BAB 3 METODE PENELITIAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 METODE PENELITIAN"

Transkripsi

1 BAB 3 METODE PENELITIAN Dlm e peul g megehu repo r vrel ecr mul d dmk, ehgg meode l g dplh megguk pedek Vecor Auoregreo (VAR). Vrel-vrel g dperguk dlm peel umum m deg vrel g dguk eelum u cdg dev, jumlh ug eredr, gk pedp, ekpor, mpor, d ve g. 3. Lr Belkg Vecor Auoregreo (VAR) Vecor Auoregreo (VAR) dkemukk kl perm oleh Chropher Sm (980). Sm megemgk model ekoomer deg megk peguj um ecr pror. VAR dkemgk oleh Sm eg krk meode mul. Jumlh vrel g er d klfk edoge d ekoge pd meode mul merupk dr dr krk ereu. Meuru Sm, jk memg mul pd uu kelompok vrel ehru emu vrel mempu po g m. Koekue vrel-vrel dlm perm mul ereu ul dedk r edoge d ekoge. Berdrk kod ereu Sm mul merguk eke dr vrel ekoge (Gujr: 003, 746). Vrel ekoge merupk repree dr gocg ekoom ekerl g erdp d lur perm. Ekoge (exoge) dkemukk kl perm oleh Terge dr Ermu Uver Beld pd hu 937. Ekoge dguk uuk megkk keku dekrp euh model ekoomer p memh jumlh perm g dem. Pd meode VAR memperlkuk eluruh vrel ecr mer p mempermlhk vrel depede d depede (Sm dlm Gujr, 003: 848). Au deg k l model memperlkuk eluruh vrel eg vrel edoge. VAR erg dggp eg pedek g dk medrk pd eor ekoom ereu (heorcl). 39 Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

2 40 Kelhr VAR dk erlep dr krk erhdp model mul oleh eerp peel g kemud memer pr kepd Sm. Dmul dr krk mlh kul g dkemukk oleh Grger (969) g megemukk peolk erhdp pror eor eg r meepk vrel ekoge, melk hru mellu peguj k erleh dhulu deg uj kul. Krk prdgmk dkemukk oleh Luc (978) g mek hw peggu vrel g er dlm model ekoomer meuujukk d kegug dlm meepk vrel-vrel pokok. Krk-krk ereu memerk pr kepd Sm uuk megemgk model VAR. Sm mewrk model VAR g ederh d megguk jumlh vrel g mml, deg vrel depede dlh kelm (lg) d emu vrel dklfkk eg vrel edoge. Nmu demk peggu meode VAR mh mek eerp kelemh dr: () peeu k lg g memulk mlh ru dlm proe em; () model VAR erf pror u megolh d p memfk eor ekoom g d; (3) emu vrel g dguk dlm VAR hru oer, jk elum hru drformk erleh dhulu gr oer. 3. Meode Vecor Auoregreo (VAR) Eder (004) mejelk, kek peel dk memlk kep uuk meeuk hw uu vrel dlh ekoge, mk uu perlu l fug perpdh lm k memperlkuk mg-mg vrel ecr mer. Seg cooh, pd ku-ku vrel g memrk lur wku u me ph dpegruh oleh l d wku eelum dr d memrk me ph dpegruh oleh l d wku eelum dr. D dlm em vre, huug ereu dp dgmrk eper pd perm (3.6) d wh : Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

3 (3.) 0 d Deg megumk hw kedu vrel d dlh oer: dlh durce g memlk r-r ol d mrk kovr er u erf whe oe deg dr dev g eruru : er d d dlh durce g depede deg r-r ol d kovr er (ucorreled whe-oe durce). Kedu perm d merupk orde perm VAR, kre pjg lg h u. Agr perm (3.) leh mudh dphm d dguk eg l l mk drformk deg megguk mrk ljr, d hl dp dulk ecr erm eper pd perm d wh : 0 0 Au deg euk l: Bx = 0 + X (3.) Dm: B = x = 0 = 0 0 = = Deg melkuk pegl r perm (3.) deg B - u ver mrk B, mk k dp deuk model VAR dlm euk dr, eper dulk pd perm d wh : x = A 0 + A x - + (3.3) A 0 = B - 0 dm A = B - = B - Uuk uju o, mk 0 dp ddefk eg eleme ke- dr vekor A 0 ; j eg eleme dlm r ke- d r ke-j dr mrk Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

4 4 A ; d e eg eleme ke- dr vekor e. Deg megguk o ru g elh djelk eelum, mk perm (3.3) dp dul mejd: 0 e e 0...(3.4) Pered r em g elh dmpk pd perm (3.) deg perm (3.4) dlh hw em g elh dmpk pd perm (3.) d deu VAR rukurl u em VAR prmf. Sedgk em g dmpk pd perm (3.4) dlh VAR dlm euk dr. Berdrk pejel eelum d hl peel eelum, ddug d huug kul r mg-mg vrel ereu, ehgg em perm megguk Vecor Auo Regreo (VAR). Dr ke-8 vrel d, deuk 8 perm VAR, eg erku : Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

5 43 Dm : NT RESV M LEkp LImp LGDP : Nl ukr ruph erhdp dolr Amerk : Cdg dev : Jumlh ug eredr : Ekpor : Impor : PDB rl Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

6 44 FDI : Ive g lgug NFDI : Ive g k lgug k : Pjg mkmum lg j : Lg α 0, α 0, α 30, α 40,..., α 80 : Ko α, α, α 3, α 4,..., α 88 : Koefe regre,..., 8 : error erm 3.3 D d Sumer D 3.3. D Peel megguk d ekuder g dkumpulk oleh phk l d elh dpulkk d r mellu wee Bk Idoe ( Bd Pu Sk ( d Ierol Fcl Sc (IFS). D ereu dlh d ul dr hu 000:.d. 009:. D ekuder g dperoleh umum merupk d g dk perlu dolh keml d dp lgug dplkk ke dlm model. Tel 3.. D g dguk No Vrel Def Operol Su Nl ukr Ruph/USD NT Ruph/ USD Produk Domek Bruo GDP Mlr (PDB) Rl hu dr 000 Ruph 3 Jumlh Ug Beredr M Mlr Ruph 4 Cdg Dev RESV Ju Dollr BI 5 Ekpor EKSP Ju Dolr BPS 6 Impor IMP Ju Dolr BPS Sumer D BI d IFS BI d IFS erpol Evew BI 7 Ive Ag Lgug FDI Ju Dollr BI d IFS erpol evew 8 Ive Ag dk Lgug (o FDI) NFDI Ju Dollr BI d IFS erpol evew Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

7 Idefk Vrel Berku pejel leh lju mege d d vrel g k dguk dlm peel: Vrel Nl Tukr Ruph (NT): megguk d l kur Ruph erhdp USD r-r ul g dpulkk Bk Idoe d IFS. Vrel Produk Domek Bruo Rl (GDP): megguk hu dr 000, g merupk perode dm perekoom Idoe relf l. Pemlh peggu d PDB rl drpd PDB oml dlh uuk meghlgk efek fl, ehgg perumuh ekoom leh mecermk ked g eugguh. D PDB ul dperoleh megguk meode erpol (meode qudrc mch um) GDP rwul deg u Evew 6 Vrel Jumlh Ug Beredr (M): peger jumlh ug eredr dlh jumlh r ug krl, ug grl d ug ku, u deu eg ug eredr dlm r lu u dp pul deu deg lkud perekoom. Cdg Dev (RESV): dlh mp m ug g oleh k erl (BI). Smp merupk e k erl g ermp dlm eerp m ug cdg (reerve currec) eper dolr, euro, u e, d dguk uuk mejm kewj, u m ug lokl g derk, d cdg erg k g dmp d k erl oleh pemerh u lemg keug. Ekpor (EKSP) d Impor (IMP): d ekpor d mpor g dguk dlh l ekpor d mpor ul g dperoleh dr u rem Bd Pu Sk Ive Ag Lgug (FDI): melpu ve dlm e-e rl erup pemgu prk, pegd erg mcm rg modl, pemel h uuk keperlu produk, pemelj erg perl ver, d eg Ive Ag Tdk Lgug g erdr : Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

8 46 Porfolo Iveme (PI): merupk euk pem modl g eg er erdr dr pegu hm g dp dpdhk (g dkelurk u djm oleh egr pegmpor modl), erhdp hm u ur ug oleh pemerh u wrg egr d eerp egr l. Pegu hm ereu dklh m deg hk uuk megedlk peruh. Pr pemegg hm h memlk hk devde Oher Iveme (OI): Ive g dlkuk phk g d Idoe (dlur FDI d PI) 3.4 Tekk Al 3.4. Uj oer d Seelh d g dguk dlm peel ddp, deg megguk ofwre evew 6 k dlkuk uj or. Uj or dguk uuk megdefk pkh uu vrel oer u dk. D me ere dkk oer jk d ereu dk megdug kr-kr u (u roo) dm me, vrce d covrce ko epjg wku. Selk d me ere dkk dk oer megdug kr-kr u, dm me, vrce d covrce d ereu dk ko. Uj kr-kr u merupk uj g plg populer uuk megehu oer euh d. Uuk meguj kr-kr u pd peel dguk uj Augmeed Dcke-Fuller (ADF) g dkemgk oleh Dcke d Fuller. Beuk perm uj oer ereu dp dulk eg erku: Y Y p Y 0...(3.3) Dm: Y = Beuk dr fr dffere α 0 Y p ε = erep = vrel g duj oer = pjg lg g dguk dlm model = error erm Hpoe dlh H o megdug hpoe hw erdp kr-kr u, H megdug hpoe hw dk erdp kr-kr u. Peguj Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

9 47 hpoe k d dlkuk deg memdgk ADF e k hl regre deg k Mcko crcl vlue %, 5%, 0%. Bl ADF e k hug leh kecl drpd Mcko crcl vlue, mk H o derm d H dolk, dk cukup uk uuk meolk hpoe hw d dlm perm megdug kr-kr u, r d dk oer. Selk jk ADF e k hug leh er drpd Mcko crcl vlue, mk H o dolk d H derm, cukup uk uuk meolk hpoe ol hw d dlm perm megdug kr-kr u, r d oer. Jk dr hl uj oer erdrk uj ADF dperoleh d eluruh vrel elum oer pd level, u egr derj ol I(0), mk uuk memperoleh d g oer dp dlkuk deg cr dfferecg d, u deg megurg d ereu deg d perode eelum. Deg demk mellu dfferecg perm (fr dfferece) dperoleh d elh. Proedur uj ADF kemud dplkk keml uuk meguj d fr dfferece. Jk dr hl uj er d fr dfferece elh oer, mk dkk d me ere ereu eregr pd derj perm I() uuk eluruh vrel. Tep jk d fr dfferece ereu elum oer mk perlu dlkuk dfferecg kedu pd d ereu. Proedur eeru dlkuk hgg dperoleh d g oer Peeu Lg opml Slh u hl g plg meeuk dlm uj oer dlh peeu lg, kre deg lg g erllu edk mk redul dr regre dk k memplk proe whe oe ehgg model dk dp megem cul error ecr ep. Ak γ d dr kelh dk dem ecr k. Nmu jk memukk erllu k lg mk dp megurg kemmpu uuk meolk H o kre mh prmeer g erllu k k megurg degre of freedom (Gujr,003:849). Peeu lg opml dp dguk deg meepk l lg g dperoleh dr LR (quel modfed LR e c), FPE (Fl Predco Error), AIC (Akke Iformo Crer), SC (Schwrz formo crero), HQ (H-Qu formo crero). Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

10 Model Vecor Auoregreo (VAR) Seelh lgkh-lgkh eh d dlkuk, mk l model Vecor Auoregreo (VAR) g dperoleh d dp dl. Kergk l g prk dlm model k memerk form g em d mmpu mekr deg k form dlm perm g deuk dr d me ere. Sel u pergk em dlm model VAR relf mudh dguk d derprek. Pergk em g k dguk dlm model VAR dlh fug mpule repo d vrce decompoo. Meode g dekk pd peerp model VAR dlh (Gujr, 003:853): Kemudh dlm peggu, dk perlu megkhwrk eg peeu vrel edoge d vrel ekoge.. Kemudh dlm em, meode Ordr Le Squre (OLS) dp dplkk pd p perm ecr erph.. Forec u perml g dhlk pd eerp ku demuk leh k drpd g dhlk oleh model perm mul g komplek. 3. Impule Repo Fuco (IRF). IRF melck repo dr vrel depede dlm em VAR erhdp hock dr error erm. 4. Vrce Decompoo, memerk form mege peg mg-mg error erm dlm mempegruh vrel-vrel dlm VAR Fug Impule Repoe Fug mpule repoe meggmrk gk lju dr hock vrel g u erhdp vrel g l pd uu reg perode ereu. Sehgg dp dlh lm pegruh dr hock uu vrel erhdp vrel l mp pegruh hlg u keml ke k keemg. Al fug mpule repo dp dulk dlm euk Vecor Movg Avrge (VMA) dr euk dr VAR pd perm (3.4). e e...(3.4) Per fkor..., Sud Bw Suw, FE UI, 00. Uver Idoe

11 49 Dm d memlk huug deg e d e ecr eruru. Selju deg megguk oper ljr mrk mk vecor error dp deuk eg erku : e e...(3.5) Deg meggugk perm (3.8) d (3.9) k ddp: 0...(3.6) Perm (3.0) dp dederhk deg medefk mrk x deg eleme jk () eper perm erku : A /( ).(3.7) Sehgg dperoleh euk mrk perm fug mpule repo: ( ) ( ) 0 ( ) ( ).(3.8) Dm : j () = efek dr rucurl hock pd d j (0) = mpc mulpler j () = cumulve mulpler j () pd = log ru mulpler Vrce Decompoo Vrce decompoo u deu jug forec error vrce decompoo merupk pergk pd model VAR g k memhk vr dr ejumlh vrel g dem mejd kompoe-kompoe hock u mejd vrel ovo, deg um hw vrel-vrel ovo dk lg erkorel. Kemud, vrce decompoo k memerk form mege propor dr pergerk pegruh hock pd Uver Idoe

12 50 euh vrel erhdp hock vrel g l pd perode d perode g k dg. Beuk VMA dr vrel x pd u perode ke dep dp dulk eg erku (Eder, 004:79) : x x..(3.9) 0 Forec error pd u perde kedep dlh : E x x...(3.0) Forec u perode ke dep dlmgk deg 0.Forec error pd perode ke dep dlh : x E x x 0..(3.) Forec error pd perode ke dep uuk vrel dlh: E 0) ()... (..(3.) ( ) + ( 0) ()... ( ) Vrce dr forec error perode ke dep dlh () dm: ( ) (0) ()... ( ) (0) ()... ( )...(3.3) Forec error vrce decompoo dlh propor dr () erhdp hock d hock. Sehgg forec error vrce decompoo pd hock dlh : ( 0) ()... ( ) / ( ).(3.4) Sedgk forec error vrce decompoo pd hock dlh : ( 0) ()... ( ) / ( )...(3.5) Uver Idoe

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31 INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

Metodologi Penelitian

Metodologi Penelitian MOUL PERKULIAHAN VIII Meodolog Peel ANALISA REGRESI Fkuls Pogm Sud Tp Muk Kode MK susu Oleh Psc Sj Mgse Tekk 54 3 Hmzh Hll Eleko 8 Asc Kulh keemp memu me eg lss pedks deg megguk meode kud ekecl: eges le

Lebih terperinci

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS Metode ple erup utu te tdr g dgu utu eech lh Progr Ler e thu 9. Pd prp etode ple ecr peele optl deg eetu tt-tt udut dr derh fele proe dlu erulg-ulg dr utu

Lebih terperinci

MENGKONTRUKSI PERSAMAAN DIFERENSIAL LINEAR ORDE-n MENJADI FUNGSI GREEN MENGGUNAKAN METODE VARIASI PARAMETER DAN METODE TRANFORMASI LAPLACE.

MENGKONTRUKSI PERSAMAAN DIFERENSIAL LINEAR ORDE-n MENJADI FUNGSI GREEN MENGGUNAKAN METODE VARIASI PARAMETER DAN METODE TRANFORMASI LAPLACE. MENGKONTRUKSI PERSAMAAN DIFERENSIAL LINEAR ORDE- MENJADI FUNGSI GREEN MENGGUNAKAN METODE VARIASI PARAMETER DAN METODE TRANFORMASI LAPLACE Skrp Oleh YUSNAENI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

Integrasi Numeris dengan Menggunakan Polinomial Lagrange. Syawaluddin H 1) Hang Tuah 2) Widiadnyana Merati 2) Leo Wiryanto 2) f (x) =

Integrasi Numeris dengan Menggunakan Polinomial Lagrange. Syawaluddin H 1) Hang Tuah 2) Widiadnyana Merati 2) Leo Wiryanto 2) f (x) = Huhe, Vol. No. dkk. Aprl 5 url TEKNIK SIPIL Iegrs Numers deg Megguk Poloml Lgrge Sywludd H Hg Tuh Wddy Mer Leo Wryo Asrk Pd pper dsjk pegemg egrs umers erdsrk poloml Lgrge. Meod yg dhslk mrp deg meod Guss-qudrure,

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

a. Buktikan 16 Jawab : Jika a, b, c dan d adalah bilangan-bilangan real positif, tunjukkan bahwa d c x adalah a, b dan c.

a. Buktikan 16 Jawab : Jika a, b, c dan d adalah bilangan-bilangan real positif, tunjukkan bahwa d c x adalah a, b dan c. Jik,,, > ukik Jw : Jik,, lh ilg-ilg rel oiif, ujukk hw Jw : Dikehui kr-kr erm lh, Teuk ili Jw : Dikehui kr-kr erm memeuk ri rimeik eg e Teuk ili,! Jw : Mil kr-kr erm :,,, Mk,,, Dikehui meruk u kr erm Tujukk

Lebih terperinci

Universitas Sumatera Utara

Universitas Sumatera Utara AB I B ENDAHULUAN 1 1 g Bel r L ruur rg r verl e g eru Kolo Kolo 1990) (Nw lo r e eul l eg g ej re gu ruur uu g u e elur eg erfug e lerl erl v o eru jug u el S e ooe e egl j r lo ej r ee uu gu ruur eluru

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

Go to Siti s file Siti Fatimah/Jurdikmat/UPI 1

Go to Siti s file Siti Fatimah/Jurdikmat/UPI 1 Go o S s fle S Fmh/Jrdkm/UPI Movs Jmlh Rem-Iegrl Te Teorem Dsr Klkls Sf-sf Iegrl Te A Dervf-Iegrl Tk e Tekk Pegegrl S Fmh/Jrdkm/UPI Ls Bdg Legkg P P P Emp ss Delp ss S Fmh/Jrdkm/UPI Ls Bdg Legkg P P P

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm [email protected]

Lebih terperinci

TENTANG KETUA PE,NGADILAN AGAMA DUMAI. Nomor z W 4-Al2l 109 liik0sru2m6 SURAT KEPUTUS${ KETUA PENGADILAN AGAMA DUMAI

TENTANG KETUA PE,NGADILAN AGAMA DUMAI. Nomor z W 4-Al2l 109 liik0sru2m6 SURAT KEPUTUS${ KETUA PENGADILAN AGAMA DUMAI SUR KPUUS${ KU PGL GM UM mr W 4l2l 109 lk0sr2m G SUR KPUUS$ KU PGL GM UM G SORS HKM, PR PGG, URUS PGG\ SR COUR CLR P PGL GM UM HU 201 KU P,GL GM UM Membg. b. Bhw lm rgk kelcr pelk g p Pegl gm m mk pg perl

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: [email protected] Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

SIFAT-SIFAT SEMIRING DAN KONSTRUKSINYA

SIFAT-SIFAT SEMIRING DAN KONSTRUKSINYA Jr E Me S Vo No SIFAT-SIFAT SEMIRING DAN KONSTRUKSINYA A Rhw Uver Pere Tgg Dr U (Up) Jog Kope Pope Dr U Reoo Peerog Jog J 648 rhw@gco ABSTRAK Serg ef eg hp oog eg oper er (peh per) D wh oper peh erg erp

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

Optik Moderen. S3 Fisika

Optik Moderen. S3 Fisika O M S F I. Glg M II. I Glg M g M III. Rfl Rf Glg g IV. MI RLPIS ISOTROPIK V. MI RLPIS PRIOIK - 7. GLOMNG TRPNU LM MI RLPIS 8. OPTIK NONLINIR . P Mwll H J ρ 4 ρ u I. Glg M 5 6 ε μ H v l; H v g v g l l h;

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

INTEGRAL TERTENTU. 5.1 Pengertian Integral Tertentu

INTEGRAL TERTENTU. 5.1 Pengertian Integral Tertentu INTEGRAL TERTENTU Iegl Teeu. Pege Iegl Teeu Defs.. Ps P pd evl [,] dlh suu suse ehgg P {,,,, } d [,] deg < < <

Lebih terperinci

2 lh uu lh g lol u ool lm u l m mu gcu g - g, u g lu h mu lu oom mj lh cug lm mg g g j uug olh h j Bh h h of Cofc Wol Y Wom ol I mu) Thu Iol (Kof 1975

2 lh uu lh g lol u ool lm u l m mu gcu g - g, u g lu h mu lu oom mj lh cug lm mg g g j uug olh h j Bh h h of Cofc Wol Y Wom ol I mu) Thu Iol (Kof 1975 1 EN ENALAN UU G m Rum : 2012 7 ggl: T Bogo m: T K g 0 197 hu j mul lh mu - mug mgu mol h lh g jl hl Ah mu mu hw om uh D oom mgu gf m mmcl mmu hu h mu mmh hw m Dg u hl mm j, mllu mmu mml mu g g, g lm g

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.

Lebih terperinci

BAB 9 DERET FOURIER. Oleh : Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST

BAB 9 DERET FOURIER. Oleh : Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST BAB 9 DERE FOURIER Oleh : Ir. A.Rchm Hsibu d Nemh Mubrkh, S 9. Pedhulu Gmbr 9. Fugsi-fugsi eksisesi () v = ks ; (b) v = si Gmbr 9. Gelmbg gigi gergji Gelmbg gergji ii dp diyk sebgi f() = (/) dlm iervl

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

β1adalah parameter kedua ε

β1adalah parameter kedua ε B LANDASAN TEORI.. Regre Noler Model Kdrtk Regre oler Model Kdrtk dlh model regre yg rmetery dlh oler rty l dtrk terhd rmetery edr mk hl yg ddt mh megdg rmeter. Model regre kdrtk t dlh eg erkt: Deg : Υ

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

DEFINISI INTEGRAL. ' untuk

DEFINISI INTEGRAL. ' untuk DEINISI INTEGRAL Dlm mtemtk d eerp stl sepert des, teorem, lemm Istl petg kre meujuk keeksstes Des dl peryt yg erl er kre dsepkt, d tdk perlu duktk Teorem dl peryt yg dpt duktk keery Lemm dl teorem kecl,

Lebih terperinci

USAHA KONVEKSI PAKAIAN JADI

USAHA KONVEKSI PAKAIAN JADI P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K O N V E K S I P A K A I A N J A D I P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H (

Lebih terperinci

BAB 9 DERET FOURIER. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST

BAB 9 DERET FOURIER. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST BAB 9 DERE FOURIER Oleh : Ir. A.Rchm Hsibu d Nemh Mubrkh, S 9. Pedhulu Gmbr 9. Fugsi-fugsi eksisesi ( v ks ; (b v V si ω Gmbr 9. Gelmbg gigi gergji Gelmbg gergji ii dp diyk sebgi f( (V/ dlm iervl < < d

Lebih terperinci

ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012

ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012 8/9/0 ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) Elty Srv, S., M. Fkults ekk Jurus ekk Idustr Uversts Krste Mrth Bdug ANOVA Dsr perhtug ANOVA dtetpk oleh Rold A. Fsher. Dstrus teorts yg dguk dlh

Lebih terperinci

Perbandingan Model ARIMAX dan Fungsi Transfer Untuk Peramalan Konsumsi Energi Listrik di Jawa Timur

Perbandingan Model ARIMAX dan Fungsi Transfer Untuk Peramalan Konsumsi Energi Listrik di Jawa Timur Perbdig Model d Fugi Trfer Uuk Perml Koumi Eergi Lirik di Jw Timur Adri Prim Digo, Agu Suhroo, d Suhroo Juru Siik, Fkul Memik d lmu Pegehu Alm, iu Tekologi uluh Nopember (TS Jl. Arief Rhm Hkim, Surby doei

Lebih terperinci

Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Model Tak Penuh. Definisi dapat di-uji (testable): nxp Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

BAB 2 LANDASAN TEORI. dalam penggambaran algoritma pemrograman: Terminal. Proses

BAB 2 LANDASAN TEORI. dalam penggambaran algoritma pemrograman: Terminal. Proses LNDSN TEORI. low Cr u Dr lr Dr lr dl dr erk lr proses dr suu sse. Dr lr ju dp erk suu lor peror. Sol-sol u duk dl dr lr kusus dl per lor peror: Terl Proses Per/epuus Ipu / Oupu pd lr Oupu dl euk fle Pejels:.

Lebih terperinci

1.1 Pendahuluan. 1.2 Sistem Seri

1.1 Pendahuluan. 1.2 Sistem Seri BAB PENGGUNAAN DISTRIBUSI PELUANG DALAM EVALUASI KEANDALAN SISTEM. Pedhulu P rosedur sdr dlm evlusi kedl sisem dlh deg megurik sisem mejdi gug eerp gi hirrki diwhy dlm su model jrig, melkuk esimsi kedl

Lebih terperinci

2 uu u gruh r roo u lulu uh u u r rl rolgu vr u rofol j l u rogr uju c rul rogr v rwuju uu g g l J vr j wr ggug r rl j ru rou r rolgu r r l r uu w j l

2 uu u gruh r roo u lulu uh u u r rl rolgu vr u rofol j l u rogr uju c rul rogr v rwuju uu g g l J vr j wr ggug r rl j ru rou r rolgu r r l r uu w j l 1 ENGARH KALIA ELAYANAN ERHAA CIRA N KAM AROLANG NIVERIA JAMBI hr lh O vr Eoo ul Juru Mj gjr f BRAK A l Kul gruh ghu uu ruju l rh C r rolgu vr org 80 rh lu l vr hw rolgu u K g rolh rr l l g ( uor r orv

Lebih terperinci

Bab 3 SISTEM PERSAMAAN LINIER

Bab 3 SISTEM PERSAMAAN LINIER Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm

Lebih terperinci

D C S. Q Jawab : D C S Luas yang diarsir = Luas PXBY = 5 x 5 = 25 cm A X B

D C S. Q Jawab : D C S Luas yang diarsir = Luas PXBY = 5 x 5 = 25 cm A X B ujurgkr D d QRS erukur m iu 0 0 cm dlh pu ujurgkr D erp lu derh g dirir pd gmr di wh ii? D S R Q D S u g dirir u XY cm Y R X Q Tig ilg eruru g merupk uku-uku ri rimeik jumlh Jik ilg keig dimh mk diperoleh

Lebih terperinci

Solusi Sistem Persamaan Linear

Solusi Sistem Persamaan Linear Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems

Lebih terperinci

Ketaksamaan Chaucy Schwarz Engel

Ketaksamaan Chaucy Schwarz Engel Keksm Chuy Shwrz Egel Fedi Alfi Fuzi Rigks Keksm Cuhy Shwrz merupk Keksm yg ukup mpuh uuk memehk ergi mm persol yg meygku sol keksm pd olimpide memik igk siol mupu iersiol. Pd pper ii k diperkelk euk li

Lebih terperinci

Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient

Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient Sttstk, Vol. 9 No., 75 8 Nopemer 9 eksr trks Tekolog Kot Cmh Berdsrk Tel Iput utput Provs Jw Brt egguk etode octo Quotet TETI SFIA ANTI Jurus Sttstk Uversts Islm Bdug Eml: [email protected] ABSTRAK Tel Iput

Lebih terperinci

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript

Lebih terperinci

Efek Pemberian Ekstrak Etanol Akar Kolesom (Talinum triangulare Willd) terhadap Spermatogenesis Tikus Putih

Efek Pemberian Ekstrak Etanol Akar Kolesom (Talinum triangulare Willd) terhadap Spermatogenesis Tikus Putih Nkh Al Efk Pm Ekk El Ak Klm (Tlum gul Wll) h Smg Tku Puh Yu Au Nugh1, L Rhyu2, R Ih Su2 1 Pu Bm Tklg D Kh B Lgk Kmk RI 2 Fkul Fm. Uv Pcl. Jk ml: [email protected] Ac I I fly ll lm f m cul, cu 10-15% f m cul

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

X I I M S A SEMIN R A I P

X I I M S A SEMIN R A I P BA B I PENDAHULUA N A. L Bek g Peddk pd dy meupk uu poe peub g k ku d yg dk u mej d u d begug ec eu meeu d m kedup mu meu og. Dm p eddk fom eog k membuuk eog guu uuk membmbg d meuuy dm keg pembej. Keg

Lebih terperinci

III METODOLOGI PENELITIAN

III METODOLOGI PENELITIAN III ETODOLOGI PENELITIAN 3. Kergk Pemkr Tuu pembgu wlyh yg meckup spek-spek perumbuh, pemer, d keberlu, dperluk peger perec pembgu wlyh yg berdmes loks dlm rug d berk deg spek socl ekoom wlyh. Sel u, perec

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA. PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt [email protected] Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu

Lebih terperinci

2 Me o i g e P e n il it n a T e b l. 1 ti s m ti n A t a ( r p ) k - T e b l. 2 n ti s Me ti n A t a ( r p ) k

2 Me o i g e P e n il it n a T e b l. 1 ti s m ti n A t a ( r p ) k - T e b l. 2 n ti s Me ti n A t a ( r p ) k J A g K u uu g - g Vuz B K A z Nu Ru R u I J u g, III ) : I N : 87 8 Ju I Lg Uv Ru, Bu, Du, N g Y Juu K Fu U v Ru K Ku B J HR u K,, u 76-6697 E- : u@u A g v uz g u xg u u u, z v uz g g uu u u u g u N u

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0. KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk

Lebih terperinci

Penyelesaian Persamaan Saint Venant dengan Metode Numerik

Penyelesaian Persamaan Saint Venant dengan Metode Numerik Peyeles Persm S Ve deg Mede Nmerk Prf. r. Ir. Arw, MS. Lcky Le Jp 53 09 005 Mdel Fsk drlg F(,y,z, ): YROLOGY MOEL AS ULU (Wershed Mdel) Bdry l Bdry lr Prf.Arw Sbr bd kehl PSA & Kservs,ITB Kws l AS ILIR,lr

Lebih terperinci

Demikian Berita Acara ini dibuat dalam B ditandatangani oleh Ketua dan Anggota KpU BERITA ACARA REI(APITULASI HASIL PENGHITUNGAN PEROLEHAN SUARA

Demikian Berita Acara ini dibuat dalam B ditandatangani oleh Ketua dan Anggota KpU BERITA ACARA REI(APITULASI HASIL PENGHITUNGAN PEROLEHAN SUARA MOE BERT CR RETUS HS EGHTUG EROEH SUR CO GGOT M EMU THU O4 S UTUS MHMH KOSTTUS d ri ii Migg g elp Sepemer d ri emp el, KU megdk kegi rekpii il pegig r d pee r l gg p p Mkm Kii eremp di : Gedg Kr KU R,

Lebih terperinci

BAB VIII PENUTUP. 8.1 Program Transisi

BAB VIII PENUTUP. 8.1 Program Transisi A V UU R mu Jk Mh (RJM) Drh Ku k hu 20072012 mruk mruk uh kum r k mh r V, M, rrm u/wkl u Ku k uuk (lm) hu m. RJM Drh Ku k hu 20072012 m lm yuu R Sr Su Kr rk Drh (RrSKD) Ku k huy k m m yuu R Kr mrh Drh

Lebih terperinci

Pusat Pembinaan JFA I. PENDAHULUAN

Pusat Pembinaan JFA I. PENDAHULUAN Pus Pemb JFA I. PEDAHULUA Smp eg hu 2005 eg pemb JFA elh meglm perembg yg cuup sgf, erum eg sem by melusy peerp Jb Fugsol Auor (JFA) yg bu hy lgug BPKP, Ispeor Jeerl Depreme, Ispeor Um/Ispeor LPD mu jug

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

3SKS-TEKNIK INFORMATIKA-S1

3SKS-TEKNIK INFORMATIKA-S1 SKS-TEKNIK INFORMATIKA-S Momd Sdq PERTEMUAN : 9- INTEGRASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S SKS Momd Sdq MATERI PERKUIAHAN SEBEUM-UTS Pegtr Metode Numerk Sstem Blg d Kesl Peyj Blg Bult & Pe

Lebih terperinci

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada BAB PENDAHULUAN. Ltr Belkg Sektor perkebu merupk sub sektor pert yg mejd slh stu fktor yg dpt medukug kegt perekoom d Idoes. Slh stu sub sektor perkebu yg cukup besr potesy dlm perekoom Idoes dlh perkebu

Lebih terperinci

1 Hip s o is 1 L k o s a i d n c ai n

1 Hip s o is 1 L k o s a i d n c ai n ur l bu Lh, rlo kry, Drh uk olo G 1 A I ENDAHULUAN 1 1 lk r L A u rj k l kurkulu k wjb kulh ruk khr kolo Ilu Fkul Golo, kk u ror 1) ( Iu bu, lkuk l l bru yu Akhr u uk u kolo klulu yr b ky khr hw kry, rlo

Lebih terperinci

3. PELAKSANAAN PENELITIAN

3. PELAKSANAAN PENELITIAN 3. PELAKSANAAN PENELITIAN 3. Tempt D Wktu Peeliti Tempt peeliti ii dilkk di De Sukorejo d De Muuk, Kecmt Smirejo, Kupte Srge. Pemilih loki peeliti ecr egj (Purpoive Smplig) kre di Srge yk terdpt perti

Lebih terperinci

KEMENTERIAN KESEHATAN RENIA KL TAHUN SEKRETARIAT IENDERAL 4 APRIL 2014 I '-I. "l I t t I

KEMENTERIAN KESEHATAN RENIA KL TAHUN SEKRETARIAT IENDERAL 4 APRIL 2014 I '-I. l I t t I KMRA KHAA RA K AHU 01 '- KRARA DRA 4 APR 0. -l "l . UMUM 1. Keee/e. U 0. M U 4. e. Ke P. P 7. Pe [u Rup,l 1. Rup Pe. Pep. Pep. PH u PD RMUR R CAA KRA KM'RA/MBAA (RA- K) AHU AARA 01 KMRA KHAA eke leel 04.01.01.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Alss Regres Alss regres dlh tekk sttstk yg ergu utuk memerks d memodelk huug dtr vrel-vrel. Peerpy dpt djump secr lus d yk dg sepert tekk, ekoom, mjeme, lmu-lmu olog, lmu-lmu sosl,

Lebih terperinci

Catatan Teknik (Technical Notes) Syawaluddin Hutahaean. atau: dimana: )( x1 (1) )( x2

Catatan Teknik (Technical Notes) Syawaluddin Hutahaean. atau: dimana: )( x1 (1) )( x2 Huhe ISSN 8-98 Jurl Teores d Terp Bdg Reys Spl Asr Pper mempreses peyeles pesm vrs secr umers deg meggu egrs umers meod Newo-Coe. Eseus model selm sepuluh l perod gelomg memer solus yg sg sl. K- Kuc: Poloml

Lebih terperinci

PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI. Fitria Rahma Sari dan Dana Indra Sensuse

PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI. Fitria Rahma Sari dan Dana Indra Sensuse PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI Ftr Rhm Sr d D Idr Sesuse Fkults Ilmu Komputer, Uversts Idoes, Depok, Idoes [email protected] Astrk Memlh

Lebih terperinci

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2) TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers

Lebih terperinci

um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u

um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u J ST J ul Toolo 1) 01 : 35 S SN : 087 548 P ol Mu o T Gmu Y um T Toolo Jul lm S Lm Pl Uv Ru mw B N oz L ooum T R Km Juu T K m Uv Ru Pu Kmu Bwy Jl HR Su Km15 Pu 893 E- ml: y u@uc F c P w w wc v ow colo

Lebih terperinci

PENERAPAN PROGRAM LINIER PADA PERMAINAN NON-KOOPERATIF

PENERAPAN PROGRAM LINIER PADA PERMAINAN NON-KOOPERATIF Jurl Mtetk Mur d Terp Vol.5 No. Deeber 0: - PENERAPAN PROGRAM LINIER PADA PERMAINAN NON-KOOPERATIF Prd Affd Progr Stud Mtetk Uvert Lbug Mgkurt Jl. Jed. A. Y k 5, 8 Brbru El: [email protected] ABSTRAK Peelt

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe

Lebih terperinci

LAMPIRAN. xiv. Universitas Sumatera Utara

LAMPIRAN. xiv. Universitas Sumatera Utara LAMPRA xv Uver Ser Ur Lpr 1 PUSAT PLTA KLAPA SAWT e Ol Pl Reerc e L Brgje K 51, Me 20158 e pe : 2-j 78277 x. 2-1 7828g ' -l :pr.rg p;//wwwpr.rg LABOMTORUM PPKS SRTKAT AALSS, Ser : 197/0.1/Seflxll2015 MDA,

Lebih terperinci

GUBERNUR RIAU PERAAURAN GUBERNUR RIAU NOMOR: TAHUN 2016 TENTANG GUBERNUR RIAU,

GUBERNUR RIAU PERAAURAN GUBERNUR RIAU NOMOR: TAHUN 2016 TENTANG GUBERNUR RIAU, GUBNU AU AAUAN GUBNU AU NOMO AHUN 01 NANG NAAN NDKAO KNJA OGAM MBAGUNAX OVNS AU DNCAN AHMAUHAN YANC MAHA SA GUBNU AU, bw lm rk mkk lrb mr okum pr oml' lukur k. pmbu rov u r uuk muku rk mk Sm Akubl K. l

Lebih terperinci

egjr, ul ecr e, erey by, l- l H l ebery erlu erj j e el euy egeu eerl ege e eg y ber, egg ercy u eyeg, eu y r egg ercy uju r Berr l oberv eul lu eljr

egjr, ul ecr e, erey by, l- l H l ebery erlu erj j e el euy egeu eerl ege e eg y ber, egg ercy u eyeg, eu y r egg ercy uju r Berr l oberv eul lu eljr 1 AB B ENAHULUAN P l Belg Lr A u r eru eru ry egjr Proe l Av v egjr v yu v er u eu er er roe eg vu, lgug (egur) egorg eg uu l egjr eb - erj egg eg egubugy by roe r egj egjr eruy e, eg eol e eg, eg uu ru

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1 JURNAL TEKNIK POMITS ol., No., ISSN: 7-59 -97 Pr Percg d Implemes Model Regres Sebg Solus Uuk Asoss Plo Deg Trck yg Dguk Pd Ssem Prmry Survellce Rdr Secr Rel-Tme Ferry Ferdez Wy, Ahmd Skhu, Suhd Ll Tekk

Lebih terperinci

6 S u k u B u n g a 1 5 % 16,57 % 4,84 tahun PENGOLAHAN IKAN BERBASIS FISH JELLY PRODUCT

6 S u k u B u n g a 1 5 % 16,57 % 4,84 tahun PENGOLAHAN IKAN BERBASIS FISH JELLY PRODUCT P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N G O L A H A N I K A N B E R B A S I S F I S H J E L L Y P R O D U C T ( O T A K -O T A K d a n K A K I N A G A ) P O L A P E M B I A Y

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

DERET TAK HINGGA. Deret Geometri Suatu deret yang berbentuk: Dengan a 0 dinamakan deret geometri. Kekonvergenan: divergen jika r 1 Bukti:

DERET TAK HINGGA. Deret Geometri Suatu deret yang berbentuk: Dengan a 0 dinamakan deret geometri. Kekonvergenan: divergen jika r 1 Bukti: DERET TAK HINGGA Cooh dere k higg : + + 3 + = k= k u k. Bris jumlh prsil S, deg S = + + 3 + + = k= k Defiisi Dere k higg, k= k, koverge d mempuyi jumlh S, pbil bris jumlh-jumlh prsil S koverge meuju S.

Lebih terperinci

Program Kerja TFPPED KBI Semarang 1

Program Kerja TFPPED KBI Semarang 1 U P A Y A M E N G G E R A K K A N P E R E K O N O M I A N D A E R A H M E L A L U I F A S I L I T A S I P E R C E P A T A N P E M B E R D A Y A A N E K O N O M I D A E R A H ( F P P E D ) S E K T O R P

Lebih terperinci

DUALITAS DAN ANALISIS SENSITIVITAS

DUALITAS DAN ANALISIS SENSITIVITAS /5/008 DUALITAS DAN ANALISIS SENSITIVITAS Dr. Mohd Adul Mukhy, SE., MM. Prl Prole P ze z cx suject to Ax x 0 optu vlue s z* Dul Prole xze suject to D v π πa c optu vlue s v* Theore. (Strog Dulty) If oth

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

DASAR MATEMATIKA. Untuk mempelajari teori sistem kontrol diperlukan latar belakang matematika. bidang s. s 1. σ 1. Gambar 2-1 Bidang kompleks

DASAR MATEMATIKA. Untuk mempelajari teori sistem kontrol diperlukan latar belakang matematika. bidang s. s 1. σ 1. Gambar 2-1 Bidang kompleks DASAR MATEMATIKA Utu mempelj teo tem otol dpelu lt belg mtemt Koep Peubh Komple Peubh Komple jω bdg σ jω σ σ Gmb - Bdg omple Gmb - meggmb betu bdg omple, yg m tt ddef oleh oodt σ σ d ω ω, tu ec edeh dtul

Lebih terperinci

ESTIMASI PARAMETER REGRESI TERPOTONG KIRI DENGAN METODE MAKSIMUM LIKELIHOOD

ESTIMASI PARAMETER REGRESI TERPOTONG KIRI DENGAN METODE MAKSIMUM LIKELIHOOD ESTIMASI PARAMETER REGRESI TERPOTONG KIRI DENGAN METODE MAKSIMUM LIKELIHOOD R Prw d Dw Ispry Jurus Memk FMIPA Uverss Dpoegoro Jl Pro H Soedro SH Temblg Semrg 575 Absrc Le ruced regresso model s regresso

Lebih terperinci

SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA

SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA SOL-SOL OLIMPIDE MTEMTIK DN PENYELESINNY. ui uu sip ilg rl, rlu! ui :. ui uu sip ilg rl, g rlu ui :! : u il sgi M GM im M g rihmi M sg GM g Gomri M.. ui uu sip ilg posii,, rlu ui :!. ui uu sip ilg rl,

Lebih terperinci

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc

Lebih terperinci