BAB V KESIMPULAN DAN SARAN
|
|
|
- Yenny Hardja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB V KESIMPULAN DAN SARAN Kesimpulan yang diambil dalam Bab ini berdasarkan hasil analisis pada Bab sebelumnya. Selain kesimpulan, Bab ini juga berisi saran yang dapat dijadikan pertimbangan untuk penelitian-penelitian selanjnya agar didapatkan hasil yang lebih baik. 5. Kesimpulan Berdasarkan hasil dan pembahasan pada Bab sebelumnya, maka dalam penelitian ini didapatkan beberapa kesimpulan sebagai berik :. Model GARCH dengan metode estimasi ULS untuk nilai tukar Poundsterling terhadap Rupiah adalah : at Sehingga model peramalan nilai tukar Poundsterling terhadap Rupiah adalah: ( λ. Z t λ Y t + Z t Dt Dt + A ( B dimana A ( 0.044B B B 0.09B Sedangkan untuk nilai tukar Dollar Canada, model GARCH yang memenuhi adalah sebagai berik : at + 0.3σ t σ t dan model peramalannya adalah : Y t Z t Z t dimana ( B B B Dt Dt + A3 A 3 ( B 65
2 66. Model Algoritma Genetika untuk nilai tukar Poundsterling terhadap Rupiah adalah : Model algoritma genetika terseb dapat dinyatakan dalam bentuk model GARCH berik : at Berdasarkan model GARCH terseb, didapatkan model peramalan nilai tukar Poundsterling terhadap Rupiah adalah: ( λ. Z t λ Y t + Z t Dt Dt + A ( B dimana A ( 0.044B B B 0.09B Pada kasus nilai tukar Dollar Canada, model Algoritma Genetika yang memenuhi adalah :
3 67 Model algoritma genetika terseb dapat dinyatakan dalam bentuk model GARCH berik : at σ t σ t sehingga model peramalannya adalah : Y t Z t Z t Dt Dt + A3 ( B dimana A3 4 ( B 0.043B B 3. Pada kasus nilai tukar Poundsterling terhadap Rupiah, didapatkan nilai MSE dan nilai MAPE dari model peramalan dengan menggunakan metode estimasi Unconditional Least Square bertur-tur sebesar 33.7 dan.3807%. Sedangkan dengan metode algoritma genetika, diperoleh nilai MSE dan MAPE sebesar dan %. Sehingga disimpulkan untuk kasus ini metode algoritma genetika menghasilkan model peramalan yang lebih baik. Metode algoritma genetika juga memberikan model pera-
4 68 malan yang lebih baik untuk kasus nilai tukar Dollar Canada terhadap Rupiah. Hal ini terlihat dari nilai MSE dan MAPE model peramalan dengan algoritma genetika yaitu sebesar dan 0.658% yang lebih kecil daripada nilai MSE dan nilai MAPE model peramalan dengan metode ULS yaitu sebesar dan.038%. 5. Saran Penyelesaian masalah peramalan nilai tukar mata uang dengan menggunakan metode algoritma genetika dalam tugas akhir ini masih bisa dikembangkan lagi dengan cara menggunakan fungsi dan variabel yang lebih banyak lagi agar mendapatkan ruang solusi yang lebih luas dan memperoleh hasil yang lebih optimum. Hal terseb bisa dilakukan dengan memasukkan model ARIMA atau model intervensi dalam proses algoritma genetika.
5 DAFTAR PUSTAKA Engle, R.98. Aoregressive Conditional Heterocedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, Gen, M. dan Cheng, R Genetic Algoritm and Enginering design. John wiley & Sons, Inc. Ho, K.Y dan Tsui, A.K Volatility Dynamics in Foreign Exchange Rates: Further Evidence from Malaysian Ringgit and Singapore Dollar. Modelling and Simulation Society Paper. Lee, T.Y., et al Olier Detection for Anomaly Groundwater Level Time Series. 4 th Taiwan-Japan Joint Workshop on Hydrological Research for Earthquake Prediction. Lkepohl, H. dan Kratzig, M Applied Time Series Econometric. USA :Cambridge University Press. Neely, C.J., et al Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach. Federal Reserve Bank of St.Louis, Working Paper Series 006C. Neely, C.J., dan Weller, P.A Intraday Technical Trading in the Foreign Exchange Market. Federal Reserve Bank of St.Louis, Working Paper Series 06B. Neely, C.J., dan Weller, P.A. 00. Predicting Exchange Rate Volatility : Genetic Progamming vs. GARCH and RiskMetrics. Federal Reserve Bank of St.Louis, Working Paper Series 009B. 69
6 70 Noland, B.E.R et al The Effect of London Congestion Charge On Road Casualties : An Intervention Analysis. Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College, London. Silva, S A Genetic Programming Toolbox for MATLAB. Evolionary and Complex Systems Group. Setiawan, K Paradigma Sistem Cerdas. Malang :Bayumedia. Wirasti, A. P Analisis Statistik pada Indeks Berjangka Nikkei dan Dow Jones di Pasar Modal dengan menggunakan ARIMA dan ARCH-GARCH. Program S Jurusan Statistika, ITS, Surabaya. Wei, W.W.S.990. Time Series Analysis, USA : Addison- Wesley Publishing Company. Yang, L A Semiparametric GARCH Model for Foreign Exchange Volatility. Journal of Econometrics, 30,
7 RIWAYAT PENULIS Abdul Qohar dilahirkan di Gresik, 30 Agustus 985. Penulis adalah anak kedua dari empat bersaudara. Pendidikan formal penulis adalah MI Mamba ul Ulum Bedanten, MTS Mamba ul Ulum Bedanten, dan SMU Assa adah Sampurnan Bungah. Pada tahun 003 penulis mengiki SPMB (Seleksi Penerimaan Mahasiswa Baru dan diterima di jurusan Statistika FMIPA - ITS dan terdaftar dengan NRP
5. KESIMPULAN DAN SARAN
5. KESIMPULAN DAN SARAN Kesimpulan 1. Dari plot ACF, periodogram, dan pengujian long memory dapat diketahui bahwa data nilai tukar Rupiah terhadap USD memiliki ketergantungan jangka panjang dan sudah dhstasioner,
Anis Nur Aini, Sugiyanto, dan Siswanto Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta
MENDETEKSI KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING BERDASARKAN INDIKATOR SIMPANAN BANK, NILAI TUKAR RIIL, DAN NILAI TUKAR PERDAGANGAN Anis Nur Aini, Sugiyanto,
BAB V KESIMPULAN DAN SARAN
BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Berdasarkan analisis data dan pembahasan pada Bab IV, kesimpulan penelitian ini adalah sebagai berikut. 1. Model VARIMA yang sesuai untuk data penjualan obat I,
BAB IV KESIMPULAN DAN SARAN. maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan data
BAB IV KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan uraian dan pembahasan pada bab-bab sebelumnya, maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan
PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS
S-9 PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Retno Hestiningtyas dan Winita Sulandari, M.Si Jurusan Matematika FMIPA UNS ABSTRAK. Pada data finansial sering terjadi keadaan leverage effect,
Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya
PEMODELAN RETURN IHSG PERIODE 15 SEPTEMBER 1998 13 SEPTEMBER 2013 MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (TGARCH(1,1)) DENGAN DUA THRESHOLD Suma Suci Sholihah,
BAB V KESIMPULAN DAN SARAN
BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Kesimpulan yang diperoleh berdasarkan analisis dan pembahasan pada bab sebelumnya adalah sebagai berikut. 1. Bobot lokasi yang digunakan dalam membentuk model
SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU
SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU Asep Saefuddin, Anang Kurnia dan Sutriyati Departemen Statistika FMIPA IPB Ringkasan Data deret waktu pada bidang keuangan
BAB I PENDAHULUAN. tukar uang tersebut dinamakan kurs atau exchange rate. uang tersebut merupakan salah satu aset finansial yang dapat mendorong
BAB I PENDAHULUAN 1.1 Latar Belakang Uang memegang peranan penting dalam perekonomian setiap negara. Aktifitas ekonomi yang dapat dilakukan suatu negara dengan menggunakan uang adalah perdagangan, baik
PERBANDINGAN AKURASI MODEL ARCH DAN GARCH PADA PERAMALAN HARGA SAHAM BERBANTUAN MATLAB Sunarti, Scolastika Mariani, Sugiman
g UJM 5 (1) (2016) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PERBANDINGAN AKURASI MODEL ARCH DAN GARCH PADA PERAMALAN HARGA SAHAM BERBANTUAN MATLAB Sunarti, Scolastika Mariani,
Penerapan Algoritma Genetika pada Peringkasan Teks Dokumen Bahasa Indonesia
Penerapan Algoritma Genetika pada Peringkasan Teks Dokumen Bahasa Indonesia Aristoteles Jurusan Ilmu Komputer FMIPA Universitas Lampung [email protected] Abstrak.Tujuan penelitian ini adalah meringkas
PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA DENGAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING PADA INDIKATOR IMPOR, EKSPOR, DAN CADANGAN DEVISA
PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA DENGAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING PADA INDIKATOR IMPOR, EKSPOR, DAN CADANGAN DEVISA Vivi Rizky Aristina Suwardi, Sugiyanto, dan Supriyadi
PENERAPAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING
PENERAPAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING DALAM PENDETEKSIAN DINI KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR M1, M2 PER CADANGAN DEVISA, DAN M2 MULTIPLIER Esteti Sophia Pratiwi,
Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA
Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA 1 Harnum Annisa Prafitia dan 2 Irhamah
PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH
PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH Nama : Yulia Sukma Hardyanti NRP : 1303.109.001 Jurusan
ANALISIS PENJUALAN BAHAN BAKAR MINYAK (BBM) dari PT. PERTAMINA (PERSERO) UPms V SURABAYA dengan METODE ARIMA BOX JENKINS
ANALISIS PENJUALAN BAHAN BAKAR MINYAK (BBM) dari PT. PERTAMINA (PERSERO) UPms V SURABAYA dengan METODE ARIMA BOX JENKINS Oleh: Rizky Amlia Rachmawati (1306.030.046) Dosen Pembimbing: Dra. Madu Ratna, M.Si
SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti
SEMINAR TUGAS AKHIR Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik Rina Wijayanti 1306100044 Pembimbing Drs. Haryono, MSIE Dedi Dwi Prastyo, S.Si., M.Si.
IDENTIFIKASI MODEL FUNGSI TRANSFER MENGGUNAKAN PEMODELAN ARIMA OTOMATIS GOMEZ-MARAVALL (STUDI KASUS PADA DATA INFLASI INDONESIA)
IDENTIFIKASI MODEL FUNGSI TRANSFER MENGGUNAKAN PEMODELAN ARIMA OTOMATIS GOMEZ-MARAVALL (STUDI KASUS PADA DATA INFLASI INDONESIA) Oleh: R I O J A K A R I A NPM. 140720090023 T E S I S Untuk memenuhi salah
MENAKSIR VALUE AT RISK (VAR) PORTOFOLIO PADA INDEKS SAHAM DENGAN METODE PENDUGA VOLATILITAS GARCH
MENAKSIR VALUE AT RISK (VAR) PORTOFOLIO PADA INDEKS SAHAM DENGAN METODE PENDUGA VOLATILITAS GARCH INTAN AWYA WAHARIKA 1, KOMANG DHARMAWAN 2, NI MADE ASIH 3 1, 2, 3 Jurusan Matematika FMIPA Universitas
PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR IMPOR DAN EKSPOR MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING
PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR IMPOR DAN EKSPOR MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING Sisca Rahma Dwi, Sugiyanto, dan Yuliana Susanti Program Studi
PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH)
PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH) SKRIPSI Disusun oleh: MAIDIAH DWI NARURI SAIDA 24010212120003 DEPARTEMEN
99.9. Percent maka H 0 diterima, berarti residual normal
Uji residual white noise 2 Lag Q P value 6 3.5 9.49 0.5330 2 6.6 8.3 0.803 8 9.8 26.30 0.9059 24 9.3 33.92 0.6374 K p q Uji residual berdistribusi normal Percent 99.9 99 95 90 80 70 60 50 40 30 20 0 5
Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data. Identifikasi model ARCH
6 Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data Identifikasi model ARCH Pendugaan parameter dan pemilihan model ARCH/GARCH Uji pengaruh asimetrik
FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA
FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)
PEMBUATAN INDIKATOR VECTOR AUTOREGESSIVE (VAR) PADA METATRADER
PEMBUATAN INDIKATOR VECTOR AUTOREGESSIVE (VAR) PADA METATRADER Samuel Ridwan Setiadi 1, Mahendrawathi ER 2, dan Nur Iriawan 3 1 MMT-ITS, Surabaya, Indonesia 2 Dosen Jurusan Sistem Informasi, FTIF-ITS [email protected]
Ratri Oktaviani, Sugiyanto, dan Yuliana Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret
HUBUNGAN KONDISI INDIKATOR NILAI TUKAR RIIL DAN IHSG DALAM MENDETEKSI KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING Ratri Oktaviani, Sugiyanto, dan Yuliana Susanti
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan
BAB VI KESIMPULAN DAN SARAN. adalah banyaknya hari hujan.
BAB VI KESIMPULAN DAN SARAN 6.1 Kesimpulan Berdasarkan analisis data dan pembahasan, dapat diambil beberapa kesimpulan yaitu sebagai berikut : 1. Modul Neo-Normal dapat diaplikasikan ke dalam WinBUGS karena
Daftar Pustaka. Asian Development Bank. Key Indicators for Asia and Pasific :Indonesia
Daftar Pustaka Asian Development Bank. Key Indicators for Asia and Pasific :Indonesia. 1999-2014. Badan Perencanaan Pembangunan Nasional. 2011. Krisis Keuangan Eropa : Dampak Terhadap Perekonomian Indonesia.
PEMODELAN TINGKAT INFLASI INDONESIA MENGGUNAKAN MARKOV SWITCHING AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman 103-111 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN TINGKAT INFLASI INDONESIA MENGGUNAKAN MARKOV SWITCHING
TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 71 78. TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari
PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 110 117 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH
Crossover Probability = 0.5 Mutation Probability = 0.1 Stall Generation = 5
oleh pengguna sistem adalah node awal dan node tujuan pengguna. Lingkungan Pengembangan Sistem Implementasi Algoritme Genetika dalam bentuk web client menggunakan bahasa pemrograman PHP dan DBMS MySQL.
UNNES Journal of Mathematics
UJM 5 (2) (2016) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PERBANDINGAN TAKSIRAN VALUE AT RISK DENGAN PROGRAM R DAN MATLAB DALAM ANALISIS INVESTASI SAHAM MENGGUNAKAN METODE
ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 635-643 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERHITUNGAN VALUE AT RISK MENGGUNAKAN MODEL INTEGRATED GENERALIZED
PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO
Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas
EFFICIENT FRONTIER. Efficient Frontier. 3.3 x Return Simulasi Monte Carlo EWMA GARCH Markowitz 2.8
EFFICIENT FRONTIER 3.3 x 10-3 Efficient Frontier 3.2 3.1 Return 3 2.9 2.8 Simulasi Monte Carlo EWMA GARCH Markowitz 2.7 0.0158 0.016 0.0162 0.0164 0.0166 0.0168 0.017 0.0172 0.0174 0.0176 Risk 1. Dalam
Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN
Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia [email protected]
Pemodelan dan Peramalan Penutupan Harga Saham Harian Jakarta Islamic Index Model Garch
EKBISI, Vol. IX, No. 1, Desember 2014, hal. 57-66 ISSN:1907-9109 Pemodelan dan Peramalan Penutupan Harga Saham Harian Jakarta Islamic Index Model Garch Ahmad Syarif 1 Fakultas Syariah dan Hukum UIN Sunan
PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)
PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,
PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA
PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA SKRIPSI Disusun Oleh: UMI SULISTYORINI ADI 24010212140082 DEPARTEMEN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO
PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 1 8 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH
STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN ANALISIS VAR
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN
Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series
Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series Theresia Desy M ), Haryono ) ) Mahasiswa Jurusan Statistika FMIPA
PERBANDINGAN SENSITIVITAS MODEL MARKOWITZ, EWMA, DAN GARCH TERHADAP PERUBAHAN NILAI VOLATILITAS DALAM PEMBETUKAN PORTOFOLIO INVESTASI
Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 PERBANDINGAN SENSITIVITAS MODEL MARKOWITZ, EWMA, DAN GARCH TERHADAP PERUBAHAN NILAI VOLATILITAS DALAM PEMBETUKAN PORTOFOLIO
IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM
IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM Anies Hannawati, Thiang, Eleazar Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra Jl. Siwalankerto 121-131,
KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q)
UJIAN TUGAS AKHIR KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) Disusun oleh : Novan Eko Sudarsono NRP 1206.100.052 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi
PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)
Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 80 88 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE
BAB I PENDAHULUAN. Value at Risk (VaR) telah menjadi ukuran standar dalam resiko pasar di
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Value at Risk (VaR) telah menjadi ukuran standar dalam resiko pasar di lembaga-lembaga keuangan seperti bank. Alasan utama mengapa VaR begitu populer adalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Ada banyak cara yang dapat dilakukan oleh investor untuk berinvestasi, salah satunya adalah dengan berinvestasi di pasar modal, pasar modal adalah tempat yang memperjualbelikan
PERAMALAN HARGA EMAS MENGGUNAKAN ALGORTIMA MEMETIKA DENGAN PENCARIAN LOCAL TABU SEARCH. Iqbal Dwihanandrio
ISSN : 2355-9365 e-proceeding of Engineering : Vol.2, No.2 Agustus 2015 Page 6447 PERAMALAN HARGA EMAS MENGGUNAKAN ALGORTIMA MEMETIKA DENGAN PENCARIAN LOCAL TABU SEARCH Iqbal Dwihanandrio S1 Teknik Informatika
LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI
LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat
PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 771-780 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP
ESTIMASI MCMC UNTUK RETURN VOLATILITY DALAM MODEL ARCH DENGAN RETURN ERROR BERDISTRIBUSI T-STUDENT
ESTIMASI MCMC UNTUK RETURN VOLATILITY DALAM MODEL ARCH DENGAN RETURN ERROR BERDISTRIBUSI T-STUDENT Imam Malik Safrudin. 1), Didit Budi Nugroho 2) dan Adi Setiawan 2) 1),2), 3) Program Studi Matematika
Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah
Vol. 9, No., 9-5, Januari 013 Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Fitriani, Erna Tri Herdiani, M. Saleh AF 1 Abstrak Dalam analisis deret waktu
JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300
JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (203) 233-20 (230-9X Print) D-300 Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R- dengan Metode Fungsi Transfer
PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 25 32 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.
PREDIKSI KURS RUPIAH TERHADAP EURO MENGGUNAKAN MODEL REGRESI SPLINE TERSEGMEN
PREDIKSI KURS RUPIAH TERHADAP EURO MENGGUNAKAN MODEL REGRESI SPLINE TERSEGMEN Iswan Rahman 1, Raupong 2, M. Saleh AF. 3 1 Mahasiswa Departemen Matematika FMIPA Universitas Hasanuddin 2,3 Staff Pengajar
BAB IV PENUTUP. berkorelasi secara contemporaneous. Korelasi galat contemporaneous terjadi
76 BAB IV PENUTUP A. Kesimpulan Model Seemingly Unrelated Regression (SUR) merupakan perluasan dari analisis regresi linear yang berupa sistem persamaan yang terdiri dari beberapa persamaam regresi yang
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Berbicara tentang kegiatan pasar modal saat ini tidak terlepas dari apa yang disebut sebagai indeks harga saham. Untuk mengetahui bagaimana kegiatan ekonomi
PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 28 37 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU NELFA SARI Program Studi Matematika, Fakultas
IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR
Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI
Penerapan Model ARIMA
Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)
BAB IV METODE PENELITIAN
BAB IV METODE PENELITIAN 4.1 Desain Penelitian Penelitian ini didasari oleh gejolak/volatilitas nilai tukar rupiah terhadap mata uang asing (valuta asing).pada nilai transaksi jual beli valuta asing yang
PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI ABSTRAK
PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI Trio Yonathan Teja Kusuma 1, Sandra Praharani Nur Asmoro 2 1,2)
PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION
Seminar Nasional Aplikasi Teknologi Informasi 20 (SNATI 20) ISSN: 19-5022 Yogyakarta, 16 Juni 20 PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION
GARIS-GARIS BESAR PROGRAM PENGAJARAN SILABUS MATA KULIAH
SILABUS MATA KULIAH Nama Mata Kuliah : Ekonometrika II Kode Mata Kuliah : EKO 601 Kredit : 3(3-0) Semester : 3 Deskripsi : mata kuliah ini membahas berbagai metode ekonometrika time series univariate dan
PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR)
PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) Oleh: Julianto (1) Entit Puspita (2) Fitriani Agustina (2) ABSTRAK Dalam melakukan investasi dalam saham, investor
USULAN PENERAPAN PENJADWALAN DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA DI PD BLESSING
USULAN PENERAPAN PENJADWALAN DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA DI PD BLESSING Santoso 1*, Eldad Dufan Sopater Subito 2 1,2 Jurusan Teknik Industri, Fakultas Teknik, Universitas Kristen Maranatha
Peramalan Jumlah Penumpang Kereta Api Kelas Bisnis Eksekutif Jurusan Madiun Jakarta di PT. Kereta Api (Persero) DAOP VII Madiun
Peramalan Jumlah Penumpang Kereta Api Kelas Bisnis Eksekutif Jurusan Madiun Jakarta di PT. Kereta Api (Persero) DAOP VII Madiun NAMA : RITA RAHMADHANI NRP : 1306 030 008 PEMBIMBING: DR. BRODJOL SUTIJO
Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer
Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar
Genteng. = 0,435 Barisan dari [Exp(-7, ,121*X3] Binomial Thinning Operator. Jika Yt-1sukses maka peluang kejadian = 0,435
. Pemodelan Regresi INAR dengan Variabel Predikor Signifikan Geneng = 0,435 Y 0,435oY 1 Z Barisan dari [Exp(-7,988 + 0,1*X3] Binomial Thinning Operaor 35 30 Variable Y_2 PFIT2 25 Jika Y-1sukses maka peluang
Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input
Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :
PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI
TUGAS AKHIR - ST 1325 PENGARUH INSIDEN BOM BALI I DAN BOM BALI II TERHADAP BANYAKNYA WISATAWAN MANCANEGARA YANG DATANG KE BALI I G B ADI SUDIARSANA NRP 1303100058 Dosen Pembimbing Ir. Dwiatmono Agus Widodo,
Penerapan Model ARIMA
Penerapan Model ARIMA (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2016 1 a. Lakukan proses pembedaan (differencing) sebanyak dua kali pada data asal. b. Lakukan pendugaan parameter pada
Optimasi Pemilihan Pekerja Bangunan Proyek Pada PT. Citra Anggun Pratama Menggunakan Algoritma Genetika
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 2, Februari 2017, hlm. 80-84 http://j-ptiik.ub.ac.id Optimasi Pemilihan Pekerja Bangunan Proyek Pada PT. Citra Anggun
Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner
Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses
PREDIKSI INDEKS PASAR SAHAM S&P500, DOW JONES DAN NASDAQ COMPOSITE DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION
PREDIKSI INDEKS PASAR SAHAM S&P500, DOW JONES DAN NASDAQ COMPOSITE DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION Feni Andriani 1, Ilmiyati Sari 2 1 Universitas Gunadarma, [email protected]
Kematian wanita saat melahirkan dan saat 42 hari setelah melahirkan bukan dikarenakan kecelakaan
VIF Distribusi Poisson Regresi Poisson Kematian Bayi Kematian Ibu Kematian wanita saat melahirkan dan saat 42 hari setelah melahirkan bukan dikarenakan kecelakaan 1 Pendaharan terberat pada masa nifas
Metode Peramalan dengan Menggunakan Model Volatilitas Asymmetric Power ARCH (APARCH)
Metode Peramalan dengan Menggunakan Model Volatilitas Asymmetric Power ARCH (APARCH) (Studi Kasus : Return Kurs Mata Uang Rupiah terhadap Dollar) SKRIPSI Disusun oleh : CINDY WAHYU ELVITRA J2E 009 015
ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA
PEMODELAN NILAI EKSPOR DI INDONESIA DENGAN PENDEKATAN GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) SKRIPSI BAGUS HADI PRASTYA PROGRAM STUDI S-1 STATISTIKA DEPARTEMEN MATEMATIKA FAKULTAS
INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (IGARCH) (Studi Kasus pada Return Kurs Rupiah terhadap Dollar Australia)
PERHITUNGAN VALUE AT RISK MENGGUNAKAN MODEL INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (IGARCH) (Studi Kasus pada Return Kurs Rupiah terhadap Dollar Australia) SKRIPSI Disusun
(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA
(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA Jimmy Ludin Mahasiswa Program Magister Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh
PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER
PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER M. Insanil Kamil 0 0 0 [email protected] Dosen pembimbing:
PENENTUAN KOMBINASI OPTIMUM JUMLAH, BERAT, DAN WAKTU TAMBAT KAPAL DI PT (PERSERO) PELABUHAN INDONESIA III GRESIK MENGGUNAKAN ALGORITMA GENETIKA
LOGO PENENTUAN KOMBINASI OPTIMUM JUMLAH, BERAT, DAN WAKTU TAMBAT KAPAL DI PT (PERSERO) PELABUHAN INDONESIA III GRESIK MENGGUNAKAN ALGORITMA GENETIKA Oleh : Aris Saputro 1206100714 Pembimbing : Dr. M. Isa
BAB I PENDAHULUAN. (variables) seperti harga, volume instrumen, dan varian (variance) yang berubah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Selama beberapa tahun terakhir ada banyak perubahan pada lembaga keuangan dalam mengevaluasi dan mengukur risiko. Usaha perbaikan regulasi berkaitan dengan
Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si
Oleh : Dwi Listya Nurina 1311105022 Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Air Bersih BUMN Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan
KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)
SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi
BAB V KESIMPULAN DAN SARAN
5 BAB V KESIMPULAN DAN SARAN 5. Kesimpulan Berdasarkan hasil analisis sebelumnya, dapat ditarik kesimpulan bahwa :. Model regresi yang mampu menjelaskan hubungan antara angka kematian bayi di Jawa Timur
Kata Kunci: Analisis Regresi Linier, Penduga OLS, Penduga GLS, Autokorelasi, Regresor Bersifat Stokastik
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 168 176 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN PENDUGA ORDINARY LEAST SQUARES (OLS) DAN GENERALIZED LEAST SQUARES (GLS) PADA MODEL REGRESI
PENDETEKSIAN DINI KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DENGAN MARKOV SWITCHING BERDASARKAN INDIKATOR KONDISI PERBANKAN
PENDETEKSIAN DINI KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DENGAN MARKOV SWITCHING BERDASARKAN INDIKATOR KONDISI PERBANKAN (Studi Kasus Pada Indikator Selisih Suku Bunga Pinjaman
PENGANTAR ANALISA RUNTUN WAKTU
DIKTAT KULIAH PENGANTAR ANALISA RUNTUN WAKTU Dr.rer.nat. Dedi Rosadi, M.Sc.Eng.Math. Email: [email protected] http://dedirosadi.staff.ugm.ac.id Program Studi Statistika Fakultas Matematika dan Ilmu
Seminar Hasil Tugas Akhir
Seminar Hasil Tugas Akhir FALAH EGY SUJANA (1209100050) JURUSAN MATEMATIKA FMIPA-ITS SIMULASI ANTRIAN SISTEM PELAYANAN NASABAH (STUDI KASUS : BANK X) Pembimbing : Drs. Soetrisno, MI.Komp. LATAR BELAKANG
