Tree. Perhatikan pula contoh tree di bawah ini : Level. Level 2. Level 3. Level 4. Level 5
|
|
|
- Vera Kusnadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 TR (POHON) Tree/pohon merupakan struktur data yang tidak linear/non linear yang digunakan terutama untuk merepresentasikan hubungan data yang bersifat hierarkis antara elemenelemennya. efinisi tree : Kumpulan elemen yang salah satu elemennya disebut dengan root (akar) dan sisa elemen yang lain disebut sebagai simpul (node/vertex) yang terpecah menjadi sejumlah himpunan yang tidak saling berhubungan satu sama lain, yang disebut subtree/cabang. Ilustrasi : Simpul Tunggal Subtree : T : T1, T2,..., Tk T T1 T2 Tk Tree yang terbentuk dari simpul T (root) dan Simpul T1, T2, Tk adalah : T T1 T2... Tk Halaman 1
2 Perhatikan pula contoh tree di bawah ini : Tree Level Level 1 Level 2 G H Level 3 I J K L M Level 4 N O Level 5 Istilah-istilah objek tree, adalah : Simpul adalah elemen tree yang berisi informasi / data dan penunjuk pencabangan. Tingkat/level suatu simpul ditentukan dari akar (root), sebagai level 1. pabila simpul dinyatakan sebagai tingkat N, maka simpul-simpul yang merupakan anaknya berada pada tingkat N+1. erajat/degree menyatakan banyaknya anak/turunan di simpul tersebut. ontoh : Simpul memiliki derajat 2 ( dan ), simpul yang memiliki derajat 0 (nol) disebut leaf (daun) seperti : I, J, K, L, N, dan O. Tinggi (height) atau kedalaman (depth) suatu tree adalah tingkat maksimum dari tingkat dalam tree tersebut dikurangi 1. ontoh dalam tree di atas, mempunyai depth 4. ncestor suatu simpul adalah semua simpul yang terletak dalam satu jalur dengan simpul tersebut, dari akar sampai simul yang ditinjaunya. ontoh ncestor L adalah, dan G. Halaman 2
3 Predecessor adalah simpul yang berada di atas simpul yang ditinjau. ontoh : Predecessor adalah. Successor adalah simpul yang berada di bawah simpul yang ditinjau. ontoh : Successor adalah I. escendant adalah seluruh simpul yang terletak sesudah simpul tertentu dan terletak pada jalur yang sama. ontoh : escendant adalah J dan K. Sibling adalah simpul-simpul yang memiliki parent yang sama dengan simpul yang ditinjau. ontoh : Sibling J adalah K Parent adalah simpul yang berada satu level di atas simpul yang ditinjau. ontoh : Parent J adalah Halaman 3
4 INRY TR Sebuah pohon biner T dapat didefinisikan sebagai sekumpulan terbatas dari elemenelemen yang disebut nodes/simpul dimana : a. T dikatakan kosong (disebut null tree/pohon null atau empty tree/pohon kosong) b. T terdiri dari sebuah node khusus yang dipanggil R, disebut root dari T dan nodenode T lainnya membentuk sebuah pasangan terurut dari binary tree T1 dan T2 yang tidak berhubungan yang kemudian dipanggil subtree kiri dan subtree kanan. Jika T1 tidak kosong maka rootnya disebut successor kiri dari R dan jika T2 tidak kosong, maka rootnya disebut successor dari R. ontoh : Tree (T) Keterangan Root dari T adalah simpul. adalah successor kiri dari simpul. adalah successor kanan dari Subtree kiri dari root adalah simpul G,,, dan H Subtree kanan dari root adalah simpul,, G, I, J dan K H I J K ua buah binary tree dikatakan similar/identik jika tree tersebut memiliki struktur/bentuk yang sama. ontoh : Similar/identeik dengan G H Halaman 4
5 Terminologi R adalah sebuah simpul pada T dengan successor kiri S1, dan successor kanan S2, maka R disebut parent dari S1 dan S2. S1 disebut anak kiri (left child) dari R, dan S2 adalah anak kanan (right child) dari R. S1 dan S2 dikatakan sibling (bersaudara). erajat tertinggi dari sebuah simpul binary tree adalah 2. anyaknya simpul maksimum pada tingkat/level N adalah 2 (N-1), sehingga maksimum simpul sampai tingkat ke-n adalah n ( 2 i= 1 i 1) 2 MaksSimpul : = sehingga jika binary tree lengkap bertingkat 5 maka banyaknya simpul adalah = 31, terdiri dari 16 leaf (daun) dan banyaknya simpul yang bukan daun termasuk akar adalah 15. N 1 Jenis-Jenis inary Tree 1. omplete inary Tree Suatu binary tree T akan disebut complete/lengkap jika semua levelnya memiliki child 2 buah kecuali untuk level paling akhir. Tetapi pada akhir level setiap leaf/daun muncul terurut dari sebelah kiri. ontoh : Gambar. omplete tree T 12 Halaman 5
6 Sebuah binary tree yang lengkap dapat diberi label dengan sebuah bilangan bulat dari posisi kiri ke kanan. engan pemberian label ini, seseorang dapat dengan mudah menentukan child dan parent dari sebuah node/simpul K dalam sebuah complete tree Tn. Khususnya, left child (anak kiri) dari simpul K dapat diketahui dengan rumus 2 * K, dan right child (anak kanan) dari simpul K dapat diketahui dengan rumus 2 * K+1. Perhatikan di gambar bahwa simpul 5 mempunyai anak 10 (dari 2 * 5) dan 11 (dari 2 * 5 + 1). Sedangkan untuk mencari parent, rumusnya adalah K / 2 sehingga ketika simpul 6 yang diperiksa, itu berarti bahwa parent dari simpul 6 adalah 6 / 2 = xtended inary Tree : 2-Tree Sebuah binary tree dikatakan 2-tree atau extended binary tree jika tiap simpul N memiliki 0 atau 2 anak. Simpul dengan 2 anak disebut dengan simpul internal (internal node), dan simpul dengan 0 anak disebut dengan external node. Kadangkadang dalam diagram node-node tersebut dibedakan dengan menggunakan tanda lingkaran untuk internal node dan kotak untuk eksternal node. ontoh : inary tree T xtended 2-tree Halaman 6
7 Pembuatan inary Tree Pembuatan binary tree lebih mudah menggunakan binary search tree (binary sorted tree) dengan cara : Jika nilai dari simpul yang akan disisipkan lebih besar dari simpul parent, maka simpul tersebut ditempatkan sebagai subtree kanan. Jika lebih kecil maka simpul baru tersebut disimpan sebagai subtree kiri. ontoh : Tree yang akan dibuat adalah : HKLJ H dijadikan sebagai root < H : menjadi subtree kiri H H K > H : K menjadi subtree kanan H < H > : menjadi subtree kanan dari. < H > < : menjadi subtree kiri dari. K L > H L > K : L menjadi subtree kanan dari K. J L J < H J < K : J menjadi subtree kiri dari K. Halaman 7
8 Penelusuran inary Tree (Traversing inary Tree) da tiga cara yang standar untuk menelususi sebuah binary tree yaitu : 1. Preorder (Node Left Right [NLR]) Proses root Telusuri subtree kiri (Left) secara preorder Telusuri subtree kanan (Right) secara preorder 2. Inorder (Left Node Right [LNR]) Telusuri subtree kiri (Left) secara inorder Proses root Telusuri subtree kanan (Right) secara inorder 3. Postorder (Left Right Node [LNR]) Telusuri subtree kiri (Left) secara postorder Telusuri subtree kanan (Right) secara postorder Proses root ontoh : Secara preorder : GHI Secara inorder : GHI Secara postorder : GHI G H I Halaman 8
9 Pembentukan inary Tree berdasarkan Preorder, Inorder atau Postorder Untuk membentuk suatu binary tree berdasarkan preorder, inorder atau postorder dapat dilakukan dengan syarat menggunakan 2 dari tiga penelusuran tersebut dan salah satunya harus inorder. ontoh 1 [Menggunakan Preorder dan Inorder]: Secara preorder : GHI Secara inorder : GHI aranya adalah : 1. Telusuri sepanjang preorder 2. idapat, kemudian jadikan sebagai Root 3. mbil, lihat di inorder. berada sebelah kiri dari, maka ditulis di kiri dari. 4. mbil, lihat di inorder. berada di sebelah kiri dari, tetapi sebelah kiri dari ada. andingkan posisi G H I dengan yang ada di inorder. Ternyata ada di sebelah kiri dari sehingga menjadi subtree. 5. mbil G, ikuti cara 4. ternyata G ada disebelah kanan dari sehingga G menjadi subtree kanan dari G. 6. mbil, lihat di inorder, ternyata ada disebelah kanan dari, sehingga menjadi subtree kanan dari. 7. mbil, ternyata sebelah kanan dari serta sebelah kiri dari sehingga menjadi kiri dari. 8. mbil H, ternyata ada di sebelah kanan serta sebelah kanan dari dan sebelah kiri dari sehingga H menjadi kiri dari. 9. mbil I, ternyata ada di sebelah kanan dari serta sebelah kiri dari, dan sebelah kanan sehingga I menjadi subtree kanan dari. 10. mbil ternyata ada di sebelah kanan serta sebelah kanan dari sehingga menjadi subtree kanan dari. Halaman 9
10 Secara postorder : GHI Secara inorder : GHI ontoh 2 [Menggunakan Postorder dan Inorder]: ara mirip dengan contoh 1, tetapi penelusuran dilakukan pada postorder secara terbalik (dari paling belakang). aranya adalah : 1. mbil dari postorder dapat, jadikan sebagai root. 2. mbil, periksa posisi di inorder terhadap, ternyata ada di sebelah kanan. Sehingga subtree kanan G H I dari. 3. mbil, ternyata ada di sebelah kiri dari dan sebelah kanan dari sehingga menjadi subtree kanan dari. 4. mbil, ternyata ada di sebelah kanan dari dan sebelah kiri dari sehingga menjadi subtree kiri. 5. mbil I, ternyata ada di sebelah kanan dari, sebelah kiri dari, sebelah kanan dari sehingga I menjadi subtree kanan dari. 6. mbil H, ternyata ada di kanan, sebelah kiri dari, sebelah kiri dari sehingga H menjadi subtree kiri dari. 7. mbil, ternyata ada disebelah kiri sehingga adalah subtree kiri dari. 8. mbil, ternyata ada di kiri dan dikiri, sehingga menjadi subtree kiri dari. 9. mbil G, ternyata ada di kiri, di kiri dan dikanan dari sehingga G menjadi subtree kanan dari. Halaman 10
11 Latihan-Latihan : 1. da sebuah binary tree kosong, kemudian diinsertkan : J R G T M H P Q a. Gambarkan binary tree nya b. Tentukan Inorder, Postorder, dan Preordernya 2. Inorder : KHG Preorder : KHG a. Gambarkan binary tree-nya b. Tentukan Postordernya Halaman 11
Ringkasan mengenai Tree (Dari beberapa referensi lain) Nina Valentika
Ringkasan mengenai Tree (Dari beberapa referensi lain) Nina Valentika December 31, 2015 0.1 Pendahuluan Figure 1: Contoh Tree. Tree/pohon merupakan struktur data yang tidak linear/non linear yang digunakan
BAB IV POHON. Diktat Algoritma dan Struktur Data 2
iktat lgoritma dan Struktur ata 2 V POON efinisi Pohon Struktur pohon merupakan kumpulan elemen yang salah satu elemennya disebut akar dan sisa elemennya terpecah menjadi sejumlah himpunan yang saling
SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11
. Kompetensi 1. Utama STUN R PERKULIHN (SP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11 Mahasiswa dapat memahami tentang konsep pemrograman menggunakan
Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER
Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER DEFINISI POHON (TREE) Pohon (Tree) termasuk struktur non linear yang didefinisikan sebagai data yang terorganisir dari suatu item informasi cabang yang
Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013
Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013 Pohon (Tree) Pohon (Tree) didefinisikan sebagai graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung, maka pohon selalu
BAB IX TREE (POHON) ISTILAH DASAR
Modul 9 Struktur Data (rie) - 1 IX TREE (POHON) Struktur pada tree (pohon) tidak linear seperti pada struktur linked list, stack, dan queue. Setiap node pada tree mempunyai tingkatan, yaitu orang tua (parent)
B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z POHON BINER Tinaliah, S.Kom DEFINISI Pohon (dalam struktur data) struktur berisi sekumpulan elemen dimana salah satu elemen adalah akar (root) dan elemen-elemen
STRUKTUR POHON & KUNJUNGAN POHON BINER
STRUKTUR POHON & KUNJUNGAN POHON BINER Pohon (Tree) termasuk struktur non linear yang didefinisikan sebagai data yang terorganisir dari suatu item informasi cabang yang saling terkait Istilah istilah Dalam
TREE STRUCTURE (Struktur Pohon)
TREE STRUCTURE (Struktur Pohon) Dalam ilmu komputer, tree adalah sebuah struktur data yang secara bentuk menyerupai sebuah pohon, yang terdiri dari serangkaian node (simpul) yang saling berhubungan. Node-node
ALGORITMA DAN STRUKTUR DATA
Modul ke: 10 Fitrianingsih Fakultas FASILKOM ALGORITMA DAN STRUKTUR DATA JENIS-JENIS TREE SKom., MMSI Program Studi Sistem Informasi JENIS-JENIS TREE Pohon (Tree) adalah graf terhubung yang tidak mengandung
Pohon dan Pohon Biner
Pertemuan 14 Pohon dan Pohon Biner P r a j a n t o W a h y u A d i [email protected] +6285 641 73 00 22 Rencana Kegiatan Perkuliahan Semester # Pokok Bahasan 1 Pengenalan Struktur Data 2 ADT Stack
STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit.
Pertemuan 9 STRUKTUR POHON (TREE) ISTILAH-ISTILAH DASAR Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada Pohon (Tree)
Tree (Struktur Data) Nisa ul Hafidhoh, MT
Tree (Struktur Data) Nisa ul Hafidhoh, MT Struktur Data Linier 1 5 8 9 2 ARRAY 0 1 2 3 n Head Tail QUEUE O U T 1 2 3 4 STACK 4 3 2 1 I N 10 8 14 LINKED LIST Struktur Tree Struktur Tree adalah struktur
STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit.
Pertemuan 9 STRUKTUR POHON (TREE) ISTILAH-ISTILAH DASAR Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada Pohon (Tree)
DIKTAT KULIAH ALGORITMA dan STRUKTUR DATA II
Pertemuan 13 Waktu : 135 menit Tujuan Pembelajaran : Mahasiswa mampu menjelaskan teknik pemrograman menggunakan Tree. Substansi Materi : Tree Tabulasi Kegiatan Perkuliahan No Tahap Kegiatan Kegiatan Pengajar
BAB VII Tujuan 7.1 Deskripsi dari Binary Tree
A VII Tree Tujuan 1. Mempelajari variasi bagian-bagian dari tree sebagai suatu bentuk struktur tak linier 2. Mempelajari beberapa hubungan fakta yang direpresentasikan dalam sebuah tree, sehingga mampu
IT234 Algoritma dan Struktur Data. Tree
IT234 Algoritma dan Struktur Data Tree Fakultas Teknologi Informasi Universitas Kristen Satya Wacana @2008 Tree Kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya
Buku Ajar Struktur Data
B a g i a n 5 Tujuan Instruksional Khusus Pokok Bahasan Mahasiswa mampu menjelaskan struktur data nonlinier Tree. Mahasiswa mampu memahami operasi pada struktur data Tree Struktur data Tree secara umum.
Pertemuan 9 STRUKTUR POHON (TREE) Sifat utama Pohon Berakar ISTILAH-ISTILAH DASAR
ertemuan 9 STUKTU OHON (TEE) ISTILH-ISTILH DS ohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada ohon (Tree) selalu terdapat
Algoritma dan Struktur Data. Binary Tree & Binary Search Tree (BST)
Algoritma dan Struktur Data Binary Tree & Binary Search Tree (BST) Teknik Informatika Universitas Muhammadiyah Malang 2016 Outline Tree Binary tree Istilah pada tree Operasi dasar binary tree BST Definisi
Pemrograman Algoritma Dan Struktur Data
MODUL PERKULIAHAN Modul ke: 14Fakultas Agus FASILKOM Pemrograman Algoritma Dan Struktur Data ADT BINARY TREE Hamdi.S.Kom,MMSI Program Studi Teknik Informatika ISTILAH-ISTILAH DASAR Pohon atau Tree adalah
MODUL PRAKTIKUM STRUKTUR DATA
MODUL PRAKTIKUM STRUKTUR DATA TREE (POHON) Oleh : SUPRAPTO, S.Kom PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS PGRI RONGGOLAWE (UNIROW) TUBAN 2012/2013 MODUL V TREE (POHON) 5.1. TREE (POHON)
BAB II LANDASAN TEORI. unik. Orang hanya menemukan kata algorism yang berarti proses menghitung
8 BAB II LANDASAN TEORI 2.1. Konsep Dasar Algoritma 2.1.1. Sejarah Algoritma Ditinjau dari asal-usul katanya, kata Algoritma mempunyai sejarah yang unik. Orang hanya menemukan kata algorism yang berarti
Organisasi Berkas Sekuensial Berindeks
Organisasi Berkas Sekuensial Berindeks Definisi Organisasi Berkas ini mirip dengan Organisasi Berkas Sekuensial dimana setiap rekaman disusun secara beruntun di dalam file, hanya saja ada tambahan indeks
Struktur Data Tree/Pohon dalam Bahasa Java
Struktur Data Tree/Pohon dalam Bahasa Java Jeffrey Hermanto Halimsetiawan [email protected] tutorialpemrograman.wordpress.com 22 Maret 2009 tutorialpemrograman.wordpress.com - 2009 1 Tree merupakan
TREE ALGORITMA & STRUKTUR DATA. Materi ASD Fakultas Teknik Elektro & Komputer UKSW (www.uksw.edu) Download Dari :
TREE ALGORITMA & STRUKTUR DATA Materi ASD Fakultas Teknik Elektro & Komputer UKSW (www.uksw.edu) Download Dari : http://ambonmemanggil.blogspot.com 1 TREE ISTILAH-ISTILAH DASAR: tree : kumpulan elemen
Algoritma dan Struktur Data. Click to edit Master subtitle style Konsep Tree
Algoritma dan Struktur Data Click to edit Master subtitle style Konsep Tree Basic Tree Concepts Tree berisi himpunan node dan garis berarah yang disebut branch yang menghubungkan dua node. Banyaknya branch
13/12/2013. Binary Tree. Contoh Tree
Binary Tree Contoh Tree 1 Struktur Tree Tree adalah struktur hirarki yang menempatkan elemen pada simpul pada cabang2nya yang dimulai dari root. Node (simpul) dalam tree dibagi dalam level dari tertinggi
Soal Pendahuluan Modul 3
1. Apa yang dimaksud dengan tree? PENGERTIAN TREE Kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya struktur sebuah pohon. Struktur pohon adalah suatu cara
TREE. Definisi. Istilah-istilah Umum dalam Tree
TREE Definisi Merupakan salah satu bentuk struktur data non-linear yang menggambarkan hubungan yang bersifat hirarkis antara elemen-elemen. Tree dapat juga didefinisikan sebagai kumpulan simpul/node dengan
DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2
1 POHON DEFINISI Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan
KUM 6 IMPLEMENTASI BINARY TREE
PRAKTIKUM KUM 6 IMPLEMENTASI BINARY TREE TUJUAN PEMBELAJARAN: 1. Mengimplementasikan struktur data Binary Tree menggunakan linked list. 2. Mampu mengimplementasikan beragam operasi pada struktur data binary
BAB VII POHON BINAR POHON
BAB VII POHON BINAR POHON Pohon atau tree adalah salah satu bentuk graph terhubung yang tidak mengandung sirkuit. Karena merupakan graph terhubung, maka pada pohon selalu terdapat path atau jalur yang
Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon
1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan pohon
A B C E F G K Contoh Tree
Tree TREE Tree merupakan salah satu bentuk struktur data tidak linear yang menggambarkan hubungan yang bersifat hierarkis (hubungan one to many) antara elemen-elemen. Tree biasa didefinisikan sebagai kumpulan
Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut
KATA PENGANTAR Puji syukur penyusun panjatkan ke hadirat Allah Subhanahu wata?ala, karena berkat rahmat-nya kami bisa menyelesaikan makalah yang berjudul Catatan Seorang Kuli Panggul. Makalah ini diajukan
KLASIFIKASI BINARY TREE
TREE (Struktur Pohon) TREE merupakan struktur data yang menyatakan simpul-simpul data sebagai hubungan hirarki (parent and child structured), dimana simpul yang mempuyai derajat/hirarki lebih tinggi berada
2. Mahasiswa dapat membuat dan menggunakan array dan linked list dalam suatu kasus.
1 ARRAY & LINKED LIST MODUL 1 Standar kompetensi: 1. Mahasiswa mengetahui perbedaan array dan linked list. 2. Mahasiswa dapat membuat dan menggunakan array dan linked list dalam suatu kasus. 3. Mahasiswa
Tenia Wahyuningrum, S.Kom. MT Sisilia Thya Safitri, S.T.,M.T.
tree Tenia Wahyuningrum, S.Kom. MT Sisilia Thya Safitri, S.T.,M.T Tree Kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya struktur sebuah pohon. Tree merepresentasikan
POHON CARI BINER (Binary Search Tree)
POHON CARI BINER (Binary Search Tree) 50 24 70 10 41 61 90 3 12 35 47 55 67 80 99 POHON CARI BINER (Binary Search Tree) Definisi : bila N adalah simpul dari pohon maka nilai semua simpul pada subpohon
STRUKTUR DATA. By : Sri Rezeki Candra Nursari 2 SKS
STRUKTUR DATA By : Sri Rezeki Candra Nursari 2 SKS Literatur Sjukani Moh., (2007), Struktur Data (Algoritma & Struktur Data 2) dengan C, C++, Mitra Wacana Media Utami Ema. dkk, (2007), Struktur Data (Konsep
Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional
Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional Azby Khilfi M. NIM : 13506018 Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail
METODE AVL TREE UNTUK PENYEIMBANGAN TINGGI BINARY TREE
METODE AVL TREE UNTUK PENYEIMBANGAN TINGGI BINARY TREE Suwanty 1 Octara Pribadi 2 Program Studi Teknik Informatika 1,2 STMIK TIME 1,2 Jalan Merbabu No. 32 AA-BB Medan 1,2 e-mail : [email protected]
6. TREE / BINARY TREE
6. TREE / BINARY TREE TUJUAN PRAKTIKUM 1. Praktikan mengenal Struktur data Tree. 2. Praktikan mengenal jenis-jenis tree, seperti binary tree. 3. Praktikan mengenal istilah-istilah yang terdapat didalam
Binary Tree kosong Gambar 1. Binary Tree dalam kondisi kosong
PRAKTIKUM 25-26 BINARY TREEDAN TRAVERSAL BINARY TREE A. TUJUAN Mahasiswa diharapkan mampu : 1. Memahami konsep dari BinaryTree dantraversalbinary Tree 2. Memahami proses traversal pada Binary Tree 3. Memahami
Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1
Pohon Bahan Kuliah IF2120 Matematika Diskrit Program Studi Teknik Informatika ITB Rinaldi M/IF2120 Matdis 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a
Silsilah keluarga Hasil pertandingan yang berbentuk turnamen Struktur organisasi dari sebuah perusahaan. B.1 Pohon Biner (Binary Tree)
PRAKTIKUM 25 BINARY TREE A. TUJUAN Mahasiswa diharapkan mampu : 1. Memahami konsep dari BinaryTree 2. Memahami cara membangun Binary Tree secara manual 3. Memahami konsep dan implementasi dari menghitung
Lecture Notes On Algorithms and Data Structures. Oleh Thompson Susabda Ngoen
Lecture Notes On Algorithms and Data Structures AVL TREE Oleh Thompson Susabda Ngoen Universitas Bina Nusantara Fakultas Ilmu Komputer 2003 Thompson S.N. AVL TREE 1 AVL TREE Binary Search Tree BST dibuat
Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung)
POHON (TREE) Pohon Definisi Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk
8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 POHON DAN PEWARNAAN GRAF Tujuan Mahasiswa
Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1
Pohon (TREE) Matematika Deskrit By @Ir. Hasanuddin Sirait, MT 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon
Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon
Algoritma dan Struktur Data. Tree
Algoritma dan Struktur Data Tree Outline 1. Apakah Tree Structure itu? 2. Binary Tree & implementasinya 3. Tree Traversal 4. Implementasi tree (selain binary tree) Apakah Tree Structure itu? Struktur data
TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM :
TUGAS MAKALAH INDIVIDUAL Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : 13505013 Institut Teknologi Bandung Desember 2006 Penggunaan Struktur Pohon dalam Informatika Dwitiyo Abhirama
STRUKTUR DATA. By : Sri Rezeki Candra Nursari 2 SKS
STRUKTUR DATA By : Sri Rezeki Candra Nursari 2 SKS Literatur Sjukani Moh., (2007), Struktur Data (Algoritma & Struktur Data 2) dengan C, C++, Mitra Wacana Media Utami Ema. dkk, (2007), Struktur Data (Konsep
Struktur dan Organisasi Data 2 POHON BINAR
POHON BINR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam pohon.
Algoritma dan Struktur Data. Linear & Binary Search Tree
Algoritma dan Struktur Data Linear & Binary Search Tree Linear Search (1) (2) (3) (4) (5) (6) struct { int key; int data; } table[100]; int n; int search(int key) { int i; i=0; while (i < n){ if(table[i].key==key)
Pohon (Tree) Contoh :
POHON (TREE) Pohon (Tree) didefinisikan sebagai graph terhubung yang tidak mengandung sirkuit. Sedangkan Hutan (Forest) adalah graph yang tidak mengandung sirkuit. Jadi pohon adalah hutan yang terhubung.
TERAPAN POHON BINER 1
TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi
ANALISIS ALGORITMA BINARY SEARCH
ANALISIS ALGORITMA BINARY SEARCH Metode Binary search Binary search merupakan salah satu algoritma untuk melalukan pencarian pada array yang sudah terurut. Jika kita tidak mengetahui informasi bagaimana
Syarif Abdullah (G )
Trees, Binary Trees dan Binary Search Trees Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB e-mail: syarif [email protected] & [email protected] 17 Januari
P o h o n. Definisi. Oleh: Panca Mudji Rahardjo. Pohon. Adalah graf tak berarah terhubung yang tidak mengandung sirkuit.
P o h o n Oleh: Panca Mudji Rahardjo Definisi Pohon Adalah graf tak berarah terhubung yang tidak mengandung sirkuit. Contoh: G 1 dan G 2 pohon, G 3 dan G 4 bukan pohon. 1 Definisi Hutan (forest) Adalah
BAB 7 POHON BINAR R S U
BAB 7 POHON BINAR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam
Struktur Data & Algoritma
Struktur Data & Algoritma ADT Tree Suryana Setiawan, Ruli Manurung & Ade Azurat ( Denny (acknowledgments: Fasilkom UI SUR HMM AA Fasilkom UI - IKI20100/IKI80110P 2009/2010 Ganjil Pekan 08 1 Tujuan Memahami
HEAP. Heap dan Operasinya. Oleh Andri Heryandi
HEAP Heap adalah sebuah binary tree dengan ketentuan sebagai berikut : Tree harus complete binary tree - Semua level tree mempunyai simpul maksimum kecuali pada level terakhir. - Pada level terakhir, node
Konsep Pohon (Tree) Binary Tree Penyajian Tree dengan Array Penyajian Tree dengan Linked List Metode Traversal (Kunjungan Node pada Tree)
Praktikum 10 Pohon (Tree) POKOK AASAN: Konsep Pohon (Tree) inary Tree Penyajian Tree dengan Array Penyajian Tree dengan Linked List Metode Traversal (Kunjungan Node pada Tree) TUJUAN LAJAR: Setelah melakukan
Variasi Pohon Pencarian Biner Seimbang
Variasi Pohon Pencarian Biner Seimbang Tony 13516010 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia [email protected]
OPERASI LOGIKA PADA GENERAL TREE MENGGUNAKAN FUNGSI REKURSIF
OPERASI LOGIKA PADA GENERAL TREE MENGGUNAKAN FUNGSI REKURSIF Lutfi Hakim (1), Eko Mulyanto Yuniarno (2) Mahasiswa Jurusan Teknik Elektro (1), Dosen Pembimbing (2) Institut Teknologi Sepuluh Nopember (ITS)
Data Structure TREE & BINARY TREE. Chapter 5b. Dahlia Widhyaestoeti, S.Kom
Data Structure Chapter 5b TREE & INRY TREE Dahlia Widhyaestoeti, S.Kom genda Hari Ini Simpul ohon iner roses (Operasi) pada ohon iner enelusuran ohon iner 2 Simpul ohon iner? Sebuah pohon biner, salah
BINARY SEARCH TREE. TUJUAN UMUM Mahasiswa memahami binary search Tree
BINARY SEARCH TREE TUJUAN UMUM Mahasiswa memahami binary search Tree Tujuan Khusus Bentuk Khusus Binary Tree Rekursive pada Binary Tree Tree Traversal Operasi pada Binary Tree Implementasi Binary Tree
Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem
Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Arie Tando (13510018) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
JAWABAN TUGAS MATRIKULASI STRUKTUR DATA. DOSEN Bpk. Krisna Adiyarta, M.Sc
Page 1 of 5 Struktur Data Matrikulasi JAWABAN TUGAS MATRIKULASI STRUKTUR DATA DOSEN Bpk. Krisna Adiyarta, M.Sc KELAS XA Disusun Oleh No NIM NAMA 1. 1211600075 NURHALIM 2. 1211600182 M. IMAN WAHYUDI 3.
Pohon Biner (Bagian 1)
Pohon Biner (Bagian 1) Tim Pengajar IF2110R Semester I 2016/2017 1 Tujuan Mahasiswa memahami definisi pohon dan pohon biner Berdasarkan pemahaman tersebut, mampu membuat fungsi sederhana yang memanipulasi
Pemodelan dan Pengelolaan Data Klasifikasi Tanaman Menggunakan Pohon
Pemodelan dan Pengelolaan Data Klasifikasi Tanaman Menggunakan Pohon Febri Ardiansyah (13505099) Program Studi Teknik Informatika Institut Teknologi Bandung Jl. Ganesha no 10,Bandung [email protected]
Aplikasi Pohon pada Pohon Binatang (Animal Tree)
Aplikasi Pohon pada Pohon Binatang (Animal Tree) Cilvia Sianora Putri (13512027) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Politeknik Elektronika Negeri Surabaya
PRAKTIKUM 25 TRAVERSAL BINARY TREE A. TUJUAN Mahasiswa diharapkan mampu : 1. Memahami konsep dari pembacaan Binary Tree dengan traversal Inorder, Preorder dan PostOrder 2. Mengimplementasikan pembacaan
Silsilah keluarga Hasil pertandingan yang berbentuk turnamen Struktur organisasi dari sebuah perusahaan
Praktikum 16 Tree (Struktur Pohon). TUJUN PMLJRN Setelah melakukan praktikum dalam bab ini, mahasiswa diharapkan mampu: 1. Mampu membuat struktur pohon (tree) dengan menggunakan array. 2. Mampu membuat
Kode MK/ Pemrograman Terstruktur 2. ZK Abdurahman Baizal. KK Algoritma dan Komputasi. Tree (Pohon)
Kode MK/ Pemrograman Terstruktur 2 ZK Abdurahman Baizal KK Algoritma dan Komputasi Tree (Pohon) 1 8/25/2015 Pendahuluan Dalam bab ini kita akan khusus membahas mengenai binary tree Pembahasan tentang tree
METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER
METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER Muqtafi Akhmad (13508059) Teknik Informatika ITB Bandung e-mail: [email protected] ABSTRAK Dalam makalah ini akan dibahas tentang
Koleksi Hirarkis Tree
Koleksi Hirarkis Tree Husni Didasarkan pada buku: Fundamentals of Python: From First Programs Through Data Structures Okyektif Menjelaskan perbedaan antara pohon dan tipe koleksi lain menggunakan terminologi
Heap Tree dan Kegunaannya dalam Heap Sort
Heap Tree dan Kegunaannya dalam Heap Sort Efendy Chalikdjen 1, Hermanto Ong 2, Satria Putra Sajuthi 3 Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung
Pertemuan 15 REVIEW & QUIS
Pertemuan 15 REVIEW & QUIS 1. Simpul Khusus pada pohon yang memiliki derajat keluar >= 0, dan derajat masuk = 0, adalah. a. Node / simpul d. edge / ruas b. Root / akar e. level c. Leaf / daun 2. Jika suatu
BAB XI Manipulasi Binary Tree
www.hansmichael.com - Bab XI. Manipulasi Binary Tree BAB XI Manipulasi Binary Tree 11.1 Insert Node 11.2 Search Node 11.3 Delete Node 11.4 Copy Tree 11.5 Latihan Soal Binary tree seringkali diterapkan
Ulang Kaji Konsep Matematika
Ulang Kaji Konsep Matematika Teori Bahasa dan Automata Viska Mutiawani - Informatika FMIPA Unsyiah 1 Ulang Kaji Konsep Matematika Set / himpunan Fungsi Relasi Graf Teknik pembuktian Viska Mutiawani - Informatika
MODUL PRAKTIKUM STRUKTUR DATA
MODUL PRAKTIKUM STRUKTUR DATA Bahasa Pemrograman : C++ Software : Turbo C++ 4.5 Laboran : M. Fachrurrozi Novi Yusliani LABORATORIUM DASAR KOMPUTER PROGRAM ILMU KOMPUTER UNIVERSITAS SRIWIJAYA 2006 DAFTAR
Outline. Struktur Data & Algoritme (Data Structures & Algorithms) Pengantar. Definisi. 2-3 Trees
Struktur Data & Algoritme (Data Structures & Algorithms) 2-3 Trees Outline Pengantar Definisi 2-3 Tree Operasi: Search Insert Delete (a,b)-tree Denny ([email protected]) Suryana Setiawan ([email protected])
Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial
Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Stephen (35225) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
BAB 7 POHON BINAR. Contoh : Pohon berakar T R S U
BB 7 POHON BINR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam
Binary Tree. Binary Tree dapat digambarkan berdasarkan kondisinya, sebagai berikut: Pointer ke akar (root) dari tree
Binary Tree Pendahuluan Binary Tree adalah struktur data yang hampir mirip juga dengan Linked List untuk menyimpan koleksi dari data. Linked List dapat dianalogikan sebagai rantai linier sedangkan Binary
Pohon Biner dan Aplikasinya
Pohon Biner dan Aplikasinya Muhammad Gema Akbar (13510099) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia [email protected]
Penerapan Pohon Biner dalam Proses Pengamanan Peer to Peer
Penerapan Pohon Biner dalam Proses Pengamanan Peer to Peer Eka Yusrianto Toisutta - NIM : 13504116 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganesha 10, Bandung email: [email protected]
Aplikasi Pohon dalam Pengambilan Keputusan oleh Sebuah Perusahaan
Aplikasi Pohon dalam Pengambilan Keputusan oleh Sebuah Perusahaan Ahmad Aidin (13513020) Program Sarjana Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
PENCARIAN KITAB BESERTA PASAL PADA ALKITAB BERDASARKAN KATA DENGAN MENGGUNAKAN STRUKTUR DATA TRIE
PENCARIAN KITAB BESERTA PASAL PADA ALKITAB BERDASARKAN KATA DENGAN MENGGUNAKAN STRUKTUR DATA TRIE Ir. Suhatati Tjandra Abstrak Proses pengambilan informasi (information retrieval) merupakan hal yang sangat
Preorder Tree Traversal
Preorder Tree Traversal Dimana paralelnya? Operasi dasarnya adalah pelabelan pada node. Label pada verteks sub pohon kanan tidak dapat diberikan sampai diketahui berapa banyak verteks yang ada di sub pohon
POHON BINAR 7.1 POHON. Gambar 7.1. Contoh pohon berakar
POHON BINAR 7.1 POHON Pohon atau tree adalah salah satu bentuk graph terhubung yang tidak mengandung sirkuit. Karena merupakan graph terhubung, maka pada pohon selalu terdapat path atau jalur yang menghubungkan
Struktur Data & Algoritma
Struktur Data & Algoritma AVL Tree Suryana Setiawan, Ruli Manurung & Ade Azurat ( Denny (acknowledgments: Fasilkom UI SUR HMM AA Fasilkom UI - IKI20100/ IKI80110P Semester Ganjil 2009/2010 1 Tujuan Memahami
BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan
1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan
ALGORITMA PENCARIAN (1)
ALGORITMA PENCARIAN (1) Permasalahan, Ruang Keadaan, Pencarian Farah Zakiyah Rahmanti Diperbarui 2016 Overview Deskripsi Permasalahan dalam Kecerdasan Buatan Definisi Permasalahan Pencarian Breadth First
Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum
Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum Made Mahendra Adyatman 13505015 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung
MAKALAH DESAIN DAN ANALISIS ALGORITMA BINARY TREE DISUSUN OLEH : 1. Nadim Achmad ( ) 2. Dzurratul Ulya ( )
MAKALAH DESAIN DAN ANALISIS ALGORITMA BINARY TREE DISUSUN OLEH : 1. Nadim Achmad (105060 807111009) 2. Dzurratul Ulya (105060807111120) 3. Safer Yusuf (105060803111004 ) PROGRAM TEKNOLOGI INFORMASI DAN
