Pendugaan Kepekatan Data Nilai Akhir Mahasiswa
|
|
|
- Sonny Gunardi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Pendugaan Kepekatan Data Akhir Mahasiswa Julio Adisantoso G /STK 7 Mei 2010 Ringkasan Diketahui data pengamatan dari sebaran dengan fungsi kepekatan f yang tidak diketahui. Fungsi f dapat diduga dengan pendekatan non-parametrik, dimana fungsi f diasumsikan merupakan fungsi yang mulus sehingga dapat diduga dengan menggunakan penduga kernel. Tingkat kemulusan fungsi penduga ditentukan oleh parameter pemulus, yaitu lebar jendela dan fungsi kernel. Lebar jendela sangat menentukan tingkat kemulusan fungsi penduga. Semakin besar lebar jendela yang digunakan, maka semakin mulus fungsi penduganya. Sedangkan fungsi kernel yang digunakan tidak banyak mempengaruhi tingkat kemulusan fungsi penduga. 1 Pendahuluan Proses analisis data pada prinsipnya merupakan upaya menelusuri dan mengungkapkan informasi yang relevan yang terkandung di dalam data melalui struktur dan pola data serta penyajian hasil dalam bentuk yang lebih ringkas dan sederhana. Penelusuran struktur data bertujuan untuk memeriksa apakah suatu data dapat membentuk suatu model tertentu, sedangkan penelusuran pola data bertujuan untuk memeriksa bagaimana sebaran data. Salah satu cara untuk memeriksa sebaran data adalah dengan menentukan fungsi kepekatan peluang (fkp) atau probability density function (pdf). Misalkan {X i, i = 1, 2,..., n} adalah data pengamatan yang saling bebas yang memiliki fungsi kepekatan peluang f(x). Untuk menduga f(x) dapat dilakukan dengan dua pendekatan, yaitu parametrik dan non-parametrik (Silverman, 1986). Pendekatan parametrik dilakukan jika fungsi f(x) diketahui sehingga pendugaannya dapat dilakukan dengan menduga parameter fungsi. Sedangkan pendekatan non-parametrik dilakukan jika fungsi f(x) tidak diketahui. Ada beberapa metode non-parametrik yang dapat dilakukan untuk menduga fungsi kepekatan peluang. Salah satu metode klasik yang paling popular adalah histogram. Metode lainnya adalah dengan menggunakan fungsi Kernel. Untuk memahami proses pendugaan fungsi kepekatan peluang, dilakukan analisis data menggunakan metode histogram dan fungsi Kernel. Beberapa karakteristik dari kedua metode tersebut dicobakan agar dapat dilakukan pembandingan dari masing-masing metode. 2 Bahan dan Metode Data yang dianalisis adalah nilai akhir dari 524 mahasiswa IPB semester ganjil tahun akademik 2008/2009 untuk mata pelajaran Algoritme dan Pemrograman. Data dianalisis menggunakan metode histogram pada beberapa kelas dan fungsi Kernel pada beberapa bandwidth. Program yang digunakan untuk menganalisis data adalah R versi
2 Julio Adisantoso G /STK 2 3 Tinjauan Teoritis 3.1 Histogram Misalkan {X i, i = 1, 2,..., n} adalah data pengamatan yang saling bebas. Metode klasik yang paling populer untuk mengetahui bentuk fungsi kepekatan peluang adalah metode histogram. Suatu histogram disusun dengan meletakkan titik-titik data ke dalam suatu bin atau kelas. Setiap bin dinyatakan secara grafik oleh segiempat dengan lebar sama dan tinggi proporsional dengan banyaknya titik-titik data yang terletak dalam bin tersebut. Bin ditentukan dengan memilih titik awal x 0 dan lebar bin atau pita (binwidth) h. Untuk sembarang bilangan bulat m, suatu bin mencakup interval atau selang setengah terbuka [x 0 + mh, x 0 + (m + 1)h). penduga histogram di sembarang titik x dapat dinyatakan sebagai f(x) = 1 nh (banyaknya X i dalam bin yang sama dengan x) Tidak ada ketentuan untuk memilih nilai bin h. Namun demikian, pemilihan nilai bin h yang kecil akan mengakibatkan histogram memuat banyak batang yang kecil-kecil, sedangkan pemilihan nilai bin h yang besar akan mengakibatkan histogram memuat sedikit batang yang besar-besar. 3.2 Penduga Naive Dari definisi kepekatan peluang, jika peubah acak X memiliki fungsi kepekatan f, maka 1 f(x) = lim P (x h < X < x + h) h 0 2h Untuk setiap nilai h, nilai P (x h < X < x + h) dapat diduga dengan proporsi sampel yang terletak pada selang (x h, x + h). Dengan demikian, penduga fungsi kepekatan f dapat diperoleh dengan memilih nilai h yang kecil dan f(x) = 1 2hn [banyaknya X 1,..., X n yang terletak pada selang (x h, x + h)] Penduga ini disebut sebagai penduga naive (naive estimator). Untuk menyatakan penduga secara lebih nyata, didefinisikan fungsi pembobot w sebagai berikut { 1 w(x) = 2 jika x < 1 0 selainnya Oleh karena itu, penduga naive dapat dituliskan sebagai f(x) = 1 n n ( ) 1 x h w Xi h i+1 Formula (1) menunjukkan bahwa penduga dibuat dengan menempatkan kotak dengan lebar 2h dan tinggi (2nh) 1 untuk setiap observasi kemudian menjumlahkannya untuk memperoleh penduga yang diinginkan. 3.3 Penduga Kernel Suatu fungsi K(.) disebut fungsi Kernel jika K merupakan fungsi kontinu, simetris, bernilai bilangan nyata, terhingga, dan K(t) dt = 1, tk(t) dt = 0, t 2 K(t) dt = k 2 0. (2) (1)
3 Julio Adisantoso G /STK 3 Umumnya, tetapi tidak selalu, K merupakan fungsi kepekatan peluang normal, atau fungsi pembobot w yang menggunakan definisi penduga naive. Dengan cara yang sama dengan definisi dari penduga naive, penduga Kernel dengan kernel K didefinisikan sebagai f(x) = 1 nh n ( ) x Xi K h i=1 dimana h adalah lebar jendela, dan sering disebut sebagai parameter pemulus atau bandwidth. Ada beberapa kernel K(t) yang dapat digunakan sebagai tingkat pemulusan, antara lain Epanechnikov, Biweight, Triangular, Gaussian, dan Rectangular. Gambar 1 menunjukkan kurva beberapa fungsi kernel, sedangkan fungsi kernel seperti tercantum pada persamaan (4). K(x, p) = (3) (1 x 2 ) p 2 2p+1, x < 1 (4) B(p + 1, p + 1) dimana B(a, b) = Γ(a)Γ(b) Γ(a+b). Jika p = 0 maka persamaan (4) merupakan kernel Uniform, p=1 menjadi kernel Epanechnikov, dan p=2 menjadi kernel Biweight. Gambar 1: Kurva Beberapa Fungsi Kernel Kinerja suatu kernel dapat diukur dengan MISE (mean integrated squared error) atau AMISE (asymptotic MISE). Kernel Epanechnikov mampu meminimumkan AMISE sehingga optimal (Scheid, 2004). Oleh karena itu, efisiensi suatu kernel diukur dengan cara membandingkan dengan kernel Epanechnikov seperti yang tercantum pada persamaan (5). Tabel 1 menunjukkan beberapa fungsi kernel dan nilai efisiensinya. eff(k) = = { } 5/4 C(Ke ) C(K) { } 1/2 { 3 5 t 2 K(t) dt 5 K(t) 2 dt} 1 (5) 3.4 Memilih parameter pemulus Menurut Silverman (1986), tingkat kemulusan f ditentukan oleh fungsi kernel K dan lebar jendela h, tetapi pengaruh fungsi kernel K kurang signifikan dibanding pengaruh lebar jendela h. h yang kecil akan memberikan grafik yang kurang mulus, sebaliknya nilai h yang besar akan memberikan grafik yang sangat mulus. Oleh karena itu, perlu dipilih nilai h optimal untuk mendapatkan grafik optimal. Salah satu cara memilih parameter pemulus h optimal menurut
4 Julio Adisantoso G /STK 4 Tabel 1: Beberapa kernel dan nilai efisiensinya Kernel K(t) Efisiensi Epanechnikov 3 4 (1 1 5 t2 ) 5, untuk t < 5 1 Biweight (1 t2 ) 2, untuk t < 1 Triangular 1 t, untuk t < 1 Gaussian 1 2π e (1/2)t2 ( 3087 ) ( 243 ) ( 26π ) Rectangular 2, untuk t < 1 ( 108 ) Hardle (1990) adalah dengan meminimalkan IMSE dari f. Dengan cara ini diperoleh h opt n 1 5. Jika f C 2 maka h opt n 1 (2r+1), dimana C adalah konstanta. Banyak metode yang dapat digunakan untuk menentukan parameter pemulus, antara lain adalah metode subyektif dan referensi sebaran baku Metode subyektif Metode sederhana untuk menentukan parameter pemulus adalah memplot beberapa kurva dan menentukan penduga yang paling sesuai. Proses ini dilakukan secara subyektif melalui pengamatan pada beberapa plot dari data yang semuanya dimuluskan dengan menggunakan beberapa fungsi kernel dan bandwidth yang berbeda-beda Referensi sebaran baku Pendekatan yang lebih mudah adalah menggunakan keluarga sebaran baku untuk menentukan nilai f (x) 2 dx pada persamaan (2) untuk lebar jendela yang ideal. Sebagai contoh, sebaran normal dengan ragam σ 2, tentukan φ untuk fungsi kepekatan normal baku, f (x) 2 dx = σ 5 φ (x) 2 dx = 3 8 π 1/2 σ σ 5 (6) Jika digunakan kernel Gaussian, maka lebar jendela (bandwidth) diperoleh dari persamaan (6) menjadi h opt = (4π) 1/10 ( 3 8 π 1/2 ) 1/5 σn 1/5 = ( ) 1/5 4 σn 1/5 = 1.06σn 1/5 (7) 3 Pada program R, persamaan (7) dikenal sebagai lebar jendela nrd. Hasil yang lebih baik diperoleh dengan menggunakan selang antar kuartil R untuk sebaran normal, sehingga persamaan (7) menjadi h opt = 0.79Rn 1/5 (8)
5 Julio Adisantoso G /STK 5 Untuk data yang memiliki bimodal, maka persamaan (8) diganti dengan minimum dari standar deviasi dan selang antar kuartil per 1.34, sehingga lebar jendela menjadi h opt = 0.9An 1/5 (9) dimana A = min(σ, (Q 3 Q 1 )/1.34), Q 3 adalah kuartil ke-3, dan Q 1 adalah kuartil ke-1. Pada program R, persamaan (9) dilambangkan dengan lebar jendela nrd0. Lebar jendela nrd dan nrd0 mengasumsikan bahwa f adalah normal, sehingga akan menyebabkan oversmooth jika data menunjukkan multimodal atau f tidak normal. Metode lainnya adalah Unbiased cross-validation atau Least-squares cross validation, yang pada program R dilambangkan dengan ucv. Sedangkan Biased cross-validation pada program R dilambangkan dengan bcv. 4 Percobaan Seperti yang telah dijelaskan sebelumnya, data yang dianalisis adalah nilai akhir dari 524 mahasiswa IPB semester ganjil tahun akademik 2008/2009 untuk mata pelajaran Algoritme dan Pemrograman. Tabel 2 menunjukkan ringkasan statistik deskripsi data yang dianalisis, sedangkan diagram dahan-daun diperlihatkan pada Gambar 2. Tabel 2: Statistik deskripsi data Min. 1st Qu. Median Mean 3rd Qu. Max Berdasarkan Tabel 2 dan Gambar 2 terlihat bahwa data memiliki dua maksimum lokal (bimodal). Hal ini juga dapat dilihat pada histogram yang tercantum pada Gambar 3, dimana histogram sebelah kiri menggunakan banyaknya kelas menurut metode Sturges, yaitu log(n), sedangkan histogram sebelah kanan menggunakan breaks=15. Gambar 2: Diagram Dahan dan Daun Mahasiswa
6 Julio Adisantoso G /STK 6 Mahasiswa(breaks=Sturges) Mahasiswa(breaks=15) Gambar 3: Histogram nilai Algoritme dan Pemrograman 4.1 Lebar Jendela Pendugaan fungsi kepekatan dari data dilakukan dengan menggunakan fungsi kernel Gaussian untuk lebar jendela (h) yang berbeda-beda, yaitu h=0.5, 1, 2, 4, 6, dan 8, dan hasilnya dicantumkan pada Gambar 4. Dari tampilan Gambar 4 terlihat bahwa semakin besar h maka semakin mulus pendugaan fungsi kepekatannya. Pada h = 8 terlihat bahwa pendugaan fungsi kepekatannya mendekati data sebenarnya. Estimation (h=0.5) Estimation (h=1) Estimation (h=2) Estimation (h=4) Estimation (h=6) Estimation (h=8) Gambar 4: Pendugaan kepekatan dengan lebar jendela berbeda-beda Penentuan lebar jendela untuk fungsi kernel Gaussian dapat dilakukan dengan menggunakan pemilih bandwidth bcv, nrd0, nrd, ucv, dan SJ pada program R. Untuk data yang dianalisis, diperoleh lebar jendela untuk masing-masing pemilih bandwidth seperti tercantum pada Tabel 3, dan hasilnya seperti terlihat pada Gambar 5. Setiap nilai h yang terpilih pada Tabel 3 tidak memperlihatkan perbedaan penduga kepekatan yang nyata, tetapi pada h= SJ (Sheather & Jones) terlihat penduga kepekatannya lebih menyerupai data sebenarnya.
7 Julio Adisantoso G /STK 7 Tabel 3: bandwidth selector untuk kernel Gaussian bcv nrd0 nrd ucv SJ Bandwidth:bcv Bandwidth:nrd0 Bandwidth:nrd Bandwidth:ucv Bandwidth:Sj ste Bandwidth:SJ dpi Gambar 5: Pendugaan kepekatan dengan kernel Gaussian untuk h berbeda 4.2 Fungsi Kernel Pemilihan nilai h sangat menentukan kemulusan dari hasil pendugaan fungsi kepekatannya. Hal ini tidak terjadi pada pemilihan fungsi kernel yang berbeda-beda untuk lebar jendela yang sama. Untuk melihat pengaruh fungsi kernel, dicobakan tujuh fungsi kernel, yaitu Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, dan Cosine. Hasil percobaan ini dicantumkan pada Gambar 6. Kernel Rectangular menghasilkan penduga yang paling tidak mulus dibanding kernel lainnya. Kernel:GAUSSIAN Kernel:EPANECHNIKOV Kernel:RECTANGULAR Kernel:TRIANGULAR Kernel:BIWEIGHT Kernel:COSINE Gambar 6: Pendugaan kepekatan dengan kernel berbeda
8 Julio Adisantoso G /STK 8 5 Kesimpulan Dari teori yang mendasari pendugaan fungsi kepekatan dan hasil percobaan yang dilakukan, dapat disimpulkan bahwa untuk menduga fungsi kepekatan f(x) jika informasi tentang model sebaran dari X tidak diketahui, dapat dilakukan dengan menggunakan pendekatan nonparametrik. Salah satu pendekatan non-parametrik adalah menggunakan teknik pemulus kernel. Tingkat kemulusan fungsi penduga ditentukan oleh parameter pemulus, yaitu lebar jendela dan fungsi kernel. Semakin besar lebar jendela yang digunakan, maka semakin mulus fungsi penduganya. Hal ini juga berlaku sebaliknya, yaitu semakin kecil lebar jendela yang digunakan, maka fungsi penduganya semakin tidak mulus. Parameter pemulus berupa lebar jendela ini sangat menentukan tingkat kemulusan fungsi penduga. Hal ini tidak terjadi pada pemilihan fungsi kernel. 6 Daftar Pustaka Hansen, B.E Nonparametric Conditional Estimation. University of Wisconsin. Hardle,W Smoothing Techniques With Implementation in S. Springer-Verlag. New York Scheid, S Introduction to Kernel Smoothing. Chapman & Hall. Silverman, B.W Estimation for Statistics and Data Analysis. J.W. Arrowsmith Ltd, Bristol. Suparti & Sudargo Estimasi Densitas Mulus dengan Metode Kernel. LONTAR, Vol. 20 No.1,April 2006, ISSN Venables, W.N & D.M. Smith An Introduction to R: A Programming Environment for Data Analysis and Graphics, Version ( ). The R Development Core Team.
9 Julio Adisantoso G /STK 9 7 Lampiran Perintah-perintah R yang digunakan untuk analisis data nilai <- read.csv(file= algor.csv, header=true, sep=, ) x <- nilai$nilai par(mfrow = c(1, 2)) hist(x, breaks= Sturges, freq=false, xlab= ) hist(x, breaks=15, freq=false, xlab= ) par(mfrow = c(2, 3)) lebar <- c(0.5, 1, 2, 4, 6, 8) for (i in 1:6) { hist(x, breaks=15, freq=false, xlab= ) lines(density(x, bw=lebar[i]), col= red ) } b <- c( bcv, nrd0, nrd, ucv, SJ-ste, SJ-dpi ) b.h <- c(bw.bcv(x), bw.nrd0(x), bw.nrd(x), bw.ucv(x), bw.sj(x)) judul <- c( Bandwidth:bcv, Bandwidth:nrd0, Bandwidth:nrd, Bandwidth:ucv, Bandwidth:Sj-ste, Bandwidth:SJ-dpi ) par(mfrow = c(2, 3)) for (i in 1:6) { hist(x, breaks=15, xlab=, freq=false, main=judul[i]) lines(density(x, bw=b[i], col= red ) } k <- c( gaussian, epanechnikov, rectangular, triangular, biweight, cosine ) judul <- c( Kernel:GAUSSIAN, Kernel:EPANECHNIKOV, Kernel:RECTANGULAR, Kernel:TRIANGULAR, Kernel:BIWEIGHT, Kernel:COSINE ) par(mfrow = c(2, 3)) for (i in 1:6) { hist(x, breaks=15, xlab=, freq=false, main=judul[i]) lines(density(x, kernel=k[i]), col= red ) }
STK643 PEMODELAN NON-PARAMETRIK. Pendugaan Fungsi Kepekatan
STK643 PEMODELAN NON-PARAMETRIK Pendugaan Fungsi Kepekatan MATERI 1. Pendahuluan Mengapa pemodelan nonparametrik Penerapan pemodelan nonparametrik (Eksplorasi data dan Inferensia) 2. Pendugaan fungsi kepekatan
PEMILIHAN BANDWIDTH PADA ESTIMATOR NADARAYA-WATSON DENGAN TIPE KERNEL GAUSSIAN PADA DATA TIME SERIES
PEMILIHAN BANDWIDTH PADA ESTIMATOR NADARAYA-WATSON DENGAN TIPE KERNEL GAUSSIAN PADA DATA TIME SERIES (Studi Kasus: Penutupan Indeks Harga Saham Harian Jakarta Islamic Index (JII) Periode 1 Januari 2016
Kata Kunci: Bagan kendali nonparametrik, estimasi fungsi kepekatan kernel
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 1 10 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BAGAN KENDALI NONPARAMETRIK DENGAN ESTIMASI FUNGSI KEPEKATAN KERNEL (STUDI KASUS: INDEKS PRESTASI MAHASISWA
PREDIKSI INFLASI DI PROVINSI JAWA TENGAH DENGAN MENGGUNAKAN REGRESI KERNEL
PREDIKSI INFLASI DI PROVINSI JAWA TENGAH DENGAN MENGGUNAKAN REGRESI KERNEL Firmanti Suryandari, Sri Subanti, Bowo Winarno Program Studi Matematika FMIPA UNS ABSTRAK. Inflasi merupakan proses meningkatnya
ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 1, Tahun 2014, Halaman Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 1, Tahun 2014, Halaman 81-90 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS GRAFIK PENGENDALI NONPARAMETRIK DENGAN ESTIMASI FUNGSI
TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan
5 II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel prediktor. Misalkan
STK643 PEMODELAN NON-PARAMETRIK. Pendugaan Fungsi Kepekatan Regresi Nonparametrik
STK643 PEMODELAN NON-PARAMETRIK Pendugaan Fungsi Kepekatan Regresi Nonparametrik KARAKERISTIK DASAR PENDUGA KEPEKATAN Penduga kepekatan; f x = 1 n n 1 w x x i h Nilai tengah atau Rataan (mean) E{f x }
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi pada dasarnya adalah studi mengenai ketergantungan variabel dependen (respon) dengan satu atau lebih variabel independen (variabel penjelas), dengan
PEMULUSAN FUNGSI KERNEL TERHADAP SEBARAN LAJU PERTUMBUHAN PENDUDUK DI PULAU JAWA SHELA SHINTIA ROSALINA
i PEMULUSAN FUNGSI KERNEL TERHADAP SEBARAN LAJU PERTUMBUHAN PENDUDUK DI PULAU JAWA SHELA SHINTIA ROSALINA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR
TINJAUAN PUSTAKA. Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang
II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel
HASIL DAN PEMBAHASAN Eksplorasi Data
HASIL DAN PEMBAHASAN Penelitian ini menggunakan data nilai mata uang harian guna mengukur tingkat risiko harian atas suatu posisi dalam perdagangan mata uang. Nilai mata uang selalu berubah dalam hitungan
BAB II TINJAUAN PUSTAKA. pembahasan pada bab selanjutnya. Pembahasan teori meliputi pengertian data
BAB II TINJAUAN PUSTAKA Bab ini membahas teori-teori dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya. Pembahasan teori meliputi pengertian data secara umum dan data sirkular, ukuran
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA Febriani Astuti, Kartiko, Sri Sulistijowati Handajani Jurusan Matematika
BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK
BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK Dalam melakukan estimasi pada suatu kasus regresi nonparametrik, ada banyak metode yang dapat digunakan. Yasin (2009) dalam makalahnya melakukan estimasi regresi
Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi
Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.
DISTRIBUSI PROBABILITAS KONTINYU. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016
DISTRIBUSI PROBABILITAS KONTINYU Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PELUANG KONTINYU Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat
Analisis Pengendalian Kualitas Produk Botol Kode 493 Menggunakan Peta Kendali Kernel di PT. Iglas (Persero)
JURNAL SAINS DAN SENI ITS Vol. 5, No.1, (2016) 2337-3520 (2301-928X Print) D-77 Analisis Pengendalian Kualitas Produk Botol Kode 493 Menggunakan Peta Kendali Kernel di PT. Iglas (Persero) Widya Azizatin
BAB 1 PENDAHULUAN. hubungan antara variabel respon dengan satu atau beberapa variabel prediktor.
BAB 1 PENDAHULUAN A. Latar Belakang Masalah Analisis regresi merupakan metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel prediktor. Misalkan X adalah
STK 211 Metode statistika. Agus Mohamad Soleh
STK 211 Metode statistika Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan dan diringkas? --> PEUBAH Univariate vs Bivariate vs Multivariate
Statistika Deskriptif
Statistika Deskriptif Materi 2 - STK511 AnalisisStatistika September 26, 2017 Sep, 2017 1 Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Apa yang disajikan
STK573 METODE GRAFIK UNTUK ANALISIS DAN PENYAJIAN DATA. Pendugaan Fungsi Kepekatan Nonparametrik
STK573 METODE GRAFIK UNTUK ANALISIS DAN PENYAJIAN DATA Pendugaan Fungsi Kepekatan Nonparametrik PENDAHULUAN Statistics: collection, summarization, presentation, and interpretation of data Data are the
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)
ANALISIS GRAFIK PENGENDALI NONPARAMETRIK DENGAN ESTIMASI FUNGSI DENSITAS KERNEL PADA KASUS WAKTU PELOROTAN BATIK TULIS SKRIPSI
ANALISIS GRAFIK PENGENDALI NONPARAMETRIK DENGAN ESTIMASI FUNGSI DENSITAS KERNEL PADA KASUS WAKTU PELOROTAN BATIK TULIS SKRIPSI Oleh: Hana Hayati J2E 009 38 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA
PEMODELAN HARGA CABAI DI KOTA SEMARANG TERHADAP HARGA INFLASI MENGGUNAKAN REGRESI SEMIPARAMETRIK POLINOMIAL LOKAL
PEMODELAN HARGA CABAI DI KOTA SEMARANG TERHADAP HARGA INFLASI MENGGUNAKAN REGRESI SEMIPARAMETRIK POLINOMIAL LOKAL Alan Prahutama, Suparti, Departemen Statistika, Fakultas Sains dan Matematika,Universitas
STK511 Analisis Statistika. Bagus Sartono
STK511 Analisis Statistika Bagus Sartono Pokok Bahasan Pengenalan analisis dan deskripsi data Sebaran peluang peubah acak. Sebaran penarikan contoh Pendugaan parameter Pengujian hipotesis (t-test, one-way
REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R. Abstract. Keywords: Spline Truncated, GCV, Software R.
REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R Tiani Wahyu Utami 1), Alan Prahutama 2) 1 Program studi Statistika, FMIPA, Universitas Mumammadiyah Semarang email: [email protected] 2 Departemen
TENTANG UTS. Penentuan Cadangan, hal. 1
TENTANG UTS Soal 1: Jawaban umumnya tidak fokus atau straight ke pertanyaan/ masalah yang diajukan. Key words dalam pertanyaan di atas tekanan saturasi, sedangkan dalam banyak jawaban di bawah tekanan
Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.
Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung
STK 211 Metode statistika. Materi 2 Statistika Deskriptif
STK 211 Metode statistika Materi 2 Statistika Deskriptif 1 Statistika Deskriptif Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami Penyajian data dapat dilakukan
PENDUGAAN NILAI RISIKO DENGAN SEBARAN TRANSFORMASI-KERNEL DAN SEBARAN NILAI EKSTREM BUDI HARYANTO
PENDUGAAN NILAI RISIKO DENGAN SEBARAN TRANSFORMASI-KERNEL DAN SEBARAN NILAI EKSTREM BUDI HARYANTO PROGRAM STUDI STATISTIKA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR 2012 PERNYATAAN MENGENAI TESIS
Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711
PENENTUAN DISTRIBUSI SKEWNESS DAN KURTOSIS DENGAN METODE RESAMPLING BERDASAR DENSITAS KERNEL (STUDI KASUS PADA ANALISIS INFLASI BULANAN KOMODITAS BAWANG MERAH, DAGING AYAM RAS DAN MINYAK GORENG DI KOTA
Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711
PENENTUAN DISTRIBUSI SKEWNESS DAN KURTOSIS DENGAN METODE RESAMPLING BERDASAR DENSITAS KERNEL (STUDI KASUS PADA ANALISIS INFLASI BULANAN KOMODITAS BAWANG MERAH, DAGING AYAM RAS DAN MINYAK GORENG DI KOTA
Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya
PENYAJIAN DATA. Etih Sudarnika Laboratorium Epidemiologi Fakultas Kedokteran Hewan IPB
PENYAJIAN DATA Etih Sudarnika Laboratorium Epidemiologi Fakultas Kedokteran Hewan IPB Proses Pengumpulan Data???? Pencatatan Data Numerik Variable Record ID Nama Spesies Hasil Uji HI 1 Ahmad Ayam broiler
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 121 126. PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK Yuyun
PENENTUAN MODEL REGRESI SPLINE TERBAIK. Agustini Tripena 1
PENENTUAN MODEL REGRESI SPLINE TERBAIK Agustini Tripena 1 1) Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto [email protected] Abstrak Pada paper ini
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Model regresi yang baik memerlukan data yang baik pula. Suatu data dikatakan baik apabila data tersebut berada di sekitar garis regresi. Kenyataannya, terkadang terdapat
BAB V HASIL DAN PEMBAHASAN
BAB V HASIL DAN PEMBAHASAN.1. Karakteristik Data Pengamatan karakteristik tegakan hutan seumur puspa dilakukan pada dua plot di Hutan Pendidikan Gunung Walat dengan luas masing-masing plot berukuran 1
Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R
Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada
6. PENDETEKSIAN SERANGAN GULMA. Pendahuluan
6. PENDETEKSIAN SERANGAN GULMA Pendahuluan Praktek pengendalian gulma yang biasa dilakukan pada pertanian tanaman pangan adalah pengendalian praolah dan pascatumbuh. Aplikasi kegiatan Praolah dilakukan
(R.1) KAJIAN MODEL GEOGRAPHICALLY WEIGHTED POISSON REGRESSION UNTUK MASALAH DATA SPASIAL DISKRIT
REGRESI 2 (R.1) KAJIAN MODEL GEOGRAPHICALLY WEIGHTED POISSON REGRESSION UNTUK MASALAH DATA SPASIAL DISKRIT Dani Robini, Budi Nurani R., Nurul Gusriani Jurusan Matematika FMIPA Universitas Padjadjaran Jl.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Matriks Matriks adalah himpunan bilangan real yang disusun secara empat persegi panjang, mempunyai baris dan kolom dengan bentuk umum : Tiap-tiap bilangan yang berada didalam
Analisis Pengendalian Kualitas Produk Labelstock Menggunakan Peta Kendali Kernel di PT. X (Studi Kasus : PVC Soft)
Analisis Pengendalian Kualitas Produk Labelstock Menggunakan Peta Kendali Kernel di PT. X (Studi Kasus : PVC Soft) Oleh : Ika Estuningtyas (1311 105 018) Dosen Pembimbing : Wibawati, S.Si, M.Si Latar Belakang
BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel respon ( ), dimana
ISSN: JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 1-10 Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 1-10 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS REGRESI NONPARAMETRIK KERNEL MENGGUNAKAN METODE JACKKNIFE
ESTIMATOR SPLINE KUBIK
Bimafika, 011, 3, 30-34 ESTIMATOR SPLINE KUBIK Johannis Takaria * Staff Pengajar Fakultas Keguruan Dan Ilmu Pendidikan Universitas Pattimura Ambon Diterima 10-1-010; Terbit 31-06-011 ABSTRACT Consider
PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER. Agustini Tripena Br.Sb.
JMP : Volume 3 Nomor 1, Juni 2011 PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER Agustini Tripena Br.Sb. Fakultas Sains dan Teknik, Universitas Jenderal Soedirman Purwokerto, Indonesia ABSTRAK.
DISTRIBUSI SATU PEUBAH ACAK
0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak
PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng.
PROBABILITAS &STATISTIK ke-1 Oleh: Kholistianingsih, S.T., M.Eng. KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN :10% SEMUA KOMPONEN HARUS ADA KEHADIRAN 0 NILAI MAKS D PEUBAH DAN GRAFIK
BAB V DISTRIBUSI NORMAL. Deskripsi: Pada bab ini akan dibahas mengenai konsep distribusi normal dalam pengukuran.
BAB V DISTRIBUSI NORMAL Deskripsi: Pada bab ini akan dibahas mengenai konsep distribusi normal dalam pengukuran. Manfaat: Memberikan metode distribusi normal yang benar saat melakukan proses pengukuran.
EFISIENSI RELATIF ESTIMATOR FUNGSI KERNEL GAUSSIAN TERHADAP ESTIMATOR POLINOMIAL DALAM PERAMALAN USD TERHADAP JPY
UJM 2 (2) (2013) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm EFISIENSI RELATIF ESTIMATOR FUNGSI KERNEL GAUSSIAN TERHADAP ESTIMATOR POLINOMIAL DALAM PERAMALAN USD TERHADAP
DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS
DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat
I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan
I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika
GENERALIZED CROSS VALIDATION DALAM REGRESI SMOOTHING SPLINE
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal 191 196. GENERALIZED CROSS VALIDATION DALAM REGRESI SMOOTHING SPLINE Andi Sayuti, Dadan Kusnandar, Muhlasah Novitasari Mara
STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si
STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Statistika Deskripsi Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami. Teknik Penyajian Data Tabel Gambar
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bagian pertama bab ini diberikan tinjauan pustaka yang berisi penelitian sebelumnya yang mendasari penelitian ini Pada bagian kedua bab ini diberikan teori penunjang yang berisi
PENAKSIRAN FUNGSI DENSITAS UNTUK SUATU DATA DENGAN PENAKSIR KERNEL
PENAKSIRAN FUNGSI DENSITAS UNTUK SUATU DATA DENGAN PENAKSIR KERNEL Netty Sunandi R. Alam Malau ABSTRACT One of the estimating of density function which has been recognized is histogram. Histogram has some
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
PENDUGAAN AREA KECIL TERHADAP PENGELUARAN PER KAPITA DI KABUPATEN SRAGEN DENGAN PENDEKATAN KERNEL
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 1, Tahun 2016, Halaman 71-80 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENDUGAAN AREA KECIL TERHADAP PENGELUARAN PER KAPITA DI KABUPATEN
Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah
Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi
ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman 223-231 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMILIHAN MODEL REGRESI POLINOMIAL LOKAL DAN SPLINE UNTUK ANALISIS
TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan
II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.
ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA
E-Jurnal Matematika Vol. 5 (2), Mei 216, pp. 52-58 ISSN: 233-1751 ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA Komang Candra Ivan 1, I Wayan Sumarjaya 2, Made Susilawati 3 1 Jurusan Matematika,
ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER
ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN
Aplikasi Spline Kuadrat Terkecil dalam Pemodelan Pertumbuhan Anak Berdasarkan Indeks Antropometri
Vol. 6, No.1, 0-8, Juli 009 Aplikasi Spline Kuadrat Terkecil dalam Pemodelan Pertumbuhan Anak Berdasarkan Indeks Antropometri Wahidah Sanusi Abstrak Penelitian ini dilakukan untuk mengestimasi model pertumbuhan
Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.
Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg
Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.
Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg
Universitas Sumatera Utara
Kakanda Misiani, S.Si selaku Staf Administrasi Program Studi Magister Matematika FMIPA USU yang telah banyak memberikan pelayanan yang baik kepada penulis selama mengikuti perkuliahan. Pihak Pemerintah
PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE. Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3.
PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika
BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan salah satu analisis statistik yang sering digunakan untuk menyelidiki pola hubungan fungsional antara variabel prediktor dan variabel respon
ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER
1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal
DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA
DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA a. Tabel distribusi frekuensi Kelas Tabulasi Frekuensi 4 IIII 7 IIII IIII 9 8 1 IIII IIII II 1 11 13 IIII IIII IIII IIII 19 14 16 IIII IIII IIII IIII IIII 4 17
Referensi : 1. Komputasi Statistik Dengan Software R, I Gede Nyoman Mindra, didi.staff.gunadarma.ac.id/downloads/files/13709/babv.
STATISTIKA DESKRIPTIF 2 Referensi : 1. Komputasi Statistik Dengan Software R, I Gede Nyoman Mindra, 2009 2. didi.staff.gunadarma.ac.id/downloads/files/13709/babv.pdf Ukuran Statistik 2.1 RATA RATA (MEAN)
Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R
Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. Regresi Non-Parametrik Statistik nonparametrik disebut juga statistik bebas sebaran. Statistik nonparametrik tidak mensyaratkan bentuk sebaran parameter populasi. Statistik nonparametrik
STAND N AR R K OMP M E P T E EN E S N I:
Silabus Matematika Kelas XI IPS Smester 1 STANDAR KOMPETENSI: Menggunakan aturan statistika, kaidah pencacahan, dan sifat- sifat peluang dalam pemecahan masalah. u Kompetensi Dasar 1.1 Membaca data dalam
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi
MODEL REGRESI NONPARAMETRIK BERDASARKAN ESTIMATOR POLINOMIAL LOKAL KERNEL PADA KASUS PERTUMBUHAN BALITA
MODEL REGRESI NONPARAMETRIK BERDASARKAN ESTIMATOR POLINOMIAL LOKAL KERNEL PADA KASUS PERTUMBUHAN BALITA 1 Mifta Luthfin Alfiani, 2 Indah Manfaati Nur, 3 Tiani Wahyu Utami 1,2,3 Program Studi Statistika,
King s Learning Be Smart Without Limits NAMA : KELAS :
NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan
Untuk beberapa bilangan bulat k, pecahan 1-(1/k 2 ) dapat kita hitung berikut ini.
Untuk beberapa bilangan bulat k, pecahan -(/k 2 ) dapat kita hitung berikut ini. K -(/k 2 ) 2 3 0 ¾ 8/9 Dari perhitungan diatas, apabila k= teorema menyatakan bahwa -(/ 2 )=0 dari pengukuranpengukuran
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan
INFERENSI PARAMETER SIMPANGAN BAKU POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF
INFERENSI PARAMETER SIMPANGAN BAKU S - POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF Adi Setiawan Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl Diponegoro
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole
GRAFIK PENGENDALI NON PARAMETRIK EMPIRIK. Oleh : Rukun Santoso Program Studi Statistika FMIPA UNDIP
GRAFIK PENGENDALI NON PARAMETRIK EMPIRIK Oleh : Rukun Santoso Program Studi Statistika FMIPA UNDIP Abstract Shewhart control chart is constructed base on the normality assumption of process. If the normality
Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi
Distribusi Frekuensi dan Statistik Deskriptif Lainnya
BAB 2 Distribusi Frekuensi dan Statistik Deskriptif Lainnya Misalnya seorang penjaga gudang mencatat berapa sak gandum keluar dari gudang selama 15 hari kerja, maka diperoleh distribusi data seperti berikut.
Haryoso Wicaksono, S.Si., M.M., M.Kom. 26
Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random
BAB IV METODE PENELITIAN
BAB IV METODE PENELITIAN 4.1. Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Maret hingga April 2011 dengan lokasi penelitian berada di Hutan Pendidikan Gunung Walat, Kabupaten Sukabumi.
Analisis Regresi Spline Kuadratik
Analisis Regresi Spline Kuadratik S 2 Oleh: Agustini Tripena Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto [email protected] Abstrak Regresi spline
Nilai Harapan / Nilai Ekspektasi
EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu
SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 3, Tahun 2014, Halaman 333-342 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY
BAB I PENDAHULUAN. 1.1 Latar Belakang
1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Regresi merupakan salah satu teknik analisis statistika yang paling banyak digunakan. Banyak sekali teknik analisis statistika yang diturunkan atau didasarkan pada
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan salah satu teknik analisis statistika yang paling banyak digunakan. Pada kejadian sehari hari terdapat hubungan sebab akibat yang muncul,
Bab 2 LANDASAN TEORI
Bab 2 LANDASAN TEORI 2.1. Penaksiran Parameter Jika adalah nilai parameter populasi yang belum diketahui harganya, maka dapat ditaksir oleh nilai statistik, dan disebut sebagai penaksir atau fungsi keputusan.
DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1
DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori
