CATATAN KULIAH Pertemuan III: Model-model linier dan Aljabar Matriks (1)
|
|
|
- Ivan Jayadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 CTTN KULIH Pertemu III: Moel-moel liier ljr Mtriks () Tuju mempeljri ljr Mtriks : Memerik sutu r peulis sistem persm yg sigkt wlupu persmy lus sekli Memerik sutu r peguji sutu pemeh eg peekt etermi Meptk r pemeh yg rigks (jik solusiy ). Mtriks Vektor. Mtriks segi Susu [rry] sumsik Moel Ekoomi segi system persm lier, i m: : prmeter, eg i.. ris, j.. m kolom, ili m, i : vriel eoge, i : vriel eksoge merupk kostt. Mk Moel terseut pt itulisk segi: m m m Kemui efiisik : Mtriks lh sutu susu segi empt ri ilg, prmeter vriel.
2 Betuk umum ri mtriks iytk segi : [ ] i,,., m ris, j,,., kolom m m m Seljuty eg peulis mtriks, mk sistem persm lier pt itulisk segi: im: mtriks ri prmeter vektor kolom ri vriel eoge vektor kolom ri vriel eksoge erup kostt Seljuty utuk memehk moel ekoomi terseut, kit hrus meri ili vektor, s: m m m *
3 Ilustrsi utuk Moel u persm u vriel ) QQs ) Q P (, >) ) Qs - P (, >) Seljuty tur sehigg meji etuk i wh ii: ) Q P 5) Q P - Seljuty itulis eg ljr Mtriks segi: Solusi ipt eg Ivers Mtriks (Pertemu seljuty). Vektor segi Mtriks Khusus VEKTOR pt iggp tipe khusus ri mtriks, otohy: Vektor ris mtriks yg hy memiliki ris Cotoh : R [ r, r,..r ] Vektor kolom mtriks yg hy memiliki kolom Cotoh : C B. Opersi eg Mtriks Pejumlh Mtriks Ser umum, tury: P Q P Q * * * [ ] [ ] [ ]
4 Pegurg Mtriks Ser umum, tury: 6 [ ] [ ] [ ] Iterpretsi geometrik ri Pejumlh Vektor Mislk v [ ], u [ ], vu [5 5] mk pt igmrk segi: 5 V VU U 5 Perkli sklr Ser umum, tury: [ ] [ ] kostt Perkli sklr ii merupk sl ri kosep ketergtug lier (lier epeee) Himpu vektor slig tergtug lier (lierly epeee) jik semrg ri ggoty pt iytk segi komisi lier ri ggot-ggot yg li.
5 Ketergtug lier ii yg k meyek kesukr lm memehk sistem persm lier. Cotoh: [ ] v 7 v [ 8] v [ 5] Mk vektor V lh ergtug lier, kre: v v v [ 6 ] [ 6] [ 5] v v v Iterpretsi geometrik ri Perkli sklr 6 5 [ 6 ] U [ ] U [ ] U Perkli Vektor (hsilkli titik) Jik z lh vektor ris erikut ii: z [ ] [ z z z ] z Mk hsilkli titik ri u vektor terseut lh: y. z' z [ ] z z z z z z z
6 Ctt p Opersi Vektor Seuh vektor kolom u [m ] ris vektor v [ ] mk hsil kliy uv mempuyi imesi [m ]. Cotoh: u v [ 5] uv Perkli Mtriks Perkli mtriks memutuhk Koisi Kesesui (oformility oitio) Koisi Kesesui lh hw utuk perkli, imesi kolom mtriks ri mtriks yg i wl (le mtri) hrus sm eg imesi ris ri mtriks yg i khir (lg mtri) B. Ji pil B lh semrg mtriks im imesi ri keu mtriks lh (m) B(pq), perkli mtriks B pt ilkuk pil p hsil ri perkli terseut lh seuh mtriks yg erimesi (mq). Cotoh: B [ ] [ ] [ ] C [ 5] Dimesi: (), B(), mk C() Notsi Sigm Σ Simol Yui sigm yg iguk utuk Pejumlh lh r li utuk meyjik Perkli Mtriks. Dlm otsi ii iguk, ieks pejumlh isy isimolk i. Cotoh: Notsi utuk Hsilkli titik: 8 5 i i i
7 C. Hukum Komuttif, sositif Distriutif Hukum Komuttif Pejumlh Mtriks: B B B B Perkli Mtriks, ser umum tik ersift komuttif. Sehigg, B B, hk jik B memeuhi koisi kesesui., B 6 7 B B ( ) ( 6) ( ) ( 7) ( ) ( 6) ( ) ( 7) 5 () ( )( ) ( ) ( ) 6() 7( ) 6( ) ( 7) 7 Kekeuli: BB jik hy jik B seuh sklr, B mtriks ietits I, tu B ivers ri mtriks, tu - D. Mtriks Ietits Mtriks Nol Mtriks Bujursgkr Mtriks segi lh mtriks yg memiliki jumlh ris jumlh kolom yg sm Cotoh : m Mtriks Ietits
8 Mtriks ietits lh mtriks ujursgkr yg memiliki ili sm eg utuk igol utm ol utuk yg liy. Cotoh : I I Mtriks Nol Mtriks Nol lh mtriks yg semu elemey sm eg ol. Cotoh : E. Mtriks Trspos Trspos ri sutu mtriks yg erukur m iotsik segi T yg erukur m im setip elemey lh T ji. Cotoh: s q r p s r q T ρ Sift Mtriks Trspos: ( T ) T F. Determi Sift Dsr Determi Defiisi: Determi sutu mtriks iotsik segi lh ilg sklr yg ihuugk ser tuggl eg mtriks terseut. Cotoh: T
9 Oro Oro Ser umum pt ihitug eg Ekspsi Lple eg megguk Kofktor: Mk eg Ekspsi Lple ipt hw: Di m: j C j sklr j D mtriks M lh mtriks tp ris ke-i kolom ke-j, yitu: Cotoh: 5 6 M M M i j ( ) C M
10 M M M j Sift - sift etermi. T. - I i j ( ) M. 5.( ).( 5) 8 5 j. B B Cotoh : B B.. Mk:.B. B 9.9. pil ris tu kolom mtriks iklik eg sklr k, mk * k., *Mtriks yg ris tu kolomy iklik eg sklr k. Cotoh : (5 ) 5. Pertmh (pegurg) ri sutu kelipt ris mpu ke ris yg li, TIDK meyek ili etermi eruh.
11 Cotoh : k k ( k) ( k) G. Mtriks Sigulr: Krkteristik Ietifiksi Beerp ksus, im sutu sistem persm lier tik mempuyi solusi:. Tik kosiste tergtug lier (lier epeet) y 8 y 9 8 y 9. Tergtug lier (lier epeet) y y y. Terllu yk persm y 58 y 8 y 58 y 8 Syrt sutu sistem persm lier mempuyi solusi:. Mtriks ujur sgkr (), sehigg: jumlh persm jumlh vrile.. Bris tu Kolom Mtriks ersift slig es lier (lierly iepeet). Hl ii ipeuhi jik rk() (syrt ukup osigulr). Jik syrt () () ipeuhi mk mtriks iseut mtriks osigulr. Jik tik mk iseut segi mtriks sigulr, yg megkitk sistem persm lier tik mempuyi solusi.
12 H. Tes Sigulrits. Defiisi: Mislk ierik mtriks eroro (), mtriks iktk mtriks sigulr, il Ietifiksi Mtriks Sigulr. Tes Sigulrits : Tekik Determi Cotoh: pkh mtriks sigulr? Jw: ( ) 5.( ).( ) Kre etermi mtriks sm eg ol, mk mtrik lh mtriks sigulr. Sekrg perhtik p yg meyek mtriks sigulr! P mtriks, Bris ke- Bris ke- merupk kelipt stu eg yg liy. Oleh kre itu etermiy, ersrk sift etermi ke-5.. Kees liier (syrt ukup o-sigulr) Defiisi : Komisi liier Sutu vektor w iktk komisi liier ri V, V, V,, V pil w pt iugkpk segi erikut : W K V K V KV Σ KiVi Defiisi : Kees liier Mislk V { V, V, V,, V } merupk kompoe vektor K { K, K, K,, K } merupk kompoe prmeter sklr, mk perhtik persm vektor lm etuk: Σ K i V i K V K V KV,
13 Persm ii k mempuyi plig seikit stu pemeh trivil yitu K K K K Jik K i, mk V i lh stu-stuy pemeh mk V iktk es liier.jik tik, mk V ergtug liier. (sigulr) Cotoh Tes Sigulrits : B, perikslh pkh Bo-sigulr? 6. Guk tekik etermi: B - B sigulr. Guk tekik kees liier Mislk : V{ V, V } lh vektor-vektor kolom ri mtriks B, s: V 6 V K V K V K K 6 K K 6K K Du Persm i ts ietik, mk guk slh stu Pilih Persm : 5 K K K - K Pemeh ii meujukk y yk solusi gi persm K V K V. Cotoh solusi seli K K, lh K - K, sehigg V V tik es liier (ergtug liier). Seljuty isimpulk mk B lh mtriks sigulr. Ltih:. Periks pkh mtriks erikut ii sigulr?
Trihastuti Agustinah
TE 967 Tekik Numerik Sistem Lier Trihstuti gustih Big Stui Tekik Sistem Pegtur Jurus Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember O U T L I N E OBJEKTIF CONTOH SIMPULN 5 LTIHN OBJEKTIF Teori Cotoh
Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks
Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
Bab 3 SISTEM PERSAMAAN LINIER
Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
Persamaan Linier Simultan
Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel
1. SISTEM PERSAMAAN LINEAR DAN MATRIKS
Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
Eliminasi Gauss Gauss Jordan
Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk
Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon
Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi
BAB I SISTEM PERSAMAAN LINEAR
BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik
dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P
Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
1. HIMPUNAN. Kadang-kadang suatu himpunan hanya dapat dinyatakan dengan salah satu cara, tetapi kadang-kadang juga dapat dinyatakan dengan keduanya.
1. HIMUNN Himpu iefiisik segi kumpul ojek-ojek yg ere Liu 1986. tu himpu ojek eg syrt keggot tertetu. otoh : { 12345} { x ult 1 x 5 } Jik sutu ojek x merupk ggot ri himpu mk itulisk x i : x lh ggot tu
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
MATRIKS. Create by Luke
Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
Penyelesaian Persamaan Linier Simultan
Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d
METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1
METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D
DETERMINAN MATRIKS dan
DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ [email protected] DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
1. Bilangan Berpangkat Bulat Positif
N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui
Modul II Limit Limit Fungsi
Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy
BAB IV INTEGRAL RIEMANN
Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x
Hendra Gunawan. 19 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge
Copyright Provide Free Tests and High Quality. x < a maka a < x < a - x > a maka x < a atau x > a
Copyright 9 www.usmit.com Provide Free Tests d High Qulity TEORI RINGKAS PERTIDAKSAMAAN Sift-sift - > c > c utuk c > - > c < c utuk c < - > + c > + c utuk c R - > mk / > - < mk / < - Jik > d > c mk > c
Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0
LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...
Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real
BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi
Pendahuluan Aljabar Vektor Matrik
Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.
Pertemuan 7 Persamaan Linier
Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy
SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.
SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
MA1201 MATEMATIKA 2A Hendra Gunawan
MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret
RINGKASAN MATERI UJIAN NASIONAL MATEMATIKA SMA PROGRAM IPS
RINGKASAN MATERI UJIAN NASIONAL MATEMATIKA SMA PROGRAM IPS COPYRIGHT www.solmtemtik.om 009 Rigks Mteri UN Mtemtik SMA Prog. IPS http://www.solmtemtik.om. PANGKAT RASIONAL, BENTUK AKAR DAN LOGARITMA A.
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter
IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal
BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.
LATIHAN UN MATEMATIKA IPA
LATIHAN UN MATEMATIKA IPA LATIH UN IPA. 00-00 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI.... Pgkt Rsiol, Betuk Akr d Logritm.... Persm Kudrt...0. Sistem Persm Lier... 4. Trigoometri I...8 5. Trigoometri II...7
Modul 4. Solusi SPAL dengan MATRIK TRI-DIAGONAL
Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (/) Moul 4 Solusi SPAL eg MATRIK TRI-DIAGNAL A. Pehulu Solusi SPAL yg eretuk mtriks tri-igol serigkli ijumpi p prolem-prolem yg eretuk
syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga
SUKU KE- BARISAN ARITMETIKA TINGKAT DUA, TIGA DAN EMPAT DENGAN PENDEKATAN AKAR KARAKTERISTIK Drs Sumro Imil, MP ABSTRAK Utu memeuhi eutuh lm pegemg pemhm terhp sustsi mteri ris ritmeti, ji ii memeri uri
( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(
A x = b apakah solusi x
MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.
RENCANA PELAKSANAAN PERKULIAHAN
Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm
Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.
Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh
Bentuk umum persamaan aljabar linear serentak :
BAB III Pers Aljr Lier Seretk Betuk umum persm ljr lier seretk : x + x + + x = x + x + + x = x + x + + x = dim dlh koefisie-koefisie kost t, dlh kosttkostt d dlh yky persm Peyelesi persm lier seretk dpt
BILANGAN BERPANGKAT DAN BENTUK AKAR
BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis
III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)
III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER
Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil
Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah
13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
SISTIM PERSAMAAN LINIER Agusti Prdjigsih, M.Si. Jurus Mtemtik FMIPA UNEJ [email protected] DEFINISI : Persm Liier Persm Liier dlm peubh,, ditk dlm betuk b dim,,, b R Pemech persm liier dits dlh urut
Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI
Pedhulu Pegtr Metode Sipleks Fitrii Agusti, Mth, METODE SIMPLEKS (PRIMAL) Mslh Progr Lier Mslh Progr Lier dl Betuk Mtriks Ketetu dl Betuk Stdr Mslh PL Betuk Stdr Mslh Progr Lier Betuk Stdr Pets Lier Betuk
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
LEMBAR KERJA SISWA. Pengurangan matriks A dengan B, dilakukan dengan menjumlahkan matriks A dengan matriks negatif (lawan) B.
LEMBAR KERJA SISWA Juul (Mteri Pokok) : Pengertin, Kesmn, Trnspos, Opersi n Sift Mtriks Mt Peljrn : Mtemtik Kels / Semester : XII / Wktu : menit Stnr Kompetensi : Menggunkn konsep mtriks, vektor n trnsformsi
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds
ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum
LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.
TEOREMA DERET PANGKAT
TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (
Sifat-sifat Super Matriks dan Super Ruang Vektor
Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY [email protected] Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks
Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs
Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik
MATA KULIAH : MATEMATIKA II POKOK BAHASAN :
MT KULIH : MTEMTIK II POKOK HSN :. INTEGRL TK TENTU. INTEGRL TERTENTU SEGI LIMIT JUMLH. SIFT-SIFT INTEGRL TERTENTU. TEOREM-TEOREM DSR DLM KLKULUS. EERP TERPN DLM INTEGRL TERTENTU. INTEGRL NUMERIK UKU PEGNGN
Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs
Diijik memperyk demi kepetig pedidik deg tetp metumk lmt situs LATIH UN IPS. 008 00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik
PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real
Resume PENGANTAR ANALISIS REAL Utuk Memeuhi Tugs Mt Kulih Pegtr Alisi Rel Disusu Oleh: M. ADIB JAUHARI D. P (0860009) MUHTAR SAFI I (086003) BOWO KRISTANTO (086004) ANA MARDIATUS S (086005) OKTA ARFIYANTA
DETERMINAN dan INVERS MATRIKS
// DETERMINN n INVERS MTRIKS Trnspose Mtriks () Jik mtriks mxn, mk trnspose ri mtriks ( t ) lh mtriks erukurn nxm yng iperoleh ri mtriks engn menukr ris engn kolom. Ex: t // SIFT Trnspose Mtriks () Sift:.
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
MetodeLelaranUntukMenyelesaikanSPL
MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,
PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS
PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn
Bab 3 SISTEM PERSAMAAN LINEAR
B SISTEM PERSAMAAN LINEAR Sejuh ii, hy diperlkuk sistem persm lier yg terdiri dri persm yg yky sm deg vriel, d hy mempuyi mtriks koefisie tk sigulr. Tepty, ii dlh sistem yg sellu mempuyi sutu peyelesi
TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh
TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: [email protected] Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh
1. Pengertian Matriks
BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.
// Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE
bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )
Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of
ALJABAR LINEAR ELEMENTER DAN APLIKASINYA
ALJABAR LINEAR ELEMENTER DAN APLIKASINYA Didit Budi Nugroho Progrm Studi Mtemtik Fkults Sis d Mtemtik Uiversits Kriste Sty Wc KATA PENGANTAR Buku ii merupk sutu pegtr utuk ljr lier yg didsrk pd kulih yg
Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com
Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt
RELASI REKURENSI. Heru Kurniawan Program Studi Pendidikan Matematika Jalan KHA. Dahlan 3 Purworejo. Abstrak
RELASI REKURENSI Heru Kuriw Progrm Studi Pedidik Mtemtik Jl KHA. Dhl Purworejo Abstrk Relsi Rekuresi merupk slh stu mslh dlm Mtemtik Diskrit. Sebuh relsi rekuresi medeiisik suku ke- dri sebuh bris secr
matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT
K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk
Barisan dan Deret Tak Hingga
Modul Bris d Deret Tk Higg Dr. Spti Whyuigsih, M.Si. M PENDAHULUAN odul ii meyjik kji tetg Bris d Deret Tk Higg. Kji tetg bris d deret memegg per sgt petig kre sebgi dsr utuk pembhs Itegrl Tetu. Bris d
SISTEM PERSAMAAN LINEAR
http://istirto.stff.ugm..id SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier http://istirto.stff.ugm..id Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill
DERET PANGKAT TAK HINGGA
DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg
INTEGRASI NUMERIS Numerical Differentiation and Integration
http://istirto.st.ugm..ci INTEGRASI NUMERIS Numericl Dieretitio Itegrtio Itegrsi Numeris http://istirto.st.ugm.c.i q Acu q Chpr, S.C., Cle R.P., 99, Numericl Methos or Egieers, E., McGrw-Hill Book Co.,
Trace Matriks Real Berpangkat Bilangan Bulat Negatif
Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN 169-90 pit/issn 0-099 olie Te Miks Rel Bepgkt Bilg Bult Negtif Fii yi 1, Muhmm Solihi. 1, Juus Mtemtik, Fkults Sis Tekologi, UIN Sult Syif Ksim Riu Jl.
SISTEM PERSAMAAN LINEAR. Systems of Linear Algebraic Equations
SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill Book Co., New York. Chpter 7, 8, d 9, hlm. -9. Sistem
Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg
Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg
