BAB II LANDASAN TEORI
|
|
|
- Utami Kartawijaya
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar perbedaan tekanan udara maka kecepatan angin akan meningkat. Selain itu kecepatan angin pada siang hari akan lebih besar daripada malam hari karena pada waktu siang hari udara relatif lebih tinggi dibanding dengan malam hari. Di daerah khatulistiwa, udara menjadi panas mengembang dan menjadi ringan, naik ke atas dan bergerak ke daerah yang lebih dingin, udaranya menjadi dingin dan turun ke bawah. Dengan demikian terjadi suatu perputaran udara, berupa perpindahan dari kutub utara ke garis khatulistiwa menyusuri permukaan bumi, dan sebaliknya suatu perpindahan udara dari garis khatulistiwa kembali ke kutub utara, melalui lapisan udara yang lebih tinggi. 2.2 Turbin Angin Pengertian Turbin Angin Turbin angin adalah alat yang berfungsi untuk mengubah daya angin menjadi daya mekanik dalam bentuk putaran poros. Putaran poros ini selanjutnya dimanfaatkan untuk pembangkit listrik atau untuk pompa air Jenis-Jenis Turbin Angin Berdasarkan letak porosnya, turbin angin dibagi menjadi dua jenis yaitu 1) Turbin angin poros horizontal (horizontal axis wind) Turbin angin horizontal adalah jenis turbin angin dengan poros sejajar dengan arah angin seperti baling-baling pesawat terbang pada umumnya. Turbin ini harus diarahkan sesuai dengan arah angin yang paling tinggi kecepatannya. Turbin angin poros horizontal berputar karena adanya gaya dorong dan gaya angkat (lift and drag force) dari angin. 6
2 2) Turbin angin poros vertikal Turbin angin poros vertikal adalah jenis turbin angin dengan poros yang tegak lurus dengan arah angin. Prinsip kerja turbin angin poros vertikal dipengaruhi oleh gaya dorong oleh angin pada sudu-sudunya sehingga menyebabkan rotor berputar dengan sendirinya. Perbedaan secara singkat antara turbin angin poros vertikal dan turbin angin poros horizontal dapat dilihat dari gambar 2.3. Gambar 2.1 Perbedaan turbin angin poros vertikal dan horizontal Pada Gambar 2.1 dapat dilihat perbedaan dari kedua jenis turbin. Pada turbin horizontal generator diletakkan di belakang turbin, sedangkan pada turbin vertikal generator diletakkan pada dasar turbin sehingga hal ini akan mempermudah dalam perawatan generator. Dengan posisi turbin yang horizontal, poros dari turbin ini sejajar dengan arah angin sehingga akan membutuhkan mekanisme tersendiri agar sudu turbin bisa tetap mengikuti arah angin. Berbeda dengan turbin sumbu vertikal, turbin ini memiliki poros yang tegak lurus dengan arah angin sehingga dapat tetap berputar meskipun arah angin terus berubah- ubah. 7
3 2.3 Teori "Momentum" Betz Teori "momentum" Betz adalah sebuah teori tentang energi maksimum yang mungkin diperoleh dari sebuah turbin angin seperti Bollée Éolienne (dipatenkan pada 1868), Windmill Eclipse (dikembangkan pada tahun 1867), dan Aermoto (pertama muncul pada tahun 1888 untuk memompa air untuk ternak, dan hingga masih di produksi). Beberapa dekade sebelum munculnya turbin angin modern 3 sudu yang menghasilkan listrik, hukum Betz ini dikembangkan pada 1919 oleh fisikawan Jerman Albert Betz. Menurut hukum Betz, turbin tidak dapat menangkap lebih dari 59,3% dari energi kinetik angin. Nilai tersebut merupakan nilai efisiensi maksimum (juga disebut sebagai koefisien daya) dari turbin angin yang merupakan rasio dari daya maksimum yang diperoleh dari angin dengan daya total yang tersedia dalam angin. Faktor 0,593 dikenal sebagai koefisien Betz. Ini adalah sebagian kecil dari kekuatan maksimum dalam aliran angin yang dapat diekstraksi. (Wikipedia) Jika v 1 adalah kecepatan angin di depan rotor dan v 2 adalah kecepatan angin dibelakang rotor dan v adalah kecepatan angin pada saat melalui rotor (gambar 2.2), maka berdasarkan hukum kontinuitas: m = ρ. A 1. v 1 = ρ. S. v = ρ. A 2. v 2... (2.1) dimana: v 1 = kecepatan angin di depan rotor v 2 = kecepatan angin setelah melewati rotor v = kecepatan pada rotor ρ = massa jenis udara S = luas sapuan turbin Gambar 2.2 Asumsi teori Betz (Wikipedia) 8
4 Gaya yang bekerja pada angin dapat dituliskan sebagai: F = m. a F = m. dv dt F = m. Δv F = ρ. S. v. (v 1 v 2 )... (2.2) Kerja yang dihasilkan oleh gaya dapat dituliskan secara bertahap sebagai de = F. dx... (2.3) dan daya yang dihasilkan angin adalah P = de dt = F. dx dt = F. v... (2.4) Dengan mensubstitusikan persamaan (2.2) ke persamaan (2.4) maka didapat P = ρ. S. v 2. v 1 v 2... (2.5) Dan dengan pendekatan energi kinetik, daya dapat dihitung dengan P = de dt P = 1 2. m. (v 1 2 v 2 2 )... (2.6) Substitusi persamaan (2.1) ke persamaan (2.6) maka didapat persamaan P = 1 2. ρ. S. v. (v 1 2 v 2 2 )... (2.7) Kedua pendekatan yang dilakukan dengan pendekatan kerja yang dihasilkan angin dan pendekatan dengan energi kinetik memiliki persamaan yang valid. Kedua persamaan tersebut dapat dituliskan P = 1 2. m. v 1 2 v 2 2 = ρ. S. v 2. v 1 v 2... (2.8) 9
5 Dengan memeriksa kedua persamaan, didapatkan beberapa hasil persamaan, terutama persamaan: 1 2. v. v 1 2 v 2 2 = v 2. v 1 v v. v 1 v 2. v 1 + v 2 = v 2. v 1 v 2 maka v = 1 2. v 1 + v 2... (2.10) Meskipun demikian, kecepatan angin pada rotor dapat dianggap sebagai kecepatan angin rata- rata dari kecepatan angin di depan dan setelah melewati rotor. Hal ini merupakan kelemahan yang paling sering diperdebatkan dalam hukum Betz, tetapi hal ini benar jika dilihat dari persamaan yang telah dipaparkan. Kembali pada persamaan (2.6) E = 1 2. m. v 1 2 v 2 2 E = 1 2. ρ. S. v. (v 1 2 v 2 2 ) Substitusi dengan persamaan (2.10) E = 1 4. ρ. S. v 1 + v 2. v 1 2 v 2 2 E = 1 4. ρ. S. v v 2 v v 2 v 1 v 2 v (2.11) dengan menurunkan (mengunakan aturan berantai ) Ė dengan hubungan v 2 v 1 untuk kecepatan fluida yang diketahui v 1 dan diketahui pula luas S, terdapat satu titik dari nilai maksimum dan minimum untuk Ė (gambar 2.3). Hasilnya Ė mencapai nilai maksimum ketika v 2 v 1 = 1 3 sesuai dengan yang ditunjukan pada gambar
6 Gambar 2.3 Grafik penentuan nilai Cp maksimum (sumbu x= v 1 v 2 dan y= Cp) Sumber : Substitusi nilai ini menghasilkan P max = ρ. S. v (2.12) Daya yang dihasilkan dari tabung fluida dengan luas penampang area S dan kecepatan v 1 adalah P = 1 2. Cp. ρ. S. v (2.13) Daya acuan untuk perhitungan efisiensi Betz adalah kekuatan dalam fluida bergerak di dalam silinder dengan luas penampang area S dan kecepatan v 1 adalah P = 1 2. ρ. S. v (2.14) Persamaan (2.12) menunjukkan bahwa daya maksimum yang diperoleh tergantung pada massa jenis udara (berubah karena tekanan dan temperatur) dan kecepatan angin. Pada jumlah sudu tertentu, daya yang dihasilkan diperkirakan perlu dikoreksi. 2.4 Turbin Savonius Design turbin angin yang akan digunakan adalah turbin angin vertikal berjenis savonius dengan sudut putaran sudu Gambar dari turbin ini dapat dilihat pada gambar 2.3, 2.4, dan 2.5. Karena kecepatan angin di Indonesia tergolong kecil untuk di darat, yakni hanya berkisar antara 3-4 m/s. Oleh karena itu digunakan turbin angin jenis savonius, karena 11
7 turbin savonius ini penggunaannya lebih difokuskan pada daerah dengan kecepatan angin yang kecil. Selain itu turbin jenis vertikal yakni savonius dan darrieus tidak perlu mengatur arah hanya karena perubahan arah angin. Turbin savonius memiliki putaran yang rendah namun memiliki torsi yang tinggi, sehinnga tidak memerlukan energi awal untuk memutar rotor. (Wikipedia) Sudut putaran pada sudu dibuat 45 0 karena merupakan sudut pada turbin savonius yang memiliki efisiensi yang cukup tinggi, yakni mencapai 33,8% dimana pada normalnya turbin savonius hanya memiliki efisiensi sekitar 15% - 20%. (Husain, 2008). Gambar 2.4 Turbin savonius dan arah aliran angin turbin savonius Gambar 2.5 Turbin savonius berbahan logam 12
8 Gambar 2.6 Turbin savonius berbahan serat karbon dengan sudu yang diputar 2.5 Daya Angin Karena turbin yang digunakan merupakan turbin savonius, maka diameter efektif dari turbin tersebut dapat dihitung dengan persamaan (Hussain, 2008): D eff = 0,5 x { D + D cos θ + D + D 2 sin θ... (2.15) D ϴ = diameter sudu turbin = sudut putar sudu turbin Sesuai dengan teori Betz maka daya angin total adalah sebesar: P = 1 2 ρ v3 A... (2.16) P = daya angin (W) ρ = kerapatan massa udara (kg/m 3 ) A = luas penampang sudu (m 2 ) 13
9 Daya yang dapat dihasilkan oleh turbin adalah sebesar: P t = 1 2. ρ. A. v3. Cp... (2.17) P t = daya turbin maksimum (W) Perbandingan yang membandingkan antara daya yang dapat dikonversikan dengan daya total dari angin merupakan koefisien daya (Cp), yang memiliki persamaan: Cp = Daya poros Daya angin... (2.18) Nilai daya poros tergantung dari kecepatan putaran turbin dan torsi turbin tersebut. Daya poros dapat dituliskan dalam persamaan: P p = ω. T P p = 2πn 60. T... (2.19) P p n T ω = daya poros (W) = jumlah putaran (rpm) = torsi (Nm) = kecepatan sudut Untuk mencari daya poros, maka nilai torsi dari turbin harus diketahui dan torsi dapat dihitung dengan menggunakan persamaan: T = r. F... (2.20) r = jari- jari rotor F = vektor gaya 14
10 Kecepatan putaran pada ujung turbin angin tidak dapat melebihi kecepatan angin yang bertiup, oleh karena itu terdapat perbandingan antara kecepatan angin dan kecepatan putaran turbin yang disebut dengan Tip Speed Ratio (TSR) dengan persamaan: TSR = ω.r...(2.21) v R = jari- jari turbin v = kecepatan angin 15
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor
PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo
PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi
PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI
PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN
DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN
UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi
BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).
BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi
E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin
BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.
BAB I LANDASAN TEORI. 1.1 Fenomena angin
BAB I LANDASAN TEORI 1.1 Fenomena angin Angin adalah udara yang bergerak akibat adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki tekanan lebih tinggi ke tempat yang bertekanan
ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto
ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : [email protected]
BAB IV HASIL DAN PEMBAHASAN
digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi
Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional
BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Angin adalah salah satu bentuk energi yang tersedia di alam dan tidak akan pernah habis. Pada dasarnya angin terjadi karena ada perbedaan suhu antara lokasi
PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL
PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : [email protected] ABSTRAK Tenaga angin sering disebut sebagai
BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari
ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK
ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK Ahmad Farid 1, Mustaqim 2, Hadi Wibowo 3 1,2,3 Dosen Teknik Mesin Fakultas Teknik Universitas Pancasakti Tegal Abstrak Kota Tegal dikenal
Desain Turbin Angin Sumbu Horizontal
Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan
PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS
5 PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS Muhammad Irsyad Jurusan Teknik Mesin Universitas Lampung Keywords : Turbin Angin Savonius Sudu Elliptik
BAB 2 DASAR TEORI 2.1 Energi Angin
BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.
BAB II LANDASAN TORI
BAB II LANDASAN TORI Proses perancangan suatu alat ataupun yang mesin yang baik, diperlukan perencanaan yang cermat dalam perhitungan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2. Blade Falon Dasar dari usulan penelitian ini adalah konsep turbin angin yang berdaya tinggi buatan Amerika yang diberi nama Blade Falon. Blade Falon merupakan desain sudu turbin
SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM
UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi
PEMBUATAN KODE DESAIN DAN ANALISIS TURBIN ANGIN SUMBU VERTIKAL DARRIEUS TIPE-H
Pembuatan Kode Desain dan Analisis.. (Agus Muhamad Arsad et al) PEMBATAN KODE DESAIN DAN ANALISIS TRBIN ANGIN SMB VERTIKAL DARRIES TIPE-H Agus Muhamad Arsad*), dan Firman Hartono**) *)niversitas Nurtanio
DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013
UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar
Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius
Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut
PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU
EKSERGI Jurnal Teknik Energi Vol No. Mei 05; 4-46 ERANANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU Supriyo rogram Studi Teknik Konversi Energi oliteknik Negeri Semarang Jl. rof. H. Sudarto, S.H.,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin merupakan udara yang bergerak akibat adanya rotasi bumi dan juga karena adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki
Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1)
Bab Dasar Teori.1. Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan E = 1 mv (.1) dimana: m : massa udara yang bergerak (kg) v : adalah kecepatan angin (m/s).
Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN
UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH Farel H. Napitupulu 1, Ekawira K. Napitupulu
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu
PENGEMBANGAN METODE PARAMETER AWAL ROTOR TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS
Pengembangan Metode Parameter Awal Rotor... (Sulistyo Atmadi et al.) PENGEMBANGAN METODE PARAMETER AWAL ROTOR TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS Sulistyo Atmadi, Ahmad Jamaludin Fitroh Peneliti
II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)
6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air
PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR
PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR Sebagai Salah Satu Syarat untuk Menyelesaikan Program Strata I pada Jurusan Teknik Elektro Fakultas TeknikUniversitas
BAB II LANDASAN TEORI
digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Denhas (2014) melakukan penelitian mengenai peningkatan unjuk kerja turbin angin vertikal axis savonius dengan cara menambahkan sudu pengarah
RANCANG BANGUN KINCIR ANGIN SAVONIUS UNTUK MEMBANGKITKAN ENERGI LISTRIK SKALA KECIL
Jurnal Mekanikal, Vol. 1 No. 1 Januari 2010 : 1-6 RANCANG BANGUN KINCIR ANGIN SAVONIUS UNTUK MEMBANGKITKAN ENERGI LISTRIK SKALA KECIL Daud Patabang Jurusan Teknik Mesin Fakultas Teknik Universitas Tadulako
BAB IV ANALISA DAN PEMBAHASAN
BAB IV ANALISA DAN PEMBAHASAN 4.1. Proses Pengambilan dan Pengolahan Data Berdasarkan pembelajaran mengenai pembangkit energi tenaga angin yang telah ada maka berdasar dengan fungsi dan kegunaan maka dapat
BAB IV PENGUJIAN DAN ANALISIS
BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang
Universitas Sumatera Utara
BAB II TINJAUAN PUSTAKA 2.1 Potensi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak
BAB IV ANALISA DATA DAN PERHITUNGAN
BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis
BAB IV ANALISA DATA DAN PERHITUNGAN
BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan Data Pengambilan data dilakukan pada tanggal 11 Desember 2012 Januari 2013 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan
PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN
PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN Sulistyo Atmadi Ahmad Jamaludln Fltroh Peneliti Pusat Teknologi Dirgantara Terapan, LAPAN ABSTRACT A method for determining
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan
PERANCANGAN TURBIN ANGIN TIPE SAVONIUS L SUMBU VERTIKAL. Hendra Darmawan Penulis, Program Studi Teknik Elektro, FT UMRAH,
PERANCANGAN TURBIN ANGIN TIPE SAVONIUS L SUMBU VERTIKAL Hendra Darmawan Penulis, Program Studi Teknik Elektro, FT UMRAH, [email protected] Ibnu Kahfi Bachtiar ST, M.Sc Dosen Pembimbing, Program
KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF
KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF Miftahur Rahmat 1,Kaidir 1,Edi Septe S 1 1 Jurusan Teknik
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Energi angin berasal dari matahari melalui reaksi fusi nuklir hidrogen (H) menjadi helium (He) pada inti matahari. Reaksi ini menimbulkan panas dan radiasi elektromagnetik
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak
Bab IV Analisis dan Pengujian
Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak
BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.
29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.
Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype Turbin Angin Vertical Axis Savonius
TURBO Vol. 5 No. 2. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype
BAB II TINJAUAN PUSTAKA
digilib.uns.ac.id BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Salah satu energi terbarukan yang berkembang pesat di dunia saat ini adalah energi angin. Angin adalah udara yang bergerak karena adanya perbedaan
PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH)
Dinamika Teknik Mesin, Volume No. Juli 01 Kade Wiratama, Mara, Edsona: Pengaruh PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH) I Kade Wiratama,
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pemanfaatan energi angin di Indonesia masih sangat kecil, baik yang dimanfaatkan untuk membangkitkan energi listrik ataupun untuk menggerakkan peralatan mekanis seperti
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Studi Literatur Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Bambang setioko (2007), Kenaikan harga BBM
Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin
JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-13 Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin Rahmat Taufiqurrahman dan Vivien Suphandani
Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut
Dinamika Teknik Mesin 6 (2016) 107-112 Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut I.B. Alit*, Nurchayati, S.H. Pamuji Teknik Mesin, Fakultas Teknik, Universitas Mataram,
KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK
KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK Ilmi Abdullah 1, Jufrizal Nurdin 2*, Hasanuddin 3 1,2,3) Jurusan Teknik Mesin, Fakultas Teknologi
START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN. PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi
START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi PENGGAMBARAN MODEL Pemilihan Pitch Propeller (0,2 ; 0,4 ; 0,6) SIMULASI CFD -Variasi
OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU
Optimasi Daya Turbin Angin Savonius dengan Variasi Celah (Farid) OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Ahmad Farid Prodi. Teknik Mesin, Universitas Pancasakti
Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat
JURNAL TEKNIK ITS Vol. 4, No., (05) ISSN: 337-3539 (30-97 Print) G-0 Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat Agus Suhartoko, Tony Bambang Musriyadi, Irfan Syarif Arief Jurusan Teknik
STUDI EKSPERIMENTAL TURBIN ANGIN SAVONIUS SUDU U DENGAN PENAMBAHAN SUDU NACA 0012
STUDI EKSPERIMENTAL TURBIN ANGIN SAVONIUS SUDU U DENGAN PENAMBAHAN SUDU NACA 0012 (1) Muhammad Irfansyah, (2) Mujiburrahman, (3) Meky Royandi (1)(2)(3) Prodi Teknik Mesin, Fakultas Teknik, Universitas
BAB I PENDAHULUAN. Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun
BAB I PENDAHULUAN 1.1 Latar Belakang Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun oleh P. La Cour dari Denmark diakhir abad ke-19. Setelah perang dunia I, layar dengan penampang
ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL
ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL Yeni Yusuf Tonglolangi Fakultas Teknik, Program Studi Teknik Mesin, UKI Toraja email: [email protected] Abstrak Pola
UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI
UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : YASIR DENHAS NIM.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin adalah udara yang bergerak yang diakibatkan oleh rotasi bumi dan juga karena adanya perbedaan tekanan udara disekitarnya. Angin bergerak dari tempat
BAB II TEORI DASAR. Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara
BAB II TEORI DASAR 2.1 Definisi Angin Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara antara satu tempat dan tempat yang lain (Yusman, 2005). Adapun penyebab perbedaan tekanan udara
Prestasi Kincir Angin Savonius dengan Penambahan Buffle
Prestasi Kincir Angin Savonius dengan Penambahan Buffle Halim Widya Kusuma 1,*, Rengga Dwi Cahya Hidayat 1, Muh Hamdani 1, 1 1 Teknik Mesin S1, Fakultas Teknologi Industri, Institut Teknologi Nasional
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk
JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro
http://ejournal-s1.undip.ac.id/index.php/naval JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro ISSN 2338-0322 Analisa Pengaruh Variasi Bentuk Sudu,
PEMBUATAN PROGRAM PERANCANGAN TURBIN SAVONIUS TIPE-U UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN
PEMBUATAN PROGRAM PERANCANGAN TURBIN SAVONIUS TIPE-U UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN Novri Tanti, Arnetto Alditihan Teknik Mesin, Fakultas Teknik Universitas Lampung Gedung H Fakultas Teknik, Jl.
Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA
Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan
UNJUK KERJA MODEL KINCIR ANGIN PROPELER TIGA SUDU DATAR DARI BAHAN TRIPLEK DENGAN SUDUT PATAHAN 10 LEBAR 10,5 CM DENGAN EMPAT VARIASI PERMUKAAN SUDU
UNJUK KERJA MODEL KINCIR ANGIN PROPELER TIGA SUDU DATAR DARI BAHAN TRIPLEK DENGAN SUDUT PATAHAN 10 LEBAR 10,5 CM DENGAN EMPAT VARIASI PERMUKAAN SUDU TUGAS AKHIR Diajukan untuk memenuhi sebagian persyaratan
Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan
Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Agus Sifa a, Casiman S b, Habib Rizqon H c a Jurusan Teknik Mesin,Politeknik Indramayu,Indramayu
KARAKTERISTIK KINCIR ANGIN MAGWIND 5 SUDU
KARAKTERISTIK KINCIR ANGIN MAGWIND 5 SUDU TUGAS AKHIR Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Teknik Mesin Oleh : Prambudi Dangu Nugroho NIM : 085214029
TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR
TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR Slamet Riyadi, Mustaqim, Ahmad Farid Progdi Teknik Mesin Fakultas Universitas Pancasakti Tegal Email: [email protected] ABSTRAK Angin merupakan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Pengertian Angin Angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah. Perbedaan tekanan udara disebabkan oleh perbedaan suhu
II. TINJAUAN PUSTAKA
II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.
BAB II DASAR TEORI 2.1. Tinjauan Pustaka
BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya
Moch. Arif Afifuddin Ir. Sarwono, MM. Ridho Hantoro, ST., MT. Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember 2010
STUDI EKSPERIMENTAL PERFORMANSI VERTICAL AXIS WIND TURBINE (VAWT) DENGAN VARIASI DESAIN TURBIN Moch. Arif Afifuddin Ir. Sarwono, MM. Ridho Hantoro, ST., MT. Teknik Fisika Fakultas Teknologi Industri Institut
BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo
BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar
PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt
Dinamika Teknik Mesin, Volume 4 No. 2 Juli 2014 jumlah Blade Sayoga, Wiratama, Mara, Agus Dwi Catur: Pengaruh Variasi PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR
PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M.
PEMBANGKIT LISRIK TENAGA ANGIN Nama : M. Beny Djaufani (11-2009-035) Ardhians A. W. (11-2009-0 Benny Kurnia (11-2009-0 Iqbally M. (11-2009-0 Pengertian PLTB Pembangkit Listrik Tenaga Angin atau sering
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran
PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP UNJUK KERJA TURBIN ANGIN SAVONIUS
PENGARUH PEMASANGAN SUDU PENGARAH DAN VARIASI JUMLAH SUDU ROTOR TERHADAP UNJUK KERJA TURBIN ANGIN SAVONIUS Yunus Fallo1, Bruno B. A. Liu2, Dedy N. Ully3 Abstrak : Pemasangan sudu pengarah di depan sudu
Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar
Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen
SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : DANANG KURNIAWAN NIM. I
UJI EKSPERIMENTAL PENGARUH POSISI DAN SUDUT SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP PERFORMA TURBIN ANGIN CROSS FLOW YANG TERINTEGRASI DENGAN MENARA PENDINGIN SKRIPSI Diajukan sebagai salah satu syarat
PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA
PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA TUGAS AKHIR Diajukan Guna Memenuhi Persyaratan Mencapai Derajat Strata-1 Fakultas Teknik
DESAIN MODEL TURBIN ANGIN EMPAT SUDU BERBASIS SILINDER SEBAGAI PENGGERAK POMPA AIR
DESAIN MODEL TURBIN ANGIN EMPAT SUDU BERBASIS SILINDER SEBAGAI PENGGERAK POMPA AIR Sunarwo dan Bambang Sumiyarso Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. Sudarto, SH Tembalang Semarang
MODEL TURBIN ANGIN PENGGERAK POMPA AIR
EKSERGI Jurnal Teknik Energi Vol 9 No. 2 Mei 203 ; 6-68 MODEL TURBIN ANGIN PENGGERAK POMPA AIR Supriyo, Suwarti Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. Sudarto, SH Tembalang Semarang
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.
BAB 4 PENGUJIAN, DATA DAN ANALISIS
BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan
II. TINJAUAN PUSTAKA. 2.1 Pemodelan Matematika (Mathematical Modeling) (biasanya bertujuan untuk memahami realita tersebut) dan mempunyai feature
II. TINJAUAN PUSTAKA 2.1 Pemodelan Matematika (Mathematical Modeling) Model adalah representasi penyederhanaan dari sebuah realita yang complex (biasanya bertujuan untuk memahami realita tersebut) dan
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
UNJUK KERJA KINCIR ANGIN PROPELER DUA SUDU MENGERUCUT BERBAHAN DASAR TRIPLEK DENGAN PERLAKUAN VARIASI LAPISAN PERMUKAAN SUDU BERLAPIS SENG, BERLAPIS ANYAMAN BAMBU DAN TANPA LAPISAN SKRIPSI Untuk memenuhi
LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H
LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H DISUSUN OLEH : Yos Hefianto Agung Prastyo 41311010005 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA
PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER. Adi Andriyanto
PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER TUGAS SARJANA Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh Adi Andriyanto 13102131
STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE
STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE (VAWT) SKALA KECIL ( Citra Resmi, Ir.Sarwono, MM, Ridho Hantoro, ST, MT) Jurusan Teknik Fisika FTI ITS Surabaya Kampus ITS
PENGARUH SUSUNAN SUDUT TURBIN ANGIN SAVONIUS TERHADAP KARAKTERISTIK DAYA TURBIN. Rusnoto dan Laudi Shofani ABSTRAK
PENGARUH SUSUNAN SUDUT TURBIN ANGIN SAVONIUS TERHADAP KARAKTERISTIK DAYA TURBIN Rusnoto dan Laudi Shofani ABSTRAK Konsep turbin angin savonius ini cukup sederhana dan praktis tidak terpengaruh oleh arah
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial
