PERTEMUAN 2 DASAR METODE NUMERIK
|
|
|
- Fanny Sugiarto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PERTEMUAN DASAR METODE NUMERIK Meri pd peremun ini:. Dlil-dlil dsr memik unuk meode numerik. Teori bilngn. Rl Seelh menyelesikn peremun ini, mhsisw dihrpkn dp menjelskn dlil dsr memik unuk meode numerik, eori bilngn dn rl. APAKAH METODE NUMERIK ITU? Meode nliik menggunkn simbol-simbol u rumus unuk menyelesikn sebuh persoln memik, sedngkn meode numerik, sesui dengn nmny, memnfkn ngk-ngk dn rumus yng relif sederhn unuk menyelesikn suu persoln memik. Meode numerik menggunkn pendekn lih-lih mencri jwbn yng eksk dri persoln eknik. Bnyk meode numerik yng dilkukn dengn cr memberi ebkn wl dri jwbnny kemudin memperbiki jwbn ersebu sehingg semkin mendeki jwbn ekskny. Hl ini dinmkn iersi. Mengp menggunkn meode numerik? Mempermudh penyelesin persoln eknik. Pd conoh-conoh persoln eknik yng elh dikemukkn pd peremun sebelumny, idk semuny dp diselesikn secr nliik dengn mudh, u bhkn penyelesin nliikny idk diemukn kren erllu kompleks. Oleh kren iu dikembngkn meode numerik yng mempermudh dlm menyelesikn persoln eknik kren berbsis pendekn. Dengn semkin berkembngny eknologi kompuer, penggunn kompuer unuk menyelesikn persoln eknik semkin bnyk dilkukn. Tidk mudh unuk menerjemhkn lngkh-lngkh meode nliik menjdi lgorim yng dp digunkn unuk memprogrm kompuer. Seblikny meode numerik lebih mudh dierpkn dlm progrm kompuer kren sif lminy yng menggunkn ngk. Unuk urn emsny: jik pd persoln yng hendk diselesikn erdp eori u nlisis memik sederhn yng dp digunkn unuk menyelesiknny, mk penyelesin nliis ini disrnkn unuk digunkn kren kn memberikn hsil yng eksk. Jik idk, mk meode numerik dp digunkn. Persoln p sjkh yng dp diselesikn menggunkn meode numerik?. Turunn numerik. Penyelesin persmn k linier. Penyelesin sisem persmn linier simuln
2 . Inerpolsi 5. Regresi 6. Inegrsi numerik 7. Penyelesin persmn differensil bis dn prsil RALAT Kren meode numerik menggunkn pendekn unuk mencri penyelesin suu persoln memik, mk erdp perbedn nr jwbn pendekn di dengn jwbn yng sebenrny (eksk, hl ini dinmkn dengn rl. Berkin dengn rl ini, dlm menggunkn meode numerik, ki perlu unuk:. mengidenifiksi sumber dri mn rl ersebu muncul. menghiung rl ersebu. meminimlkn rl ersebu, unuk mendpkn hsil erbik Rl seji (rue error Rl seji didefinisikn sebgi perbedn nr nili sejiny (nili eksk dengn nili pendeknny. E rl seji - nili eksk Sebuh fungsi, f( = 7e 0.5 kn dihiung nili urunnny pd = Penyelesin nliik: f'( =.5e 0.5 f'( = 9.5 Penyelesin numerik: f'( = 0.65 Rl seji: E = = Rl seji relif (relive rue error Rl seji relif didefinisikn sebgi rsio nr rl seji dengn nili ekskny. rl seji nili eksk bisny rl seji relif jug dinykn dlm nili bsolu persenseny Pd ksus di s Rl seji relif: % 7.89% 9.5 Rl pendekn (pproime error Dlm penerpn meode numerik, seringkli nili eksk dri penyelesinny idk dikehui. Jusru meode numerik digunkn kren penyelesin nliik yng menghsilkn nili eksk idk dp u suli unuk dilkukn. Oleh kren iu, rl seji seringkli idk dp dihiung. Meode numerik jug bnyk dilkukn dengn menyedikn ebkn wl sebgi jwbn pendekn, yng kemudin diperbiki dengn cr iersi sehingg jwbn pendeknny semkin mendeki nili ekskny. Rl pendekn digunkn unuk
3 menili pkh jwbn ki sudh memenuhi syr erenu (disebu sebgi olernsi sehingg dp dimbil sebgi jwbn erbik. Rl pendekn didefinisikn sebgi perbedn nr nili pendekn sekrng dengn nili pendekn sebelumny. E nili pendekn sekrng - nili pendekn sebelumny Sebuh fungsi, f( = -e kn dihiung krny, yiu nili pd f( = 0 Penyelesin nliik: f ( e 0 e 0.69 Penyelesin numerik (meode Newon Rphson, dengn ebkn = 0.6 i f ( i f '( e i e i i i i e 0.6 e Rl pendekn: E = = Perhikn bhw nili bsolu rl sejiny berkurng dri 0.09 menjdi Ariny, inersi berikuny lebih mendekkn jwbn ke nili ekskny (konvergen. Rl pendekn relif (relive pproime error Rl pendekn relif didefinisikn sebgi rsio nr rl pendekn dengn nili pendekn sekrng. rl pendekn nili pendekn sekrng bisny rl pendekn relif jug dinykn dlm nili bsolu persenseny Pd ksus di s Rl pendekn relif: %.997% Kpnkh ki berheni melkukn iersi? Jik ki sudh dp menghiung rl pendekn, mk nili rl ersebu dp digunkn unuk menenukn pkh iersi sudh dp dihenikn u perlu dilkukn iersi lgi unuk memperoleh jwbn yng lebih bik. Di sini ki menggunkn prmeer olernsi rl, yng digunkn sebgi bs. Apbil rl pendekn sudh lebih kecil dripd olernsi rl, mk iersi dp dihenikn. Jdi krieri berheni iersi dp diuliskn sebgi slh su di bwh ini: E E ol ol Iersi dp jug dihenikn pbil cch iersi sudh melebihi nili erenu:
4 ier ier m hl ini berlku pbil erny iersi yng dilkukn bersif divergen (semkin menjuh dri jwbn ekskny. DERET TAYLOR Dere Tylor, yng diperkenlkn oleh Brook Tylor pd hun 75, bnyk digunkn dlm meode numerik. Seip fungsi koninyu dp diwkili oleh dere Tylor yng merupkn jumlhn k berhingg dri suku-suku yng dihiung dri nili urunn fungsi ersebu pd sebuh iik unggl. Dere Tylor dri sebuh fungsi f(: ( f ''( f ( f ( f ( f '( ( ( (...!! ( i f ( i ( i0 i! lernif penulisn: h h ( h ( f h f hf f f f!!! Khusus unuk = 0, dere ini disebu sebgi Dere Mclurin. ( f ''(0 f (0 f ( f (0 f '(0...!! ( i f (0 i i0 i! Conoh dere Mclurin unuk beberp fungsi: 6 cos(!! 6! 5 7 sin(! 5! 7! e!! Pd prkekny, dlm meode numerik, Dere Tylor bisny diuliskn/digunkn dlm orde u bnykny suku yng erbs (pd definisiny, orde u bnykny suku dlh k berhingg. Hiung nili e 0.5 menggunkn dere Mclurin orde e!!! e 0.5!!!.80 Hiung nili sin( menggunkn dere Tylor orde
5 di sini digunkn = / ( ( f ''( f ( f ( f ( f ( f '( ( ( ( (!!! ( f ''( f ( f ( f ( f '( ( ( (!! ( f ( (! ( f ''( f ( sin( cos( (0.9 (0.9 (0.9!! ( f ( (0.9! 0 f ( 0(0.9 (0.9 (0.9 (0.9!!! Rl pd Dere Tylor Dere Tylor memiliki bnyk suku k berhingg. Jik ki menggunkn hny beberp suku perm, mk kn d rl kib pemoongn bnykny suku yng sering disebu rl pemoongn (runcion error. Polinomil Tylor orde n dp diuliskn sebgi n h h ( h ( n f h f hf ' f " f... f Rn (!! n! di mn sis/residu R n didefinsikn sebgi: n h n R f n c, c h ( n! Dere Tylor unuk e pd iik di sekir = 0 dlh 5 e!!! 5! ( Berpkh rl pemoongn jik nili e dihiung hny menggunkn suku perm (orde? e!! e!! Rl pemoongnny dlh suku-suku Dere Tylor yng idk digunkn: 5 5 E! 5!! 5! (b Gunkn eorem residu unuk menenukn bs-bs rl pemoongnny. 5
6 n h n R f n c, c h ( n! c dlh sebuh iik di dlm (, +h. Dlm ksus ini, 0 R f! f c! c e Kren c h 0 c 0 0 c Bs-bs rl dlh 0 e e R e R R 0. c 6 Jdi bs rl pemoongn dlh nr dn 0.6 (pd sol, diperoleh rl pemoongn dlh = RALAT PEMBULATAN Kompuer memiliki cr erenu unuk menyimpn d, yng memiliki keerbsn di dlm merepresensikn bilngn riil. Hl ini berkin dengn kpsis penyimpnn dlm suu sisem bilngn digil. Sebgi conoh, ngk / kn disimpn di dlm memori kompuer sebgi 0. mislny, dengn jumlh digi erbs. Pdhl sebenrny ngk / jik diulis dlm bilngn desiml menjdi 0... dengn bnykny digi k berhingg. Dlm hl ini elh erjdi pemoongn jumlh digi menjdi erbs. Angk / disimpn dlm memori kompuer sebgi Di sini erlih bhw ngk yng disimpn dlm memori kompuer merupkn pembuln dri bilngn desiml yng sebenrny. Hl ini menimbulkn dny rl pembuln (round off error. Angk dn jug kn disimpn dengn jumlh erbs, sehingg menimbulkn rl pembuln. 6
7 SOAL LATIHAN DASAR METODE NUMERIK. Mislkn nili eksk = 0/ dn nili pendekn =.. Hiunglh rl seji, rl seji relif, dn rl seji dlm persense.. Apbil diulis dlm 6 digi di belkng iik, hiunglh rl seji, rl seji relif, dn rl seji dlm persense.. Sebuh fungsi f( = ln(+. Tuliskn Dere Mclurin orde unuk fungsi ersebu b. Cri bs-bs rl pemoongnny 7
RENCANA PELAKSANAAN PEMBELAJARAN
7 RENCANA PELAKSANAAN PEMBELAJARAN M Peljrn : Memik Kels/ Semeser: XI Progrm IPA/ Aloksi Wku: 6 jm Peljrn ( Peremun) A. Sndr Kompeensi Menggunkn konsep i fungsi dn urunn fungsi dlm pemehn mslh. B. Kompeensi
MODUL VIII FISIKA MODERN Transformasi Lorentz
MODUL VIII FISIKA MODERN Trnsformsi Loren Tujun Insruksionl Umum : Agr mhsisw dp memhmi mengeni Trnsformsi Loren Tujun Insruksionl Khusus : Dp menjelskn enng kedu posul Einsein Dp menjelskn enng perbedn
INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing.
INTEGRAL TAK-WAJAR A. Tk Terhingg Seip ilngn sli merupkn ilngn erhingg dn dp menykn sesuu yng nykny erhingg. Arisoeles menykn hw ilngn sli n dp ernili seesr-esrny epi ep erhingg dn idk kn pernh sm dengn
r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.
Husn Arifh,M.Sc : Persmn Legendre Emil : [email protected] Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi
Matematika EBTANAS Tahun 1987
Memik EBTANAS Thun 987 EBT-SMA-87-0 Himpunn penyelesin dri persmn : x + = x unuk x R dlh {, } {, } {, } {, } {, } EBT-SMA-87-0 Di bwh ini dlh gmbrpenmpng sebuh pip. Jik jri jri pip cm dn AB = 0 cm (AB
PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.
PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu
ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear
ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi
Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII
Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 00 Bidng Memik Wku : 90 Meni DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH
BAB II PANGKAT, AKAR DAN LOGARITMA
BAB II PANGKAT, AKAR DAN LOGARITMA ILUSTRASI Sony kn membeli sebuh motor secr kredit, ketentun yng ditwrkn oleh perushn lesing dlh, ung muk sebesr Rp.500.000,00 dn ngsurn perbulnny sebesr Rp 365.000,00
Diana Holidah Bagian Farmasi Klinik dan Komunitas Fakultas Farmasi Universitas Jember
Din Holidh Bgin Frmsi Klinik dn Komunis Fkuls Frmsi Universis Jember Absorpsi Ob Absorpsi sisemik dri slurn cern ergnung pd:. Benuk sedin ble, kpsul, sirup dll b. Anomi fisiologi emp bsorpsi, melipui :
15. INTEGRAL SEBAGAI LIMIT
15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini
DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.
DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis
SOAL PILIHAN GANDA A. 10 B. 100 C D E
OLIMPIADE SAINS TAHUN 004 TINGKAT KABUPATEN/KOTA DIREKTORAT PENDIDIKAN LANJUTAN PERTAMA DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL BIDANG STUDI: MATEMATIKA. Ad du
BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu
Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri
Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc.
PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 8 JULI s.d. 0 AGUSTUS 00 SUKU BANYAK Oleh: Fdjr Shdiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA Yogyakarta 2011
Progrm Sudi M Kulih Pokok hsn : Memik : Geomeri : Kesengunn isusun oleh r. li Mhmudi FKULTS MTEMTIK N ILMU PENGETHUN LM UNIVERSITS NEGERI YOGYKRT Yogykr 0 Lemr Kegin Mhsisw Geomeri Lemr Kegin Mhsisw M
STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT
Jurnl Vol II. No., Mret 08, hlm. 9-95 vilble online t www.jurnl.un.c.id/indeks/jmp STRTEGI PENGJRN MTEMTIK UNTUK MENENTUKN KR-KR PERSMN KUDRT Indh Purnm Putri, Symsudhuh, Ihd Hsbiyti 3 Progrm Studi Mgister
CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS
CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...
SIFAT-SIFAT LOGARITMA
K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel
2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1
. Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny
matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma
K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn
BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)
BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,
KESALAHAN DALAM METODE NUMERIK
KESALAHAN DALAM METODE NUMERIK Mslh yng diselesikn menggunkn metode numerik psti menghsilkn solusi berbentuk ngk (numerik). Solusi dlm bentuk ngk tersebut merupkn solusi hmpirn tu pendektn dn bukn merupkn
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh
MODEL POTENSIAL 1 DIMENSI
MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,
PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA
K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
PERTEMUAN 4 Metode Simpleks Kasus Maksimum
PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt
Integral Kompleks (Bagian Kesatu)
Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:[email protected], [email protected] (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl
BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)
BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng
Matematika SMA (Program Studi IPA)
Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi
LIMIT FUNGSI DAN KEKONTINUAN
LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:
INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.
INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl
DETERMINAN DAN INVERS MATRIKS BLOK 2 2
Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok
NILAI EIGEN DAN VEKTOR EIGEN
Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn
BAB 10. MATRIKS DAN DETERMINAN
Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut
TRIGONOMETRI I. KOMPETENSI YANG DICAPAI
TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)
E. INTEGRASI BAGIAN ( PARSIAL )
E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )
Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40
Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu
12. LUAS DAERAH DAN INTEGRAL
12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)
Sistem Persamaan Linear Bagian 1
Sistem Persmn Liner Bgin. SISTEM PERSAMAAN LINEAR PENGANTAR Dlm bgin ini kn kit perkenlkn istilh dsr dn kit bhs sebuh metode untuk memechkn sistem-sistem persmn liner. Sebuh gris dlm bidng xy secr ljbr
Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.
Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu
Bab 2 HUKUM KEKEKALAN. 2.1 Hukum Kekekalan Skalar
Bb 2 HUKUM KEKEKALAN 2.1 Hukum Kekekln Sklr Hukum kekekln mendeskripsikn dinmik suu kunis dlm sisem eruup. Khususny, hukum kekekln menykn bhw lju perubhn kumulif kunis ersebu hny ergnung pd fluks yng msuk,
Suku banyak. Akar-akar rasional dari
Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd
Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013
10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil
Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia
Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.
Universitas Esa Unggul
ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin
MA3231 Analisis Real
MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)
Sistem Persamaan Linier
b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,
Volume Bangun Ruang. 1. Balok. Perhatikan gambar di atas. 1. Bangun apa saja yang ada di atas meja? 2. Termasuk bangun apa benda yang dibawa Tini?
Volume Bngun Rung Bend-bend di mej ini merupkn bngun rung. Kleng uu ini berbenuk p, y? Tono Tini Di kel V kmu elh mempeljri beberp jeni bngun rung. Blok Kubu Prim Lim Tbung Kerucu Tin Em... p, y? Perhikn
FISIKA BESARAN VEKTOR
K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0
Sistem Persamaan Linear
Sistem Persmn Liner Muhtdin, ST. MT. Metode Numerik & Komputsi. By : Muhtdin Persmn Aljbr Liner Simultn Metode Numerik & Komputsi. By : Muhtdin 9 Menyelesikn SPL sederhn Grphicl Method dri kedu persmn
Kesesuaian Persamaan Pola Intensitas Curah Hujan Sebagai Fungsi dari Durasi Hujan di Balai Pengamatan Dirgantara Pontianak
Kesesuin Persmn Pol nensis Curh Hujn Sebgi Fungsi dri Dursi Hujn di Bli Pengmn Dirgnr Ponink Ann Krin 1), M. shk Jumrng 1)* 1)Progrm Sudi Fisik, FMPA, Universis njungpur Jln Jendrl Ahmd Yni, Ponink, ndonesi
MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.
MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log
SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real
SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri
7. Ruang L 2 (a, b) f(x) 2 dx < }.
7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f
M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.
M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil [email protected] JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng
INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45
INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6
14. SIFAT-SIFAT INTEGRAL RIEMANN
4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn
ω = kecepatan sudut poros engkol
Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn
Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30
Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log
BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR
BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR Pet Konsep Bilngn Berpngkt dn Bentuk Akr mempeljri Bilngn berpngkt meliputi Bentuk kr meliputi Sift Opersi Mersionlkn Opersi Sift Kt Kunci. Pngkt 2. Akr 3. Sift
METODE TRAPESIUM TERKOREKSI KOMPOSIT UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Fitra Anugrah 1, Zulkarnain 2 ABSTRACT
METODE TRAPESIUM TERKOREKSI KOMPOSIT UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Fitr Anugrh 1, Zulkrnin 2 1 Mhsisw Progrm Studi S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik
matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri
Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,
4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu
Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin
PENDETEKSIAN PENCILAN ADITIF DAN INOVATIF DALAM DATA DERET WAKTU MELALUI METODE ITERATIF
Forum Sisik dn Kompusi, Vol No., 8 ISSN : 85-85 PENDEEKSIAN PENCILAN ADIF DAN INOVIF DALAM DA DERE WAKU MELALUI MEODE ERIF Kusmn Sdik, Erfini, Noviyni WP Depremen Sisik FMIPA Insiu Pernin Bogor E-mil :
Aljabar Linear Elementer
ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 009 Bidng Mtemtik Wktu :,5 Jm DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT
DERET TAK HINGGA. Deret Geometri Suatu deret yang berbentuk: Dengan a 0 dinamakan deret geometri. Kekonvergenan: divergen jika r 1 Bukti:
DERET TAK HINGGA Cooh dere k higg : + + 3 + = k= k u k. Bris jumlh prsil S, deg S = + + 3 + + = k= k Defiisi Dere k higg, k= k, koverge d mempuyi jumlh S, pbil bris jumlh-jumlh prsil S koverge meuju S.
Materi V. Determianan dinotasikan berupa pembatas dua gris lurus,
Mteri V Tujun : 1. Mhsisw dpt mengenli determinn.. Mhsisw dpt merubh persmn linier menjdi persmn determinn.. Mhsisw menelesikn determinn ordo du. Mhsisw mmpu menelesikn determinn ordo tig. Mhsisw mengethui
NILAI EIGEN DAN VEKTOR EIGEN
Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)
Modul 9. PENELITIAN OPERASIONAL PEMROGRAMAN DINAMIS. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI
Modul 9. PENELITIAN OPERASIONAL Oleh : Eliyni PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA http://www.mercubun.c.id JAKARTA 7 Pendhulun Pemrogrmn
METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3
METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3 Glng Ismu Hndoko 1, M Ntsir 2, Sigit Sugirto 2 1 Mhsisw Progrm S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm
Aljabar Linear Elementer
ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar
. LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn
,, % ,, % -0: 0 -0: 0! 2 % 26, &
PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh
Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :
TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut
METODE ANALISIS HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL LINEAR ABSTRACT
METODE ANALISIS HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL LINEAR Azhrr Fortun Drno 1, Symsudhuh 2, Aziskhn 2 1 Mhsisw Progrm Studi S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun
SIMAK UI 2011 Matematika Dasar
SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
Materi IX A. Pendahuluan
Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn
didefinisikan sebagai bilangan yang dapat ditulis dengan b
1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,
BAB 4 IMPLEMENTASI HASIL PENELITIAN. Rancangan ini dibuat dan dites pada konfigurasi hardware sebagai berikut :
BAB 4 IMPLEMENTASI HASIL PENELITIAN 4.1 Spesifiksi Hrdwre dn Softwre Rncngn ini diut dn dites pd konfigursi hrdwre segi erikut : Processor : AMD Athlon XP 1,4 Gytes. Memory : 18 Mytes. Hrddisk : 0 Gytes.
Skew- Semifield dan Beberapa Sifatnya 1
Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: [email protected] Abstrk Sutu field ( lpngn ) F dlh struktur ljbr
MA3231 Analisis Real
MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)
A. PENGERTIAN B. DETERMINAN MATRIKS
ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien
