EULERIAN GRAF & HAMILTONIAN GRAF
|
|
|
- Yuliani Kartawijaya
- 9 tahun lalu
- Tontonan:
Transkripsi
1 A. Eulerian Graf Graf yang memuat sirkut euler. EULERIAN GRAF & HAMILTONIAN GRAF Lintasan euler Lintasan pada graf G dikatakan lintasan euler, ketika melalui setiap sisi di graf tepat satu kali. Karena melalui setiap sisi tepat satu kali atau melalui sisi yang berlainan, bisa dikatakan jejak euler. Sehingga lintasan euler sudah tentu jejak euler. Sirkuit euler Lintasan euler adalah simpul awal = simpul akhir/lintasan euler (tertutup) yang merupakan sirkuit berarti sirkuit euler. Sehingga suatu graf yang memiliki sirkuit euler atau berarti graf tersebut merupakan graf euler. Teorema 1 Graf terhubung G adalah euler jika dan hanya jika derajat dari masing-masing vertex adalah genap. 1 Teorema 2 a. Jika graf G memiliki lebih dari dua vertex berderajat ganjil, maka G adalah graf non euler. b. Jika G memiliki dua vertex berderajat ganjil, maka G memiliki lintasan euler dan ini berlaku juga ketika memiliki satu vertex berderajat ganjil. 2 Teorema 3 Suatu graf terhubung adalah graf semi euler jika dan hanya jika memiliki tepat dua vertex yang berderajat ganjil. 3 Teorema 4 Graf berarah G memiliki sirkuit euler jika dan hanya jika G terhubung dan setiap simpul memiliki derajat masuk dan derajat keluar sama. G memiliki lintasan euler jika dan hanya jika G terhubung dan setiap simpul memiliki derajat masuk dan derajat keluar sama kecuali dua simpul, yang pertama memiliki derajat keluar satu lebih besar dari derajat masuk, dan yang kedua memiliki derajat masuk lebih besar dari derajat keluar. 4 (i) Graf berarah euler (ii) Graf berarah semi euler (iii) Graf berarah bukan euler & semi euler 1 C. Vasudev. Graph Theory With Applications. New Delhi: New Age International. hlm 69 2 Ibid. hlm 70 3 Ibid. 4 Politeknik Telkom. Graf. (Dalam Bentuk Slide Power Point). Bandung: Politeknik Telkom. Slide ke 79
2 Jadi, dikatakan graf G memiliki sitkuit euler, ada beberapa poin yang harus diperhatikan : 1. Jika ada vertex yang berderajat nol, maka graf adalah graf tak terhubung dan tidak memiliki lintasan euler dan sirkuit euler. 2. Jika semua vertex memiliki derajat genap, maka memiliki lintasan euler dan sirkuit euler. 3. Jika terdapat dua vertex yang memiliki derajat ganjil, maka memiliki lintasan euler dan tidak memiliki sirkuit euler. 4. Jika terdapat lebih dari dua vertex yang memiliki derajat ganjil, maka tidak memiliki lintasan euler dan sirkuit euler. Graf yang hanya memiliki lintasan euler (terbuka) merupakan graf semi euler. Graf yang tidak memiliki lintasan euler dan sirkuit euler merupakan graf non euler. Contoh 1 : lintasan euler. ABCDEFCGA, ABCFEDCGA, dan lainnya. Lintasan euler merupakan sirkuit berarti graf euler. Contoh 2 : lintasan euler. ABEDCB, BCDEBA, dan lainnya. Lintasan euler tidak termasuk sirkuit atau graf tidak memiliki sirkuit euler. Sehingga graf merupakan graf semi euler. Contoh 3 : lintasan euler. SRQSTQPT, SRQSTPQT, dan lainnya. Lintasan euler tidak termasuk sirkuit atau graf tidak memiliki sirkuit euler. Sehingga graf merupakan graf semi euler.
3 Contoh 4 : deg(k)=deg(l)=deg(m)=deg(p)=deg(o)=deg(n)=3 berdasarkan teorema 2 dapat dikatakan graf di samping adalah graf non euler, karena memiliki vertex berderajat ganjil lebih dari dua. Fleury s algoritm Menggunakan fleury algoritm untuk mengkontruksi sirkuit euler. Langkah 1 : pilihlah sebuah simpul sebagai simpul awal, misalnya simpul a. Langkah 2 : laluilah sebuah sisi yang dapat ditelusuri. Pilihlah sebuah jembatan jika tidak ada sisi lain sebagai alternatif yang dapat dilewati. Langkah 3 : setelah melewati setiap sisi tepat satu kali, hapuslah sisi tersebut, hapus pula simpul yang berderajat nol yang muncul akibat penghapusan sisi tersebut. Kemudian lewatilah sisi lain yang masih tersedia. Langkah 4 : stop jika tidak ada sisi lagi. Kalau masih ada sisi yang bisa dilewati, kembalilah ke langkah 2. 5 Contoh graf untuk fleury s algoritm. 5 Kartika Yulianti. Hand Out Mata Kuliah Teori Graf (MT 424) Jilid Satu. Bandung: UPI. hlm 11
4 B. Hamiltonian Graf Graf hamilton diambil dari nama sir william rowan hamilton. Suatu graf terhubung adalah graf hamilton memuat sirkuit yang melalui setiap vertex tepat satu kali disebut sirkuit hamilton. Lintasan hamilton adalah lintasan yang melalui tiap vertex di dalam graf tepat satu kali. Graf yang hanya memiliki lintasan hamilton disebut graf semi hamilton. Contoh 1 : (i) Graf yang memiliki lintasan hamilton (misalnya ABCD) (ii) Graf yang memiliki sirkuit hamilton (misalnya DCBA) (iii) Graf yang tidak memiliki lintasan maupun sirkuit hamilton Teorema 1 Syarat cukup (jadi bukan syarat perlu) supaya graf sederhana G dengan n 3 buah vertex adalah graf hamilton ialah bila tiap vertex paling sedikit (yaitu, d(v) untuk setiap simpul v di G). (i) n = 3, dengan tiap vertex memiliki d(v) = 1,5 2 (ii) n = 4, dengan tiap vertex memiliki d(v) = 2 Teorema 2 Setiap graf lengkap adalah graf hamilton. Ingat : graf lengkap dengan n buah simpul dilabangkan dengan Kn. Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah ( ). dan seterusnya
5 Teorema 3 Di dalam graf lengkap G dengan n buah vertex (n 3), terdapat ( ) buah sirkuit hamilton. (i) Graf lengkap n = 3, memiliki sirkuit hamilton 1 yaitu 1231 (ii) Graf lengkap n = 4, memiliki sirkuit hamilton 3 yaitu, ABCDA, BDCAB, dan CADBC Teorema 4 Di dalam graf lengkap G dengan n buah simpul (n 3 dan n ganjil), terdapat ( ) buah sirkuit hamilton yang saling lepas (tidak ada sisi yang beririsan). Jika n genap dan n 4, maka di dalam G terdapat ( ) buah sirkuit hamilton yang saling lepas. (persoalan pengaturan tempat duduk). Sembilan anggota sebuah klub yang bertemu tiap hari untuk makan siang pada sebuah meja bundar. Mereka memutuskan duduk sedemikian sehingga setiap anggota mempunyai tetangga duduk berbeda setiap makan siang. Berapa hari pengaturan tersebut dapat dilaksanakan? Jumlah pengaturan tempat duduk yang berbeda adalah ( ) Graf yang merepresentasikan :
6 Teorema 5 Misalkan G adalah graf terhubung sederhana dengan n titik, dengan n 3 dan deg v + deg w n. Untuk tiap-tiap pasangan titik yang tidak berdekatan v dan w, maka G adalah graf hamilton. Untuk graf yang ditunjukkan pada gambar berikut deg v + deg w 5 untuk masingmasing vertex yang tidak berdekatan v dan w. Jadi menurut teorema 5 graf ini adalah graf hamilton. Teorema 6 Misalkan G adalah graf sederhana dengan n vertex. Jika jumlah dari derajat masingmasing vertex di G paling sedikit n 1, maka ada lintasan hamilton di G. deg(a)+deg(b)+deg(c)+deg(d)+deg(e) = = 8 jumlah derajat dari masing-masing vertex lebih dari n 1 = 5 1 = 4 C. Referensi Bondy, J. A, & Murty, U. S. R Graduate Texts In Mathematics Graph Theory. Springer Graph Theory With Applications. New York: Elsevier Science Publishing Chartrand, G, & Lesniak, L Graphs & Digraphs Third Edition. Florida: Chapman & Hall (CRC) (diakses 20 November 2012 pukul 08:56 WIB) (diakses 20 November 2012 pukul 08:56 WIB) (diakses 20 November 2012 pukul 19:45 WIB)
7 Politeknik Telkom. Graf. (Dalam bentuk slide power point). Bandung: Politeknik Telkom Yulianti, K Hand Out mata Kuliah Teori Graf (MT 424) Jilid Satu. Bandung: UPI Vasudev, C Graph Theory With Applications. New Delhi: New Age International Publishers
GRAF EULER DAN GRAF HAMILTON
GRAF EULER DAN GRAF HAMILTON ANDI DANIAH PAHRANY (H11113303) A. Eulerian Graf Graf yang memuat sirkut euler Lintasan euler Lintasan pada graf G dikatakan lintasan euler, ketika melalui setiap sisi di graf
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
MATEMATIKA DISKRIT II ( 2 SKS)
MATEMATIKA DISKRIT II ( 2 SKS) Rabu, 18.50 20.20 Ruang Hard Disk PERTEMUAN XI, XII RELASI Dosen Lie Jasa 1 Matematika Diskrit Graf (lanjutan) 2 Lintasan dan Sirkuit Euler Lintasan Euler ialah lintasan
Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf
JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf Ridwan Ardiyansah dan Darmaji Jurusan Matematika, Fakultas Matematika
BILANGAN KROMATIK GRAF HASIL AMALGAMASI DUA BUAH GRAF TERHUBUNG
BILANGAN KROMATIK GRAF HASIL AMALGAMASI DUA BUAH GRAF TERHUBUNG CHROMATIC NUMBER OF AMALGAMATION OF TWO CONNECTED GRAPHS Ridwan Ardiyansah (1209 100 057) Pembimbing: Dr. Darmaji, S.Si, MT. Jurusan Matematika
SIFAT SIFAT GRAF YANG MEMUAT SEMUA SIKLUS Nur Rohmah Oktaviani Putri * CHARACTERISTIC OF THE GRAPH THAT CONTAINS ALL CYCLES Nur Rohmah Oktaviani Putri
SIFAT SIFAT GRAF YANG MEMUAT SEMUA SIKLUS Nur Rohmah Oktaviani Putri * Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin CHARACTERISTIC OF THE GRAPH THAT CONTAINS
Pewarnaan Total Pada Graf Outerplanar
JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 Pewarnaan Total Pada Graf Outerplanar Prihasto.B Sumarno Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember
Strategi Permainan Menggambar Tanpa Mengangkat Pena
Strategi Permainan Menggambar Tanpa Mengangkat Pena Benardi Atmadja - 13510078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
PELABELAN PRODUCT CORDIAL PADA TENSOR PRODUCT PATH DAN SIKEL
PELABELAN PRODUCT CORDIAL PADA TENSOR PRODUCT PATH DAN SIKEL Setia Endrayana 1, Bayu Surarso 2, Siti Khabibah 3 1,2,3 Program Studi Matematika FSM Universitas Diponegoro Jl Prof H Soedarto, SH Tembalang
Gambar 6. Graf lengkap K n
. Jenis-jenis Graf Tertentu Ada beberapa graf khusus yang sering dijumpai. Beberapa diantaranya adalah sebagai berikut. a. Graf Lengkap (Graf Komplit) Graf lengkap ialah graf sederhana yang setiap titiknya
MENJAWAB TEKA-TEKI LANGKAH KUDA PADA BEBERAPA UKURAN PAPAN CATUR DENGAN TEORI GRAPH. Oleh Abdussakir
MENJAWAB TEKA-TEKI LANGKAH KUDA PADA BEBERAPA UKURAN PAPAN CATUR DENGAN TEORI GRAPH Oleh Abdussakir Abstrak Teka-teki langkah kuda yang dimaksud dalam tulisan ini adalah menentukan langkah kuda agar dapat
I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu
I. LANDASAN TEORI Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu matematika yang mempresentasikan suatu objek berupa vertex (titik) dan edge (garis), edge merupakan
Sirkuit Euler & Sirkuit Hamilton SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013
Sirkuit Euler & Sirkuit Hamilton SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013 Sirkuit Euler Lintasan Euler ialah lintasan yang melalui masing-masing sisi di dalam graf tepat satu kali. Sirkuit Euler
Graf. Matematika Diskrit. Materi ke-5
Graf Materi ke-5 Graf Isomorfik Diketahui matriks ketetanggaan (adjacency matrices) dari sebuah graf tidak berarah. Gambarkan dua buah graf yang yang bersesuaian dengan matriks tersebut. 2 0 0 0 0 0 0
Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Teori graf merupakan pokok bahasan yang memiliki banyak terapan sampai saat ini. Graf di gunakan untuk merepresentasikan objek objek diskrit dan hubungan antara
LATIHAN ALGORITMA-INTEGER
LATIHAN ALGORITMA-INTEGER Nyatakan PBB(295,70) = 5 sebagai kombinasi lanjar 295 dan 70 Tentukan inversi dari 27(mod 7) Tentukan solusi kekongruenan lanjar dari 27.x kongruen 1(mod 7) dengan cara 1 ( cara
9. Algoritma Path. Oleh : Ade Nurhopipah
9. Algoritma Path Oleh : Ade Nurhopipah Pokok Bahasan : 1. Algoritma Fleury 2. Algoritma Shortest Path 3. Studi Kasus Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph and Applications. Springer: UK.
Course Note Graph Hamilton
Course Note Graph Hamilton Pada catatan sebelumnya telah dijelaskan tentang definisi graph Hamilton. Suatu graph terhubung adalah graph Hamilton jika graph tersebut memuat sikel yang mencakup semua titik
TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi
II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (
RAINBOW CONNECTION PADA GRAF k-connected UNTUK k = 1 ATAU 2
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 78 84 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND RAINBOW CONNECTION PADA GRAF k-connected UNTUK k = 1 ATAU 2 SALLY MARGELINA YULANDA Program Studi Matematika,
KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf
II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini
Kode MK/ Matematika Diskrit
Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep
PELABELAN TOTAL TITIK AJAIB PADA GRAF SIKLUS DENGAN BANYAK TITIK GENAP
Jurnal Matematika UNAND Vol. No. 3 Hal. 66 7 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL TITIK AJAIB PADA GRAF SIKLUS DENGAN BANYAK TITIK GENAP RIRIN INDARWATI Program Studi Matematika,
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA. Oleh: Kartika Yulianti, S.Pd., M.Si.
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
PELABELAN GRACEFUL PADA GRAF HALIN G(2, n), UNTUK n 3
PELABELAN GRACEFUL PADA GRAF HALIN G(, n), UNTUK n 3 SKRIPSI SARJANA MATEMATIKA OLEH : YUNIZAR BP. 914336 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS 13 DAFTAR
BILANGAN KROMATIK LOKASI DARI GRAF ULAT
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika
Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda
Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke
Aplikasi Teori Graf dalam Permainan Instant Insanity
Aplikasi Teori Graf dalam Permainan Instant Insanity Aurelia 13512099 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin
ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin [email protected] Abstract Graf yang memuat semua siklus dari yang terkecil sampai
II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan
5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)
I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus
1 I. PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami perkembangan
Konsep. Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi
GRPH 1 Konsep Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi 2 Contoh Graph agan alir pengambilan mata kuliah 3 Contoh Graph Peta 4 5 Dasar-dasar Graph Suatu graph
v 3 e 2 e 4 e 6 e 3 v 4
5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan
BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 23 31 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF YULI ERITA Program Studi Matematika, Pascasarjana Fakultas
TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi
II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan
BILANGAN AJAIB MAKSIMUM DAN MINIMUM PADA GRAF SIKLUS GANJIL
Jurnal Matematika UNAND Vol. No. 3 Hal. 150 156 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND BILANGAN AJAIB MAKSIMUM DAN MINIMUM PADA GRAF SIKLUS GANJIL ANNISAH ISKANDAR Program Studi Matematika, Fakultas
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik Filman Ferdian - 13507091 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha
Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral
Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral Abdussakir Universitas Islam Negeri Maulana Malik Ibrahim Malang Jalan Gajayano 50 Malang, telp (0341) 551354, fax (0341) 572533
Aplikasi Teori Graf Pada Knight s Tour
Aplikasi Teori Graf Pada Knight s Tour Fahmi Mumtaz 1) 1) Jurusan Teknik Informatika ITB, Bandung, NIM : 13506045 email: [email protected] Abstract Makalah ini membahas tentang aplikasi dari
SUPER EDGE-MAGIC LABELING PADA GRAPH ULAT DENGAN HIMPUNAN DERAJAT {1, 4} DAN n TITIK BERDERAJAT 4
SUPER EDGE-MAGIC LABELING PADA GRAPH ULAT DENGAN HIMPUNAN DERAJAT {1, 4} DAN n TITIK BERDERAJAT 4 Abdussakir Jurusan Matematika, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim
Jln. Perintis Kemerdekaan, Makassar, Indonesia, Kode Pos THE TOTAL EDGE IRREGULARITY STRENGTH OF WEB GRAPH
1 PENENTUAN NILAI TOTAL KETIDAKTERATURAN SISI GRAF WEB Nasrah Munir 1*), Nurdin 2), Jusmawati 3) 1 Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam, Universitas Hasanuddin Jln. Perintis Kemerdekaan,
BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 37 41 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1 MERY ANGGRAINI, NARWEN Program Studi Matematika,
PELABELAN TOTAL (a, d)-titik ANTIAJAIB SUPER PADA GRAF PETERSEN YANG DIPERUMUM P (n, 3) DENGAN n GANJIL, n 7
Jurnal Matematika UNAND Vol. No. Hal. 78 84 ISSN : 0 90 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL (a, d)-titik ANTIAJAIB SUPER PADA GRAF PETERSEN YANG DIPERUMUM P (n, ) DENGAN n GANJIL, n 7 IRANISA
PENENTUAN RAINBOW CONNECTION NUMBER PADA HASIL OPERASI CARTESIAN PRODUCT TERHADAP GRAF LINGKARAN DAN GRAF BIPARTIT LENGKAP DENGAN GRAF LINTASAN
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 148 152 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RAINBOW CONNECTION NUMBER PADA HASIL OPERASI CARTESIAN PRODUCT TERHADAP GRAF LINGKARAN DAN
Bab 2 LANDASAN TEORI
Bab LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan penelitian sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah
PENGETAHUAN DASAR TEORI GRAF
PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler
Graph. Politeknik Elektronika Negeri Surabaya
Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar
3. Graph Euler dan Graph Hamilton
3. Graph Euler dan Graph Hamilton Oleh : Ade Nurhopipah Pokok Bahasan : 1. Masalah Exploring dan Travelling 2. Graph Euler 3. Graph Hamilton Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph and Applications.
EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH
LAPORAN PENELITIAN MANDIRI EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH Oleh Abdussakir, M.Pd UNIVERSITAS ISLAM NEGERI MALANG FAKULTAS SAINS DAN TEKNOLOGI JURUSAN MATEMATIKA MEI 005 EDGE-MAGIC TOTAL
Edge-Magic Total Labeling pada Graph mp 2 (m bilangan asli ganjil) Oleh Abdussakir
Jurnal Saintika (ISSN 1693-640X) Edisis Khusus Dies Natalis UIN Malang, Juni 005. Halaman -7 Edge-Magic Total Labeling pada Graph mp (m bilangan asli ganjil) Oleh Abdussakir Abstrak Pelabelan total sisi
METODE PELABELAN TOTAL SUPER SIMPUL AJAIB PADA GRAPH- GRAPH SIKEL BERORDO SAMA
METODE PELABELAN TOTAL SUPER SIMPUL AJAIB PADA GRAPH- GRAPH SIKEL BERORDO SAMA Ika Tri Munawaroh *), Dr Julan Hernadi, MSi *) Prodi Pendidikan Matematika, FKIP, Universitas Muhammadiyah Ponorogo Abstrak
MATHunesa (Volume 3 No 3) 2014
MATHunesa (Volume 3 No 3) 014 DEKOMPOSISI BINTANG LINIER GRAPH LOBSTER Mulaikah Matematika,Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, E-mail: [email protected] Prof.I
FAKTORISASI GRAF BARU YANG DIHASILKAN DARI PEMETAAN TITIK GRAF SIKEL PADA BILANGAN BULAT POSITIF
FAKTORISASI GRAF BARU YANG DIHASILKAN DARI PEMETAAN TITIK GRAF SIKEL PADA BILANGAN BULAT POSITIF Nova Nevisa Auliatul Faizah 1, H. Wahyu H. Irawan 2 1 Mahasiswa Jurusan Matematika, Fakultas Sains dan Teknologi,
SILABUS MATEMATIKA DISKRIT. Oleh: Tia Purniati, S.Pd., M.Pd.
SILABUS MATEMATIKA DISKRIT Oleh: Tia Purniati, S.Pd., M.Pd. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 2009 SILABUS A. Identitas
2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik
2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan
II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan
II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan
Pelabelan Product Cordial Graf Gabungan pada Beberapa Graf Sikel dan Shadow Graph Sikel
Pelabelan Product Cordial Graf Gabungan pada Beberapa Graf Sikel dan Ana Mawati*), Robertus Heri Sulistyo Utomo S.Si, M.Si*), Siti Khabibah S.Si, M.Sc*) Matematika, Fakultas Sains dan Matematika, UNDIP,
KAJIAN BILANGAN CLIQUE GRAF GEAR BARBEL
KAJIAN BILANGAN CLIQUE GRAF GEAR BARBEL dan GRAF Muhlishon Darul Ihwan 1,Ana Rahmawati 2, Sumargono 3 Universitas Pesantren Tinggi Darul Ulum (Unipdu) Jombang Kompleks Ponpes Darul Ulum Rejoso Peterongan
BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan
5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)
Pelabelan -Anti Ajaib dan -Anti Ajaib untuk Graf Tangga. -Antimagic and -Antimagic Labeling for Ladder Graph
Pelabelan -Anti Ajaib -Anti Ajaib untuk Graf Tangga -Antimagic and -Antimagic Labeling for Ladder Graph Quinoza Guvil 1), Roni Tri Putra 2) 1) Jurusan Teknik Geodesi, Institut Teknologi Pag, Telp 0751-7055202
KOMBINATORIKA. Erwin Harahap
KOMBINATORIKA Erwin Harahap Disampaikan pada acara Sosialisasi OLIMPIADE MATEMATIKA, FISIKA, DAN KIMIA 2011 KOPERTIS WILAYAH IV JAWA BARAT Jatinangor- Bandung, 22 Maret 2011 1 KEMENTRIAN PENDIDIKAN NASIONAL
ALGORITMA PENCARIAN JALUR HAMILTONIAN PADA KUBUS FIBONACCI DAN KUBUS LUCAS
ALGORITMA PENCARIAN JALUR HAMILTONIAN PADA KUBUS FIBONACCI DAN KUBUS LUCAS Ernastuti Fakultas Ilmu Komputer Universitas Gubadarma [email protected] ABSTRAK Jalur Hamiltonian pada graf terhubung
BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 129 134 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m AULI MARDHANINGSIH, ZULAKMAL Program Studi Matematika, Fakultas
KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 71 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 FAIZAH, NARWEN Program Studi Matematika, Fakultas
RAINBOW CONNECTION PADA GRAF DENGAN KONEKTIFITAS 1
Jurnal Matematika UNAND Vol 2 No 2 Hal 92 98 ISSN : 20 2910 c Jurusan Matematika FMIPA UNAND RAINBOW CONNECTION PADA GRAF DENGAN KONEKTIFITAS 1 VOENID DASTI Program Studi Matematika, Fakultas Matematika
Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia
MEMBANDINGKAN ALGORITMA D SATUR DENGAN ALGORITMA VERTEX MERGE DALAM PEWARNAAN GRAF TAK BERARAH Daratun Nasihin 1 Endang Lily 2, M. D. H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika
DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT
DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT Septiana Eka R. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,Universitas Negeri
BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t
Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 18 22 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t SHERLY AFRI ASTUTI, ZULAKMAL Program Studi Matematika,
MateMatika Diskrit Aplikasi TI. Sirait, MT 1
MateMatika Diskrit Aplikasi TI By @Ir.Hasanuddin Sirait, MT 1 Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson
TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada
II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf
GRAF PETERSEN DENGAN BEBERAPA SIFAT-SIFAT YANG BERKAITAN DALAM TEORI GRAF. ABSTRAK ABSTRACT
29 GRAF PETERSEN DENGAN BEBERAPA SIFAT-SIFAT YANG BERKAITAN DALAM TEORI GRAF Juneidi Ginting 1, Humuntal Banjarnahor 2 1 Mahasiswa Program Studi Matematika, FMIPA, Universitas Negeri Medan Email : [email protected]
SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN
PROSIDING ISBN : 978 979 6353 3 SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI OMPLIT ( ) A. DENGAN Oleh Imam Fahcruddin Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri
PENENTUAN BANYAKNYA GRAF TERHUBUNG BERLABEL BERORDE LIMA TANPA GARIS PARALEL. (Skripsi) Oleh Eni Zuliana
PENENTUAN BANYAKNYA GRAF TERHUBUNG BERLABEL BERORDE LIMA TANPA GARIS PARALEL (Skripsi) Oleh Eni Zuliana FAKULTAS MATEMATIKA DAN ILMU PEGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRAK PENENTUAN
BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF RODA DAN GRAF KUBIK
Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 72 79 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF RODA DAN GRAF KUBIK WITRI YULIANI Program Studi Magister
Pelabelan Super Sisi Ajaib pada Subkelas Pohon
JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Pelabelan Super Sisi Ajaib pada Subkelas Pohon Rohmatul Izzah Darmaji Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan
PENENTUAN RAINBOW CONNECTION NUMBER PADA GRAF BUKU SEGIEMPAT, GRAF KIPAS, DAN GRAF TRIBUN
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 153 160 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RAINBOW CONNECTION NUMBER PADA GRAF BUKU SEGIEMPAT, GRAF KIPAS, DAN GRAF TRIBUN FITRI ANGGALIA
LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.
6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan
Graf. Bekerjasama dengan. Rinaldi Munir
Graf Bekerjasama dengan Rinaldi Munir Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson problem) Persoalan
Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga
TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang
Pelabelan Total (a, d)-simpul Antimagic pada Digraf Matahari
Pelabelan Total (a, d)-simpul Antimagic pada Digraf Matahari Yuni Listiana, Darmaji Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Jl. Arief Rahman
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong
PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH
PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH MAKALAH Disusun untuk Melengkapi salah satu Tugas Mata Kuliah Seminar Pendidikan Matematika Semester Genap Tahun Akademik 006/007
DETOUR ENERGY OF COMPLEMENT OF SUBGROUP GRAPH OF DIHEDRAL GROUP
ZERO JURNAL SAINS MATEMATIKA DAN TERAPAN Volume 1 No. 2 2017 Page : 41-48 P-ISSN: 2580-569X E-ISSN: 2580-5754 DETOUR ENERGY OF COMPLEMENT OF SUBGROUP GRAPH OF DIHEDRAL GROUP Abdussakir Department of Mathematics
RAINBOW CONNECTION PADA BEBERAPA GRAF
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 17 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND RAINBOW CONNECTION PADA BEBERAPA GRAF GEMA HISTA MEDIKA Program Studi Matematika, Program Pascasarjana
Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.
GRAF PENDAHULUAN Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan
PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN n GANJIL, n 3
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 34 40 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN
Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2
Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Michael - 13514108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kendal.
Graf Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan
I. PENDAHULUAN. Teori graf merupakan salah satu bidang matematika yang memiliki banyak. terapan di berbagai bidang sampai saat ini.
1 I. PENDAHULUAN 1.1 Latar Belakang Teori graf merupakan salah satu bidang matematika yang memiliki banyak terapan di berbagai bidang sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek
Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah
MODUL 4 Materi Kuliah New_S1
MODUL Materi Kuliah New_S KULIAH, TEOREMA : Jika dari vertex ke vertex dari graph G dengan n vertex terdapat suatu lintasan, maka ada lintasan yang panjangnya tidak lebih dari n. Bukti : Misalnya p = (,
DIMENSI METRIK DARI (K n P m ) K 1
Jurnal Matematika UNAND Vol 5 No 1 Hal 90 95 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND DIMENSI METRIK DARI (K n P m ) K 1 NOFITRI RAHMI M, ZULAKMAL Program Studi Matematika, Fakultas Matematika
Dasar Teori Graf. Dr. Ahmad Sabri Universitas Gunadarma Kuliah Matrikulasi Magister Teknik Elektro, 11 April 2016
Dasar Teori Graf Dr. Ahmad Sabri Universitas Gunadarma 2016 Kuliah Matrikulasi Magister Teknik Elektro, 11 April 2016 Review konsep Definisi Graf Jenis-jenis graf: sederhana, berarah, multi, pseudo. Derajat
BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.
BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar
Jln. Perintis Kemerdekaan, Makassar, Indonesia, Kode Pos THE TOTAL VERTEH IRREGURARY STRENGTH OF HONEYCOMB GRAPH
1 PENENTUAN NILAI TOTAL KETIDAKTERATURAN TITIK GRAF SARANG LEBAH Riskawati 1*), Nurdin 2), Hasmawati 3) 1 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin Jln.
BILANGAN KROMATIK LOKASI UNTUK GRAF KEMBANG API F n,2 DAN F n,3 DENGAN n 2
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 49 53 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF KEMBANG API F n,2 DAN F n,3 DENGAN n 2 ANDRE SAPUTRA Program Studi
Graf. Bahan Kuliah IF2120 Matematika Diskrit. Rinaldi Munir/IF2120 Matematika Diskrit 1
Graf Bahan Kuliah IF22 Matematika Diskrit Rinaldi Munir/IF22 Matematika Diskrit Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di
