BAB II TINJAUAN PUSTAKA
|
|
|
- Devi Hadiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi mekanik digunakan langsung secara permesinan seperti pompa, maka mesin (turbin) disebut windmill seperti tampak pada Gambar II.1. Jika energi mekanik dikonversikan menjadi energi listrik, maka mesin disebut turbin angin atau wind energy converter. Gambar II. 1 Windmill (Sumber : energyboomer.typepad.com) Pemanfaatan potensi angin dimulai dengan kapal-tenaga angin, pabrik gandum dan grinding stone. Kini turbin angin lebih banyak digunakan untuk menyuplai kebutuhan listrik dengan menggunakan prinsip konversi energi dan memanfaatkan sumber daya alam yang dapat diperbaharui yaitu angin. Walaupun sampai saat ini pembangunan turbin angin masih belum dapat menyaingi II-1
2 II-2 pembangkit listrik konvensional, contohnya pembangkit listrik tenaga air (PLTA), pembangkit listrik tenaga diesel (PLTD), pembangkit listrik tenaga uap (PLTU) dan sebagainya. Turbin angin masih terus dikembangkan oleh para ilmuwan karena dalam waktu dekat manusia akan dihadapkan dengan masalah kekurangan sumber daya alam tak terbaharui, contohnya minyak bumi, batubara dan sebagainya sebagai bahan dasar untuk membangkitkan energi listrik. 2.2 Jenis Turbin angin Turbin angin dapat digolongkan berdasarkan : 1. Prinsip aerodinamik 2. Arah sumbu rotasi sudu Prinsip Aerodinamik Jika diamati dari prinsip aerodinamik, turbin angin sebagai mesin konversi energi dapat digolongkan menjadi dua bagian yaitu: 1. Jenis drag yaitu prinsip konversi energi yang memanfaatkan selisih koefisien drag. 2. Jenis lift yaitu prinsip konversi energi yang memanfaatkan gaya lift. Pada pengelompokan turbin angin berdasarkan prinsip aerodinamik pada sudu yang dimaksud yaitu apakah sudu turbin angin mengubah energi angin memanfaatkan gaya drag dari aliran udara yang melalui sudu sudu atau sudu angin mengekstrak energi angin dengan memanfaatkan gaya lift yang dihasilkan aliran udara yang melalui profil aerodinamis sudu. Prinsip gaya drag memiliki putaran sudu relatif rendah dibandingkan turbin angin yang sudunya menggunakan prinsip gaya lift.
3 II Arah Sumbu Rotasi Sudu Turbin angin dapat digolongkan menjadi dua bagian bila dilihat dari arah sumbu rotasi sudu : 1. Turbin angin sumbu horizontal (TASH) 2. Turbin angin sumbu vertikal (TASV) Turbin Angin Sumbu Horizontal (TASH) Turbin angin sumbu horizontal merupakan turbin angin yang sumbu rotasi sudunya paralel dengan permukaan tanah. Turbin angin sumbu horizontal memiliki poros sudu utama dan generator listrik di puncak menara dan diarahkan menuju dari arah datangnya angin. Sudu turbin angin yang kecil diarahkan menuju dari arah datangnya angin dengan pengaturan baling baling angin sederhana sedangkan turbin angin besar umumnya menggunakan sensor angin dan motor yang mengubah sudu turbin mengarah pada angin. Komponen dari TASH umumnya seperti Gambar II.2. Gambar II. 2 Komponen Turbin Angin Sumbu Horizontal (Sumber : science.howstuffworks.com)
4 II-4 Berdasarkan prinsip aerodinamis, sudu pada turbin angin sumbu horizontal mengalami gaya lift dan gaya drag, namun gaya lift jauh lebih besar dari gaya drag sehingga sudu turbin ini lebih dikenal dengan jenis sudu turbin tipe lift. Jika dilihat dari letak sudu terhadap arah angin, turbin angin dibagi menjadi dua macam upwind dan downwind. Turbin angin jenis upwind memiliki rotor yang menghadap arah datangnya angin sedangkan turbin angin jenis downwind memiliki rotor yang membelakangi arah angin, seperti tampak pada Gambar II.3. Gambar II. 3 Jenis TASH berdasarkan letak sudu terhadap arah angin (Sumber : mstudioblackboard.tudelft.nl) Turbin Angin Sumbu Vertikal (TASV) Turbin angin sumbu vertikal merupakan turbin angin yang sumbu rotasi sudunya tegak lurus terhadap permukaan tanah. Beberapa contoh turbin angin sumbu vertikal yaitu turbin angin Darrieus, turbin angin savonius, dll, seperti tampak pada Gambar II.4, Gambar II.5 dan Gambar II.6.
5 II-5 Gambar II. 4 Turbin angin Darrieus dan komponen pendukungnya (Sumber : science.howstuffworks.com) Gambar II. 5 Turbin angin H (Sumber : michaelschelter.de) Gambar II. 6 Jenis turbin angin savonius (Sumber : reuk.co.uk)
6 II Sudu Falcon Sudu Falcon merupakan desain pada sudu turbin angin sumbu horizontal (TASH). Sudu Falcon telah dikembangkan oleh seorang peneliti asal Amerika bernama Jeff Molly dengan prototype pertamanya bernama FALCON MACH III dengan 3 sudu dan prototype ke duanya FALCON MACH 5 dengan 5 sudu. Prototype seperti tampak pada Gambar II.7 ini digunakan oleh Jeff Molly sebagai pembangkit listrik untuk memenuhi kebutuhan listrik di rumahnya serta sebagai pompa air untuk mengairi perkebunannya. Gambar II. 7 FALCON MACH III buatan Jeff Molly (Sumber : Nugraha) Desain sudu falcon mengadaptasi dari bentuk dan cara kerja yang sama dengan sayap pesawat terbang. Seperti pada Gambar II.8 terlihat pada beberapa bagian sudu, seperti penggunaan winglet pada sudu falcon yang biasa digunakan oleh pesawat-pesawat modern yang dimaksudkan untuk mengurangi drag akibat adanya wing tip vortex pada ujung sudu, desain sudu seperti desain sayap pesawat dengan tipe sudu mengecil diujung (taper), serta bilah puntir (twist) yang berguna untuk meningkatkan nilai dari torsi sudu. Oleh karena itu sudu Falcon dirancang untuk dapat menghasilkan torsi yang tinggi dengan kecepatan angin yang rendah sehingga akan menghasilkan energi listrik yang besar.
7 II-7 Gambar II. 8 Konsep dasar FALCON MACH V (Sumber : Nugraha) 2.4 Airfoil Airfoil adalah bentuk penampang dari sayap pesawat yang dapat menghasilkan gaya angkat (lift) atau efek aerodinamika ketika melewati suatu aliran udara. Airfoil merupakan bentuk dari potongan melintang sayap yang dihasilkan oleh perpotongan tegak lurus sayap terhadap pesawat, dengan kata lain airfoil merupakan bentuk sayap secara dua dimensi seperti pada Gambar II.9. Gambar II. 9 Penampang airfoil (Sumber : Raharjo, 2010) Dari Gambar II.9, dapat dijelaskan lebih rinci sebagai berikut :
8 II-8 1. Leading edge, merupakan bagian permukaan paling depan dari airfoil. 2. Trailing edge, merupakan bagian permukan paling belakang dari airfoil. 3. Mean chamber line, merupakan garis pertengahan yang membagi antara permukaan bagian atas dan permukaan bagian bawah dari airfoil. 4. Chord line, merupakan garis lurus yang menghubungkan leading edge dan trailing edge. 5. Chord, merupakan perpanjangan dari chord line mulai dari leading edge hingga trailing edge. Dengan kata lain, chord adalah karakteristik dimensi longitudinal dari suatu airfoil. 6. Maximum chamber, merupakan jarak antara mean chamber line dengan chord line. Maximum chamber membantu mendefinisikan bentuk dari mean chamber line. 7. Maximum thickness, merupakan ketebalan maksimum dari suatu airfoil, dan menunjukkan persentase dari chord. Maximum thickness membantu mendefinisikan bentuk dari airfoil dan juga performa dari airfoil tersebut. Suatu airfoil memiliki gaya-gaya aerodinamika. Perhitungan gaya aerodinamika pada sudu hampir mirip dengan konsep aerodinamika pada sayap pesawat terbang. Berikut ini dijelaskan gaya angkat (lift) dan gaya hambat (drag) Gaya angkat Gaya angkat atau lift dapat timbul karena adanya perbedaan tekanan udara antara permukaan bagian atas upper surface dengan permukaan bagian bawah lower surface. Dengan kerapatan massa udara (ρ), kecepatan angin ( ), span (s) dan koefisien gaya angkat (C L ), maka persamaan gaya angkat (L) adalah sebagai berikut : L = ½. ρ. 2. s. C L (2.1)
9 II Gaya hambat Gaya hambat atau drag pada sebuah airfoil terjadi karena friction drag dan pressure drag. Friction drag terjadi karena adanya gesekan udara dengan permukaan airfoil dan pressure drag terjadi karena adanya flow separation. Dengan kerapatan massa udara (ρ), kecepatan angin ( ), span (s) dan koefisien gaya hambat (C D ), maka persamaan gaya hambat (D) adalah sebagai berikut : D = ½. ρ. 2. s. C D (2.2) Profil airfoil yang digunakan pada penelitian ini adalah NACA 1-H-15, seperti tampak pada Gambar II.10, dengan karakteristik seperti pada table II.1. Gambar II. 10 Profil airfoil NACA 1-H-15 (Sumber : worldofkrauss.com) Tabel II. 1 Karakteristik NACA 1-H-15 (Sumber : worldofkrauss.com) Karakteristik Spesifikasi Thickness 14.7% Camber 5.5% Trailing edge angle 9.9 o Lower flatness 94.1% Leading edge radius 3.3% Max C L Max C L angle 15.0
10 II-10 Karakteristik Spesifikasi Max L/D Max L/D angle 6.5 Max L/D C L Stall angle -0.5 Zero-lift angle Teori Mekanikal Kerja Kerja atau work dapat didefinisikan sebagai suatu perpindahan energi dari satu sistem ke sistem lainnya. Sehingga kerja dapat diartikan sebagai perkalian dari gaya dengan perpindahan jarak. Secara matematis torsi dan kerja mempunyai rumus yang sama yaitu gaya dikalikan perpindahan jarak, tetapi sesungguhnya torsi dan kerja berbeda. Saat torsi terjadi ada gaya yang menyebabkan benda berputar tetapi belum tentu terjadi perpindahan jarak pada benda tersebut. Sedangkan saat kerja terjadi ada perpindahan jarak, perpindahan jarak ini dapat dibabkan oleh torsi Torsi Seberapa besar produktifitas dari sebuah turbin dapat diukur dari seberapa besar torsi yang dapat dihasilkan. Jika semakin besar torsi yang dapat dihasilkan, maka semakin besar pula daya yang dapat dihasilkan oleh sebuah turbin. Dan juga sebaliknya, jika semakin kecil torsi yang dapat dihasilkan, maka semakin kecil pula daya yang dapat dihasilkan oleh sebuah turbin. Hubungan torsi (T), gaya (F), dan jari-jari sudu (r) seperti tampak pada persamaan sebagai berikut : T= F x r (2.3)
11 II Prinsip Konversi Energi Angin Daya teoritis (P t ) yang dapat diekstrak oleh turbin angin dengan luas penampang sapuan sudu (luas cakram) (A), dengan kerapatan massa udara (ρ) dan kecepatan angin ( ) dapat dituliskan pada persamaan sebagai berikut : P t = ρa 3 (2.4) Sebuah turbin angin yang optimal adalah sebuah turbin angin yang memiliki koefsien daya (C p ) yang mendekati dengan batas Betz bernilai 0,593 (59,3 %). Semakin besar daya aktual yang didapatkan maka semakin besar pula koefesien dayanya. Untuk mengetahui nilai C p maksimal yang mampu dihasilkan oleh sebuah turbin angin, maka perlu diketahui nilai Tip speed ratio yang dihasilkan. Tip speed ratio merupakan perbandingan dari kecepatan ujung rotor turbin terhadap kecepatan angin yang melalui rotor. Rasio kecepatan ujung rotor memiliki nilai nominal yang berubah-ubah terhadap perubahan kecepatan angin. Dengan kecepatan putar sudu putar sudu ( ), dan posisi sepanjang sudu (r), dan kecepatan angin ( maka Tip speed ratio ( ) dapat dituliskan sebagai berikut : (2.5) Grafik berikut menunjukkan variasi tip speed ratio dan koefisien daya (C p ) pada berbagai jenis turbin angin ditunjukkan pada Gambar II.11.
12 II-12 Gambar II. 11 Variasi tip speed ratio dan Cp pada berbagai jenis turbin angin (Sumber: otherpower.com) 2.7 Generator Listrik Turbin angin yang digunakan untuk membangkitkan energi listrik memerlukan generator yang berguna untuk mengubah energi mekanik gerak rotasi rotor menjadi energi listrik. Terdapat beberapa jenis generator yang digunakan. Berdasarkan arah arus yang dikeluarkan, generator dibagi menjadi dua jenis yaitu generator arus searah (Direct Current - DC) dan generator arus bolak balik (Alternating Current - AC). Generator arus searah (DC) menghasilkan beda potensial yang arahnya tetap dan jika dihubungkan dengan beban akan menghasilkan arus searah pula. Pada umumnya generator arus searah dapat menghasilkan energi listrik pada putaran tinggi. Untuk digunakan pada turbin angin, jenis generator ini memerlukan sistem transmisi untuk menaikkan putaran (speed increasing). Generator AC dapat menghasilkan beda potensial yang arahnya bolak-balik dan jika dihubungkan dengan beban akan menimbulkan arus bolak-balik pula. Generator AC dapat menghasilkan daya pada putaran yang bervariasi bergantung pada spesifikasi generator itu sendiri. Besar putaran minimal yang diperlukan
13 II-13 generator AC untuk dapat menghasilkan energi listrik dan besar putaran kerja bergantung pada jumlah kutub dan kumparan dalam generator, semakin banyak jumlah kumparannya maka semakin kecil putaran minimal dan putaran kerjanya. Jumlah kumparan merupakan kelipatan dari jumlah kutub yang dimiliki generator. Untuk putaran turbin yang memiliki putaran yang relatif rendah, digunakan jenis generator magnet permanen dengan variasi jumlah kutub, semakin banyak jumlah kutub generator maka putaran yang dibutuhkan semakin kecil untuk membangkitkan listrik dan sebaliknya. Untuk generator yang menggunakan magnet permanen sebagai penginduksi kumparannya disebut generator magnet permanen. 2.8 Daya Jika terdapat perpindahan secara angular, maka daya aktual (P a ) adalah perkalian antara torsi (T) dan kecepatan angular (ω) seperti pada persamaan berikut : P a = T x ω (2.6) Arus listrik yang mengalir dalam rangkaian dengan hambatan listrik menimbulkan kerja. Peranti mengkonversi kerja ini ke dalam berbagai bentuk yang berguna, seperti panas (seperti pada pemanas listrik), cahaya (seperti pada bola lampu), energi kinetik (motor listrik), dan suara (loudspeaker). Listrik dapat diperoleh dari pembangkit listrik atau penyimpan energi seperti baterai. Listrik arus bolak-balik (listrik AC - alternating current) adalah arus listrik dimana besarnya dan arahnya arus berubah-ubah secara bolak-balik. Berbeda dengan listrik arus searah dimana arah arus yang mengalir tidak berubah-ubah dengan waktu. Bentuk gelombang dari listrik arus bolak-balik biasanya berbentuk gelombang sinusoida, karena ini yang memungkinkan pengaliran energi yang paling efisien. Arus listrik (I) dan beda potensial (V) maka daya aktual (P a ) dapat dituliskan kembali menjadi P a = V I (2.7)
14 II Terowongan Angin Pengujian model TASH-Falcon ini menggunakan kecepatan angin, dimana kecepatan angin ini dihasilkan dari blower dari terowongan angin. Aliran udara dari blower wind tunnel yang digunakan diukur kecepatan angin rata-rata dengan menggunakan anemometer. Dalam pengujian ini digunakan beberapa variasi kecepatan. Variasi kecepatan didapatkan dengan cara mengatur RPM engine dari terowongan angin, dimana variasi tersebut berkisar antara 500 RPM sampai dengan 900 RPM. Gambar II.12 menunjukan terowongan angin yang dipakai saat pengujian. Gambar II. 12 Terowongan angin PSTA Polban (Sumber : Nugraha)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2. Blade Falon Dasar dari usulan penelitian ini adalah konsep turbin angin yang berdaya tinggi buatan Amerika yang diberi nama Blade Falon. Blade Falon merupakan desain sudu turbin
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar
DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN
UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi
PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI
PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis
Universitas Sumatera Utara
BAB II TINJAUAN PUSTAKA 2.1 Potensi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Energi angin berasal dari matahari melalui reaksi fusi nuklir hidrogen (H) menjadi helium (He) pada inti matahari. Reaksi ini menimbulkan panas dan radiasi elektromagnetik
Desain Turbin Angin Sumbu Horizontal
Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan
DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013
UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi
BAB 2 DASAR TEORI 2.1 Energi Angin
BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.
Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1)
Bab Dasar Teori.1. Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan E = 1 mv (.1) dimana: m : massa udara yang bergerak (kg) v : adalah kecepatan angin (m/s).
BAB II TINJAUAN PUSTAKA. Kemudian, energy angin dimanfaatkan manusia sebagai sumber tenaga untuk menggiling
BAB II TINJAUAN PUSTAKA 2.1 Sejarah Pemanfaatan Energi Angin Usaha manusia untuk memanfaatkan angin sebagai sumber energi telah dilakukan sejak zaman purbakala, ketika angin digunakan untuk mendorong kapal
PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo
PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi
Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN
UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH Farel H. Napitupulu 1, Ekawira K. Napitupulu
BAB II TINJAUAN PUSTAKA
digilib.uns.ac.id BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Salah satu energi terbarukan yang berkembang pesat di dunia saat ini adalah energi angin. Angin adalah udara yang bergerak karena adanya perbedaan
Bab IV Analisis dan Pengujian
Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk
SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM
UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi
BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).
BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.
Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius
Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut
II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)
6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air
E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin
BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.
ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto
ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : [email protected]
DAFTAR GAMBAR Gambar 1.1 Konsumsi tenaga listrik Indonesia... 1 Gambar 2.1 Klasifikasi aliran fluida... 6 Gambar 2.2 Daerah aliran inviscid dan aliran viscous... 7 Gambar 2.3 Roda air kuno... 10 Gambar
STUDI EKSPERIMENTAL TURBIN ANGIN SAVONIUS SUDU U DENGAN PENAMBAHAN SUDU NACA 0012
STUDI EKSPERIMENTAL TURBIN ANGIN SAVONIUS SUDU U DENGAN PENAMBAHAN SUDU NACA 0012 (1) Muhammad Irfansyah, (2) Mujiburrahman, (3) Meky Royandi (1)(2)(3) Prodi Teknik Mesin, Fakultas Teknik, Universitas
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Studi Literatur Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Bambang setioko (2007), Kenaikan harga BBM
Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional
BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse
BAB II LANDASAN TEORI
4 BAB II LANDASAN TEORI 2.1. Energi Angin Adanya perbedaan suhu antara wilayah yang satu dengan wilayah yang lain dipermukaan bumi ini menyebabkan timbulnya angin. Wilayah yang mempunyai suhu tinggi (daerah
BAB I LANDASAN TEORI. 1.1 Fenomena angin
BAB I LANDASAN TEORI 1.1 Fenomena angin Angin adalah udara yang bergerak akibat adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki tekanan lebih tinggi ke tempat yang bertekanan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu
PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR
PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR Sebagai Salah Satu Syarat untuk Menyelesaikan Program Strata I pada Jurusan Teknik Elektro Fakultas TeknikUniversitas
BAB IV ANALISA DAN PEMBAHASAN
BAB IV ANALISA DAN PEMBAHASAN 4.1. Proses Pengambilan dan Pengolahan Data Berdasarkan pembelajaran mengenai pembangkit energi tenaga angin yang telah ada maka berdasar dengan fungsi dan kegunaan maka dapat
START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN. PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi
START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi PENGGAMBARAN MODEL Pemilihan Pitch Propeller (0,2 ; 0,4 ; 0,6) SIMULASI CFD -Variasi
PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt
Dinamika Teknik Mesin, Volume 4 No. 2 Juli 2014 jumlah Blade Sayoga, Wiratama, Mara, Agus Dwi Catur: Pengaruh Variasi PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR
ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK
ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK Ahmad Farid 1, Mustaqim 2, Hadi Wibowo 3 1,2,3 Dosen Teknik Mesin Fakultas Teknik Universitas Pancasakti Tegal Abstrak Kota Tegal dikenal
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pemanfaatan energi angin di Indonesia masih sangat kecil, baik yang dimanfaatkan untuk membangkitkan energi listrik ataupun untuk menggerakkan peralatan mekanis seperti
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Kenaikan harga BBM mendorong masyarakat untuk
BAB II TEORI DASAR. Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara
BAB II TEORI DASAR 2.1 Definisi Angin Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara antara satu tempat dan tempat yang lain (Yusman, 2005). Adapun penyebab perbedaan tekanan udara
BAB IV HASIL DAN PEMBAHASAN
digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin adalah udara yang bergerak yang diakibatkan oleh rotasi bumi dan juga karena adanya perbedaan tekanan udara disekitarnya. Angin bergerak dari tempat
Bab II Tinjauan Pustaka
Bab II Tinjauan Pustaka.1 Energi Angin Atmosfer yang menyelimuti bumi mengandung berbagai macam molekul gas dan tersusun atas beberapa lapisan. Lapisan atmosfer yang paling rendah adalah troposfer yang
Gambar 2.1 Siklus Terjadinya Angin Dunia (Sumber :
BAB II TINJAUAN PUSTAKA 2.1 POTENSI ANGIN INDONESIA Pada dasarnya angin terjadi karena ada perbedaan suhu antara udara panas dan udara dingin. Didaerah katulistiwa, udaranya menjadi panas mengembang dan
BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo
BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar
BAB II KAJIAN PUSTAKA. A. Kajian Teori dan Hasil Penelitian yang Relevan
BAB II KAJIAN PUSTAKA A. Kajian Teori dan Hasil Penelitian yang Relevan 1. Kajian Teori a. Energi Angin Angin adalah udara yang bergerak yang disebabkan akibat rotasi bumi dan akibat perbedaan tekanan,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin merupakan udara yang bergerak akibat adanya rotasi bumi dan juga karena adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki
BAB III METODOLOGI PENGUKURAN
BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator
PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER. Adi Andriyanto
PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER TUGAS SARJANA Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh Adi Andriyanto 13102131
BAB II LANDASAN TORI
BAB II LANDASAN TORI Proses perancangan suatu alat ataupun yang mesin yang baik, diperlukan perencanaan yang cermat dalam perhitungan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu
BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari
II. TINJAUAN PUSTAKA. 2.1 Pemodelan Matematika (Mathematical Modeling) (biasanya bertujuan untuk memahami realita tersebut) dan mempunyai feature
II. TINJAUAN PUSTAKA 2.1 Pemodelan Matematika (Mathematical Modeling) Model adalah representasi penyederhanaan dari sebuah realita yang complex (biasanya bertujuan untuk memahami realita tersebut) dan
Prestasi Kincir Angin Savonius dengan Penambahan Buffle
Prestasi Kincir Angin Savonius dengan Penambahan Buffle Halim Widya Kusuma 1,*, Rengga Dwi Cahya Hidayat 1, Muh Hamdani 1, 1 1 Teknik Mesin S1, Fakultas Teknologi Industri, Institut Teknologi Nasional
Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin
JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-13 Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin Rahmat Taufiqurrahman dan Vivien Suphandani
PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH)
Dinamika Teknik Mesin, Volume No. Juli 01 Kade Wiratama, Mara, Edsona: Pengaruh PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH) I Kade Wiratama,
MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)
MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui
NASKAH PUBLIKASI STUDI EKSPERIMEN PENGARUH SUDUT SERANG TERHADAP PERFORMA TURBIN ANGIN SUMBU HORISONTAL NACA 4415
NASKAH PUBLIKASI STUDI EKSPERIMEN PENGARUH SUDUT SERANG TERHADAP PERFORMA TURBIN ANGIN SUMBU HORISONTAL NACA 4415 Naskah publikasi ini disusun sebagai syarat untuk mengikuti Ujian Tugas Akhir pada Jurusan
Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype Turbin Angin Vertical Axis Savonius
TURBO Vol. 5 No. 2. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype
BAB IV PENGUJIAN DAN ANALISA
BAB IV PENGUJIAN DAN ANALISA Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang
STUDI PEMBANGKIT LISTRIK TENAGA BAYU (PLTB) DI SUMATERA UTARA
STUDI PEMBANGKIT LISTRIK TENAGA BAYU (PLTB) DI SUMATERA UTARA OLEH : NAMA : WISWANATHEN NIM : 030402072 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2009 STUDI PEMBANGKIT
KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH
KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh
PERANCANGAN TURBIN ANGIN TIPE SAVONIUS L SUMBU VERTIKAL. Hendra Darmawan Penulis, Program Studi Teknik Elektro, FT UMRAH,
PERANCANGAN TURBIN ANGIN TIPE SAVONIUS L SUMBU VERTIKAL Hendra Darmawan Penulis, Program Studi Teknik Elektro, FT UMRAH, [email protected] Ibnu Kahfi Bachtiar ST, M.Sc Dosen Pembimbing, Program
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan
PENGARUH JUMLAH SUDU TURBIN ANGIN SUMBU TEGAK (TAST) TERHADAP DAYA DAN EFISIENSI TURBIN LENNI PABRINA PANGARIBUAN
PENGARUH JUMLAH SUDU TURBIN ANGIN SUMBU TEGAK (TAST) TERHADAP DAYA DAN EFISIENSI TURBIN LENNI PABRINA PANGARIBUAN DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR
Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator
Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator (PMSG) menggunakan Switch Mode Rectifier (SMR) Armaditya T.M.S. 2210 105 019 Dosen
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Angin adalah salah satu bentuk energi yang tersedia di alam dan tidak akan pernah habis. Pada dasarnya angin terjadi karena ada perbedaan suhu antara lokasi
STUDI AERODINAMIKA PROFIL BOEING COMMERCIAL ENERGY EFFICIENT DENGAN KOMPUTASI BERBASIS FINITE ELEMENT
TUGAS AKHIR STUDI AERODINAMIKA PROFIL BOEING COMMERCIAL ENERGY EFFICIENT DENGAN KOMPUTASI BERBASIS FINITE ELEMENT Disusun: EDIEARTA MOERDOWO NIM : D200 050 012 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Sudu Sudu adalah baling baling pada turbin angin. Sudu pada turbin angin sendiri biasanya dihubungkan dengan rotor pada turbin angin. Sudu merupakan salah satu bagian dari turbin
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Airfoil Sebuah airfoil atau aerofoil, dalam Bahasa Inggris merupakan sebuah bentuk profil melintang dari sebuah sayap, blade, atau turbin. Bentuk ini memanfaatkan fluida yang
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Potensi Energi Air Potensi energi air pada umumnya berbeda dengaan pemanfaatan energi lainnya. Energi air merupakan salah satu bentuk energi yang mampu diperbaharui karena sumber
BAB 4 PENGUJIAN, DATA DAN ANALISIS
BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1. Kompresor Aksial Kompresor aksial merupakan salah satu tipe kompresor yang tergolong dalam rotodynamic compressor, dimana proses kompresi di dalamnya dihasilkan dari efek dinamik
BAB II LANDASAN TEORI
digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Denhas (2014) melakukan penelitian mengenai peningkatan unjuk kerja turbin angin vertikal axis savonius dengan cara menambahkan sudu pengarah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Marine Current Turbines (Turbin Arus Laut) Marine Current Turbines (Turbin Arus Laut) adalah jenis jenis turbin yang digunakan dalam perancangan Pembangkit Listrik Tenaga Arus
PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS
5 PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS Muhammad Irsyad Jurusan Teknik Mesin Universitas Lampung Keywords : Turbin Angin Savonius Sudu Elliptik
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak
Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik.
Generator listrik Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit
PENGARUH LOKASI KETEBALAN MAKSIMUM AIRFOIL SIMETRIS TERHADAP KOEFISIEN ANGKAT AERODINAMISNYA
PENGARUH LOKASI KETEBALAN MAKSIMUM AIRFOIL SIMETRIS TERHADAP KOEFISIEN ANGKAT AERODINAMISNYA Teddy Nurcahyadi*, Sudarja** Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta *H/P:085643086810,
PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK
PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK Dosen Pengampu : Drs. Purwandari Disusun Oleh : Rizcy Dwi Prastikasari (09421.127) Septya Sri Ekawaty (09421.135) PROGRAM STUDI PENDIDIKAN
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Pengertian Angin Angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah. Perbedaan tekanan udara disebabkan oleh perbedaan suhu
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi sistem yang dibuat. Gambar 3.1 menunjukkan blok diagram sistem secara keseluruhan. Anak Tangga I Anak Tangga II Anak
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kebutuhan akan energi, khususnya energi listrik di Indonesia, merupakan bagian tak terpisahkan dari kebutuhan hidup masyarakat sehari-hari seiring dengan pesatnya
Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º
NASKAH PUBLIKASI TUGAS AKHIR Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º Disusun Sebagai Syarat Untuk Mencapai Gelar
LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H
LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H DISUSUN OLEH : Yos Hefianto Agung Prastyo 41311010005 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA
Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin
JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-635 Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan turning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin
STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012
STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 Nur Aklis, H mim Syafi i, Yunika Cahyo Prastiko, Bima Mega Sukmana Teknik Mesin, Universitas Muhammadiyah
NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM
NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM Disusun untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai
BAB IV PENGUJIAN DAN ANALISIS
BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang
DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN ABSTRACT
JURNAL AUSTENIT VOLUME 3, NOMOR 2, OKTOBER 2011 DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN Dalom Staf Edukatif Jurusan Teknik Mesin Politeknik Negeri Sriwijaya Jl.Srijaya Negara Bukit Besar Palembang 30139
4.1. Potensi Energi Angin
4. Pembangkit Listrik Kincir Angin PLKA Teknologi turbin telah mencapai status bagus selama 15 tahun terakhir setalah adanya pengembangan produksi massal dan riset komersial. Harga instalasi sudah menurun,
KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF
KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF Miftahur Rahmat 1,Kaidir 1,Edi Septe S 1 1 Jurusan Teknik
2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk
2. Tinjauan Pustaka 2.1 Turbin Angin Turbin angin adalah elemen utama dari sebuah pembangkit listrik tenaga angin dan digunakan untuk memproduksi energi listrik yang merupakan hasil konversi dari energi
BAB II Tinjauan Pustaka dan Dasar Teori
BAB II Tinjauan Pustaka dan Dasar Teori 2.1. Tinjauan Pustaka Serah (2004) dalam penelitiaannya merancang kincir angin tipe horizontal HAWT dengan sudu berjumlah 3 buah. Diameter rotor adalah 2 m dengan
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari skripsi meliputi gambaran alat, cara kerja sistem dan modul yang digunakan. Gambar 3.1 merupakan diagram cara
PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL
PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : [email protected] ABSTRAK Tenaga angin sering disebut sebagai
BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.
29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Energi angin yang kita kenal merupakan bentuk tidak langsung dari energi matahari karena angin terjadi oleh adanya pemanasan yang tidak merata yang terjadi pada
LAPORAN PENELITIAN TURBIN ANGIN HYBRID (SAVONIUS- DARRIEUS)
LAPORAN PENELITIAN TURBIN ANGIN HYBRID (SAVONIUS- DARRIEUS) Medeline Citra Vanessa NIM: 1500510021 Physics Energy Engineering, Clean Energy and Climate Change Faculty Surya University Tangerang, Banten,
