LAINTARAWAN, ST, MT. I NYOMAN SUTA WIDNYANA, ST, MT. I WAYAN ARTANA, ST.MT

BUKU AJAR ANALISA STRUKTUR II DISUSUN OLEH : I PUTU LAINTARAWAN, ST, MT. I NYOMAN SUTA WIDNYANA, ST, MT. I WAYAN ARTANA, ST.MT UKU JR NIS STRUKTUR II DISUSUN OEH : I PUTU INTRWN, ST, MT. I NYOMN SUT WIDNYN, ST, MT. I WYN RTN, ST.MT PROGRM STUDI TEKNIK SIPI FKUTS TEKNIK UNIVERSITS HINDU INDONESI KT PENGNTR Puji syukur penulis kami

Lebih terperinci

5- STRUKTUR LENTUR (BALOK)

5- STRUKTUR LENTUR (BALOK) Pengertian Balok 5- STRUKTUR LENTUR (BALOK) Balok adalah bagian dari struktur bangunan yang menerima beban tegak lurus ( ) sumbu memanjang batang (beban lateral beban lentur) Beberapa jenis balok pada

Lebih terperinci

II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila

II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila II. KAJIAN PUSTAKA A. Balok dan Gaya Balok (beam) adalah suatu batang struktural yang didesain untuk menahan gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila beban yang dialami pada

Lebih terperinci

DIAGRAM BAGAN ALIR PENELITIAN

DIAGRAM BAGAN ALIR PENELITIAN LAMPIRAN 86 Lampiran 1 87 DIAGRAM BAGAN ALIR PENELITIAN Mulai Data Hasil Uji Eksperimental - Tegangan Geser di Titik E - Regangan Geser di Titik E - Lendutan Maksimum Perhitungan Analitis (Perhitungan

Lebih terperinci

PRINSIP DASAR MEKANIKA STRUKTUR

PRINSIP DASAR MEKANIKA STRUKTUR PRINSIP DASAR MEKANIKA STRUKTUR Oleh : Prof. Ir. Sofia W. Alisjahbana, M.Sc., Ph.D. Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR. PENDAHULUAN Pada struktur pelat satu-arah beban disalurkan ke balok kemudian beban disalurkan ke kolom. Jika balok menyatu dengan ketebalan pelat itu sendiri, menghasilkan sistem

Lebih terperinci

BAB III LANDASAN TEORI. direncanakan adalah dudukan seperti ditunjukkan pada Gambar 3.1.

BAB III LANDASAN TEORI. direncanakan adalah dudukan seperti ditunjukkan pada Gambar 3.1. BAB III LANDASAN TEORI 3.1 Dudukan Rencana Dudukan memiliki bentuk menyilang (X). Bentuk menyilang diperoleh dari analogi terhadap gunting. Cara kerja gunting yang menyilang dirasa bisa digunakan di jembatan,

Lebih terperinci

Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen

Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen TKS 4008 Analisis Struktur I TM. XXII : METODE CROSS Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Outline Metode Distribusi Momen Momen Primer (M ij ) Faktor

Lebih terperinci

III. TEGANGAN DALAM BALOK

III. TEGANGAN DALAM BALOK . TEGANGAN DALA BALOK.. Pengertian Balok elentur Balok melentur adalah suatu batang yang dikenakan oleh beban-beban yang bekerja secara transversal terhadap sumbu pemanjangannya. Beban-beban ini menciptakan

Lebih terperinci

Menggambar Lendutan Portal Statis Tertentu

Menggambar Lendutan Portal Statis Tertentu Menggambar Lendutan Portal Statis Tertentu (eformasi aksial diabaikan) Gambar 1. Portal Statis Tertentu Sebuah portal statis tertentu akan melendut dan bergoyang jika dibebani seperti terlihat pada Gambar

Lebih terperinci

II. LENTURAN. Gambar 2.1. Pembebanan Lentur

II. LENTURAN. Gambar 2.1. Pembebanan Lentur . LENTURAN Pembebanan lentur murni aitu pembebanan lentur, baik akibat gaa lintang maupun momen bengkok ang tidak terkombinasi dengan gaa normal maupun momen puntir, ditunjukkan pada Gambar.. Gambar.(a)

Lebih terperinci

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun oleh: SURYADI

Lebih terperinci

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 2011

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 2011 JURUSN TEKNIK SIPI FKUTS TEKNIK UNIVERSITS RWIJY 011 SISTEM RNGK TNG IMENSI Terbentuk dari elemen-elemen batang lurus yang dirangkai dalam bidang datar Sambungan ujung-ujung batang dianggap sendi sempurna

Lebih terperinci

Metode Defleksi Kemiringan (The Slope Deflection Method)

Metode Defleksi Kemiringan (The Slope Deflection Method) etode Defleksi Kemiringan (The Slope Deflection ethod) etode defleksi kemiringan dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis tak-tentu tentu. Semua sambungan dianggap kaku,

Lebih terperinci

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kayu Kayu merupakan suatu bahan mentah yang didapatkan dari pengolahan pohon pohon yang terdapat di hutan. Kayu dapat menjadi bahan utama pembuatan mebel, bahkan dapat menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1. Pendahuluan Umumnya pada suatu struktur, akibat dari gaya-gaya luar akan timbul tegangan tarik yang ukup besar pada balok, pelat dan kolom, di sini beton biasa tidak dapat

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

PENGARUH JUMLAH PLAT BESI TERHADAP DEFLEKSI PEMBEBANAN PADA PENGUJIAN SUPERPOSISI Andi Kurniawan 1),Toni Dwi Putra 2),Ahkmad Farid 3) ABSTRAK

PENGARUH JUMLAH PLAT BESI TERHADAP DEFLEKSI PEMBEBANAN PADA PENGUJIAN SUPERPOSISI Andi Kurniawan 1),Toni Dwi Putra 2),Ahkmad Farid 3) ABSTRAK PENGARUH JUMLAH PLAT BESI TERHADAP DEFLEKSI PEMBEBANAN PADA PENGUJIAN SUPERPOSISI Andi Kurniawan 1),Toni Dwi Putra 2),Ahkmad Farid 3) ABSTRAK Pada semua konstruksi teknik bagian-bagian pelengkap haruslah

Lebih terperinci

XI. BALOK ELASTIS STATIS TAK TENTU

XI. BALOK ELASTIS STATIS TAK TENTU XI. OK ESTIS STTIS TK TENTU.. alok Statis Tak Tentu Dalam semua persoalan statis tak tentu persamaan-persamaan keseimbangan statika masih tetap berlaku. ersamaan-persamaan ini adalah penting, tetapi tidak

Lebih terperinci

Oleh : Ir. H. Armeyn Syam, MT FAKULTAS TEKNIK SIPIL & PERENCANAAN INSTITUT TEKNOLOGI PADANG

Oleh : Ir. H. Armeyn Syam, MT FAKULTAS TEKNIK SIPIL & PERENCANAAN INSTITUT TEKNOLOGI PADANG Oleh : Ir. H. Armeyn Syam, MT FAKULTAS TEKNIK SIPIL & PERENCANAAN INSTITUT TEKNOLOGI PADANG Struktur rangka batang bidang adalah struktur yang disusun dari batang-batang yang diletakkan pada suatu bidang

Lebih terperinci

MODUL 2 : ARTI KONSTRUKSI STATIS TERTENTU DAN CARA PENYELESAIANNYA 2.1. JUDUL : KONSTRUKSI STATIS TERTENTU

MODUL 2 : ARTI KONSTRUKSI STATIS TERTENTU DAN CARA PENYELESAIANNYA 2.1. JUDUL : KONSTRUKSI STATIS TERTENTU MODUL II (MEKNIK TEKNIK) -1- MODUL 2 : RTI KONSTRUKSI STTIS TERTENTU DN CR ENYELESINNY 2.1. JUDUL : KONSTRUKSI STTIS TERTENTU Tujuan embelajaran Umum Setelah membaca bagian ini mahasiswa akan mengerti

Lebih terperinci

PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR PORTAL BERGOYANG STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK DAN KOLOM

PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR PORTAL BERGOYANG STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK DAN KOLOM PENGGUNN METODE SOPE DEFETION... (JEMMY WIJY, DKK PENGGUNN METODE SOPE DEFETION PD STRUKTUR PORT ERGOYNG STTIS TK TENTU DENGN KEKKUN YNG TIDK MERT DM STU OK DN KOOM Jemy Wijaya dan Fanywati Itang Jurusan

Lebih terperinci

BAB I PENDAHULUAN. yang demikian kompleks, metode eksak akan sulit digunakan. Kompleksitas

BAB I PENDAHULUAN. yang demikian kompleks, metode eksak akan sulit digunakan. Kompleksitas BAB I PENDAHULUAN I.1. LATAR BELAKANG Pada saat ini, pesatnya perkembangan teknologi telah memunculkan berbagai jenis struktur pelat yang cukup rumit misalnya pada struktur jembatan, pesawat terbang, bangunan,

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton SNI 03-1974-1990 memberikan pengertian kuat tekan beton adalah besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya

Lebih terperinci

2 Mekanika Rekayasa 1

2 Mekanika Rekayasa 1 BAB 1 PENDAHULUAN S ebuah konstruksi dibuat dengan ukuran-ukuran fisik tertentu haruslah mampu menahan gaya-gaya yang bekerja dan konstruksi tersebut harus kokoh sehingga tidak hancur dan rusak. Konstruksi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu IV. HASIL DAN PEMBAHASAN Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu pengujian mekanik beton, pengujian benda uji balok beton bertulang, analisis hasil pengujian, perhitungan

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Umum Balok tinggi adalah elemen struktur yang dibebani sama seperti balok biasa dimana besarnya beban yang signifikan dipikul pada sebuah tumpuan dengan gaya tekan yang menggabungkan

Lebih terperinci

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser 4.1 Tegangan dan Regangan Balok akibat Lentur Murni Pada bab berikut akan dibahas mengenai respons balok akibat pembebanan. Balok

Lebih terperinci

BAB IV KONSTRUKSI RANGKA BATANG. Konstruksi rangka batang adalah suatu konstruksi yg tersusun atas batangbatang

BAB IV KONSTRUKSI RANGKA BATANG. Konstruksi rangka batang adalah suatu konstruksi yg tersusun atas batangbatang BAB IV KONSTRUKSI RANGKA BATANG A. PENGERTIAN Konstruksi rangka batang adalah suatu konstruksi yg tersusun atas batangbatang yang dihubungkan satu dengan lainnya untuk menahan gaya luar secara bersama-sama.

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton Sifat utama beton adalah memiliki kuat tekan yang lebih tinggi dibandingkan dengan kuat tariknya. Kekuatan tekan beton adalah kemampuan beton untuk menerima

Lebih terperinci

tegangan tekan disebelah atas dan tegangan tarik di bagian bawah, yang harus ditahan oleh balok.

tegangan tekan disebelah atas dan tegangan tarik di bagian bawah, yang harus ditahan oleh balok. . LENTUR Bila suatu gelagar terletak diatas dua tumpuan sederhana, menerima beban yang menimbulkan momen lentur, maka terjadi deformasi (regangan) lentur. Pada kejadian momen lentur positif, regangan tekan

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA II.1 Umum dan Latar Belakang Kolom merupakan batang tekan tegak yang bekerja untuk menahan balok-balok loteng, rangka atap, lintasan crane dalam bangunan pabrik dan sebagainya yang

Lebih terperinci

Struktur Lipatan. Struktur Lipatan 1

Struktur Lipatan. Struktur Lipatan 1 Struktur Lipatan Pengertian Struktur lipatan adalah bentuk yang terjadi pada lipatan bidang-bidang datar dimana kekakuan dan kekuatannya terletak pada keseluruhan bentuk itu sendiri. Bentuk lipatan ini

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

plat lengkung atau plat lipat yang tebalnya kecil dibandingkan dengan dimensi

plat lengkung atau plat lipat yang tebalnya kecil dibandingkan dengan dimensi BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur cangkang telah banyak dikenal dalam penggunaan untuk pesawat terbang, peti kemas dan pada bangunan (atap, pondasi dan silo). Kekuatan cangkang untuk struktur tidak

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput BAB II DASAR TEORI 2.1 Prinsip Dasar Mesin Pencacah Rumput Mesin ini merupakan mesin serbaguna untuk perajang hijauan, khususnya digunakan untuk merajang rumput pakan ternak. Pencacahan ini dimaksudkan

Lebih terperinci

ELEMEN-ELEMEN STRUKTUR BANGUNAN

ELEMEN-ELEMEN STRUKTUR BANGUNAN ELEMEN-ELEMEN BANGUNAN Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan di atas tanah. Fungsi struktur dapat disimpulkan

Lebih terperinci

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam.

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Gaya Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik, gaya dapat diartikan sebagai muatan yang bekerja

Lebih terperinci

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH Disusun sebagai salah satu syarat untuk lulus kuliah MS 4011 Metode Elemen Hingga Oleh Wisnu Ikbar Wiranto 13111074 Ridho

Lebih terperinci

Pd M Ruang lingkup

Pd M Ruang lingkup 1. Ruang lingkup 1.1 Metode ini menentukan sifat lentur potongan panel atau panel struktural yang berukuran sampai dengan (122 X 244) cm 2. Panel struktural yang digunakan meliputi kayu lapis, papan lapis,

Lebih terperinci

Bab 3 (3.1) Universitas Gadjah Mada

Bab 3 (3.1) Universitas Gadjah Mada Bab 3 Sifat Penampang Datar 3.1. Umum Didalam mekanika bahan, diperlukan operasi-operasi yang melihatkan sifatsifat geometrik penampang batang yang berupa permukaan datar. Sebagai contoh, untuk mengetahui

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa

Lebih terperinci

STRUKTUR PERMUKAAN BIDANG

STRUKTUR PERMUKAAN BIDANG STRUKTUR PERMUKAAN BIDANG 1. STRUKTUR LIPATAN Bentuk lipatan ini mempunyai kekakuan yang lebih dibandingkan dengan bentuk-bentuk yang datar dengan luas yang sama dan dari bahan yang sama pula. Karena momen

Lebih terperinci

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Dr. AZ Department of Civil Engineering Brawijaya University Pendahuluan JEMBATAN GELAGAR BAJA BIASA Untuk bentang sampai dengan

Lebih terperinci

BAB I STRUKTUR STATIS TAK TENTU

BAB I STRUKTUR STATIS TAK TENTU I STRUKTUR STTIS TK TENTU. Kesetimbangan Statis (Static Equilibrium) Salah satu tujuan dari analisis struktur adalah mengetahui berbagai macam reaksi yang timbul pada tumpuan dan berbagai gaya dalam (internal

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

P=Beban. Bila ujung-ujung balok tersebut tumpuan jepit maka lendutannya / 192 EI. P= Beban

P=Beban. Bila ujung-ujung balok tersebut tumpuan jepit maka lendutannya / 192 EI. P= Beban BAB I Struktur Menerus : Balok A. engertian Balok merupakan struktur elemen yang dimana memiliki dimensi b dan h yang berbeda, dimensi b lebih kecil dari dimensi h. Bagian ini akan membahas mengenai balok

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection ata Kuliah : Analisis Struktur Kode : TSP 0 SKS : SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 11 TIU : ahasiswa dapat menghitung reaksi perletakan pada struktur statis

Lebih terperinci

I. DEFORMASI TITIK SIMPUL DARI STRUKTUR RANGKA BATANG

I. DEFORMASI TITIK SIMPUL DARI STRUKTUR RANGKA BATANG Materi Mekanika Rekayasa 4 Statika : 1. Deformasi pada Konstruksi Rangka atang : - Cara nalitis : metoda unit load - Cara Grafis : - metoda welliot - metoda welliot mohr 2. Deformasi pada Konstrusi alok

Lebih terperinci

HUKUM NEWTON B A B B A B

HUKUM NEWTON B A B B A B Hukum ewton 75 A A 4 HUKUM EWTO Sumber : penerbit cv adi perkasa Pernahkah kalian melihat orang mendorong mobil yang mogok? Perhatikan pada gambar di atas. Ada orang ramai-ramai mendorong mobil yang mogok.

Lebih terperinci

MEKANIKA TEKNIK I BALOK GERBER. Ir. H. Armeyn, MT

MEKANIKA TEKNIK I BALOK GERBER. Ir. H. Armeyn, MT MEKNIK TEKNIK I LOK GERER Ir. H. rmeyn, MT FKULT TEKNIK IPIL & PERENNN INTITUT TEKNOLOGI PNG JURUN TEKNIK IPIL FKULT TEKNIK INTITUT TEKNOLOGI PNG PENHULUN Kita tinjau Konstruksi di bawah ini, Konstruksi

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

Biasanya dipergunakan pada konstruksi jembatan, dengan kondisi sungai dengan lebar yang cukup berarti dan dasar sungai yang dalam, sehingga sulit

Biasanya dipergunakan pada konstruksi jembatan, dengan kondisi sungai dengan lebar yang cukup berarti dan dasar sungai yang dalam, sehingga sulit iasanya dipergunakan pada konstruksi jembatan, dengan kondisi sungai dengan lebar yang cukup berarti dan dasar sungai yang dalam, sehingga sulit untuk membuat pilar di tengah jembatan. Gelagar jembatan

Lebih terperinci