TERAPAN POHON BINER 1
|
|
|
- Siska Johan
- 10 tahun lalu
- Tontonan:
Transkripsi
1 TERAPAN POHON BINER 1
2 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2
3 Pohon Ekspresi Pohon ekspresi ialah pohon biner dengan daun berupa operand dan simpul dalam juga akar berupa operator. Tanda kurung tidak diperlukan bila suatu ekspresi aritmetik direpresentasikan sebagai pohon biner. Digunakan oleh compiler bahasa tingkat tinggi untuk mengevaluasi ekspresi yang ditulis dalam notasi infix, postfix dan prefix. 3
4 INFIX : operator diantara 2 operand PREFIX : operator mendahului 2 operand POSTFIX : kedua operand mendahului operator 4
5 Infix, Prefix dan Postfix Infix : operator berada di antara dua buah operand. Prefix : operator mendahului operand. Postfix : operand mendahului operatornya. 5
6 6
7 7
8 8
9 9
10 Pohon Keputusan Pohon keputusan digunakan untuk memodelkan persoalan yang terdiri dari serangkaian keputusan yang mengarah ke solusi. Tiap simpul dalam menyatakan keputusan, sedangkan daun menyatakan solusi. 10
11 1. Pohon Merentang Setiap graf terhubung mempunyai paling sedikit satu buah pohon merentang. Graf yang tidak mengandung sirkuit adalah pohon merentang itu sendiri. Pada graf yang mempunyai sirkuit, pohon merentangnya diperoleh dengan cara memutuskan sirkuit yang ada. 11
12 Pohon Merentang Minimum (Minimum spanning tree) Di antara semua pohon merentang di G, pohon merentang yang berbobot minimum dinamakan pohon merentang minimum Terdapat 2 buah algoritma membangun pohon merentang minimum, yaitu : Algoritma Prim. Algoritma Kruskal. 12
13 1. Algoritma Prim Algoritma Prim membentuk pohon merentang minimum langkah per langkah. Pada setiap langkah diambil sisi dari graf G yang mempunyai bobot minimum namun terhubung dengan pohon merentang minimum T yang telah terbentuk. 13
14 Langkah-langkah Algoritma Prim 1. Ambil sisi dari graf G yang berbobot minimum, masukkan ke dalam T. 2. Pilih sisi (u, v), yang mempunyai bobot minimum dan bersisian dengan simpul di T, tetapi (u, v) tidak membentuk sirkuit di T. Tambahkan (u, v) ke dalam T. 3. Ulangi langkah ke 2 sebanyak n 2 kali. Jumlah langkah seluruhnya di dalam Algoritma Prim adalah : 1 + (n 2) = n 1, yaitu sebanyak jumlah sisi di dalam pohon merentang dengan n buah simpul. 14
15 2. Algoritma Kruskal Pada Algoritma Kruskal, sisi-sisi graf diurutkan terlebih dahulu berdasarkan bobotnya dari kecil ke besar. Perbedaan prinsip antara algoritma Prim dan Kruskal adalah : Jika pada algoritma Prim, sisi yang dimasukkan ke dalam T harus bersisian dengan sebuah simpul di T, maka pada algoritma Kruskal sisi yang dipilih tidak perlu bersisian dengan sebuah simpul di T asalkan penambahan sisi tersebut tidak membentuk sirkuit. 15
16 Langkah-langkah Algoritma Kruskal Sisi-sisi dari graf diurutkan menaik berdasarkan bobotnya, dari bobot kecil ke bobot besar. 1. T masih kosong. 2. Pilih sisi (u, v) dengan bobot minimum yang tidak membentuk sirkuit di T. Tambahkan (u, v) ke dalam T. 3. Ulangi langkah ke 2 sebanyak n 1 kali. 16
17 Contohnya: Pemerintah akan membangun jalur rel kereta api yang menghubungkan sejumlah kota. Karena biayanya mahal, pembangunan jalur ini tidak perlu menghubungkan langsung dua buah kota, tetapi cukup membangun jalur kereta seperti pohon rentang. Karena dalam sebuah graf mungkin saja terdapat lebih dari satu pohon rentang, maka harus dicari pohon rentang yang mempunyai jumlah jarak terpendek, dengan kata lain harus dicari pohon rentang minimum. a. 45.a 55 c.25.d 30.h 25.c.d 30.h b b 5 e. 15.g e 15.g.f.f 10
18 Soal : Tentukan rentang pohon minimal graf berikut : waniwatining 18
19 2. Pohon Berakar Definisi : Pohon yang sebuah simpulnya diperlakukan sebagai akar dan sisi-sisinya diberi arah sehingga menjadi graf berarah. Akar mempunyai derajat masuk sama dengan nol dan simpul-simpul lainnya berderajat masuk sama dengan satu. 19
20 Simpul yang mempunyai derajat keluar sama dengan nol disebut daun atau simpul terminal. Simpul yang mempunyai derajat keluar tidak sama dengan nol disebut simpul dalam atau simpul cabang. Setiap simpul di pohon dapat dapat dicapai dari akar dengan sebuah lintasan tunggal. 20
21 Sembarang pohon tak berakar dapat diubah menjadi pohon berakar dengan memilih sebuah simpul sebagai akar. Pemilihan simpul yang berbeda akan menghasilkan pohon berakar yang berbeda. Arah sisi di dalam pohon dapat dibuang, karena setiap simpul di pohon harus dicapai dari akar, maka lintasan di dalam pohon berakar selalu dari atas ke bawah. 21
22 6. Terminologi pada Pohon Berakar Anak dan Orang tua. Misalkan x adalah simpul di dalam pohon berakar, simpul y dikatakan anak simpul x jika ada sisi dari simpul x ke simpul y dan simpul x disebut orang tua simpul y. z x y 22
23 Lintasan (path) Lintasan dari simpul v1 ke simpul vk adalah runtunan simpul-simpul v1, v2, v3,., vk sedemikian sehingga vi adalah orangtua dari vi+1 untuk 1 i k. Panjang lintasan adalah jumlah sisi yang dilalui dalam suatu lintasan, yaitu k 1. waniwatining 23
24 Keturunan dan Leluhur Jika terdapat lintasan dari simpul x ke simpul y di dalam pohon, maka x adalah leluhur dari simpul y, dan y adalah keturunan simpul x. Saudara Kandung Simpul yang berorangtua sama adalah saudara kandung satu sama lain. 24
25 Upapohon (Subtree) b a Pohon T dengan upapohon T pada bagian yang dilingkari. Pohon T dengan akar a dan upapohon T dengan akar b. 25
26 Derajat (degree) Derajat sebuah simpul pada pohon berakar adalah jumlah upapohon atau jumlah anak pada simpul tersebut Derajat maksimum dari semua simpul merupakan derajat pohon itu sendiri. 26
27 Aras (level) atau Tingkat Akar mempunyai aras 0, sedangkan aras simpul lainnya = 1 + panjang lintasan dari akar ke simpul tersebut. Tinggi (height) atau Kedalaman (depth) Aras maksimum dari suatu pohon disebut tinggi atau kedalaman, atau tinggi pohon adalah panjang maksimum lintasan dari akar ke daun. 27
28 Pohon Terurut Pohon berakar yang urutan anak-anaknya penting disebut pohon terurut (ordered tree) Pada pohon terurut, urutan anak-anak dari simpul dalam dispesifikasikan dari kiri ke kanan. 28
29 Pohon n-ary Pohon berakar yang setiap simpul cabangnya mempunyai paling banyak n buah anak disebut pohon n-ary. Pohon n-ary dikatakan teratur atau penuh jika setiap simpul cabangnya mempunyai tepat m buah anak. 29
Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013
Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013 Pohon (Tree) Pohon (Tree) didefinisikan sebagai graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung, maka pohon selalu
Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut
KATA PENGANTAR Puji syukur penyusun panjatkan ke hadirat Allah Subhanahu wata?ala, karena berkat rahmat-nya kami bisa menyelesaikan makalah yang berjudul Catatan Seorang Kuli Panggul. Makalah ini diajukan
Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon
1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan pohon
8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 POHON DAN PEWARNAAN GRAF Tujuan Mahasiswa
Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1
Pohon (TREE) Matematika Deskrit By @Ir. Hasanuddin Sirait, MT 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon
Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon
P o h o n. Definisi. Oleh: Panca Mudji Rahardjo. Pohon. Adalah graf tak berarah terhubung yang tidak mengandung sirkuit.
P o h o n Oleh: Panca Mudji Rahardjo Definisi Pohon Adalah graf tak berarah terhubung yang tidak mengandung sirkuit. Contoh: G 1 dan G 2 pohon, G 3 dan G 4 bukan pohon. 1 Definisi Hutan (forest) Adalah
DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2
1 POHON DEFINISI Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan
Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1
Pohon Bahan Kuliah IF2120 Matematika Diskrit Program Studi Teknik Informatika ITB Rinaldi M/IF2120 Matdis 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a
Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung)
POHON (TREE) Pohon Definisi Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk
TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM :
TUGAS MAKALAH INDIVIDUAL Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : 13505013 Institut Teknologi Bandung Desember 2006 Penggunaan Struktur Pohon dalam Informatika Dwitiyo Abhirama
MATEMATIKA DISKRIT II ( 2 SKS)
MATEMATIKA DISKRIT II ( 2 SKS) Rabu, 18.50 20.20 Ruang Hard Disk PERTEMUAN XI, XII RELASI Dosen Lie Jasa 1 Matematika Diskrit Graf (lanjutan) 2 Lintasan dan Sirkuit Euler Lintasan Euler ialah lintasan
METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER
METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER Muqtafi Akhmad (13508059) Teknik Informatika ITB Bandung e-mail: [email protected] ABSTRAK Dalam makalah ini akan dibahas tentang
Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial
Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Stephen (35225) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z POHON BINER Tinaliah, S.Kom DEFINISI Pohon (dalam struktur data) struktur berisi sekumpulan elemen dimana salah satu elemen adalah akar (root) dan elemen-elemen
Aplikasi Pohon pada Pohon Binatang (Animal Tree)
Aplikasi Pohon pada Pohon Binatang (Animal Tree) Cilvia Sianora Putri (13512027) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian
Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Rita Wijaya/13509098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Teori Pohon. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865
Teori Pohon Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 1 Pohon Suatu graf tak berarah terhubung yang Hdak memiliki sirkuit
Pohon (Tree) Contoh :
POHON (TREE) Pohon (Tree) didefinisikan sebagai graph terhubung yang tidak mengandung sirkuit. Sedangkan Hutan (Forest) adalah graph yang tidak mengandung sirkuit. Jadi pohon adalah hutan yang terhubung.
BAB IV POHON. Diktat Algoritma dan Struktur Data 2
iktat lgoritma dan Struktur ata 2 V POON efinisi Pohon Struktur pohon merupakan kumpulan elemen yang salah satu elemennya disebut akar dan sisa elemennya terpecah menjadi sejumlah himpunan yang saling
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Graf adalah salah satu metode yang sering digunakan untuk mencari solusi dari permasalahan diskrit dalam dunia nyata. Dalam kehidupan sehari-hari, graf digunakan untuk
Aplikasi Pohon dan Graf dalam Kaderisasi
Aplikasi Pohon dan Graf dalam Kaderisasi Jonathan - 13512031 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum
Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Gerard Edwin Theodorus - 13507079 Jurusan Teknik Informatika ITB, Bandung, email: [email protected] Abstract Makalah ini
PENGETAHUAN DASAR TEORI GRAF
PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler
Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional
Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional Azby Khilfi M. NIM : 13506018 Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail
Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum
Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum Made Mahendra Adyatman 13505015 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung
BAB 1 PENDAHULUAN. 1.1 Latar belakang
13 BAB 1 PENDAHULUAN 1.1 Latar belakang Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, tidak lepas dari peran ilmu matematika, yaitu ilmu yang menjadi solusi secara konseptual dalam menyelesaikan
BAB VII POHON BINAR POHON
BAB VII POHON BINAR POHON Pohon atau tree adalah salah satu bentuk graph terhubung yang tidak mengandung sirkuit. Karena merupakan graph terhubung, maka pada pohon selalu terdapat path atau jalur yang
Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal
Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Salman Muhammad Ibadurrahman NIM : 13506106 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha
PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM
PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM Kodirun 1 1 Jurusan Matematika FMIPA Universitas Haluoleo, Kendari e-mail: [email protected] Abstrak Masalah yang sering
Penerapan Pohon Keputusan pada Pemilihan Rencana Studi Mahasiswa Institut Teknologi Bandung
Penerapan Pohon Keputusan pada Pemilihan Rencana Studi Mahasiswa Institut Teknologi Bandung Dzar Bela Hanifa Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Studi Algoritma Optimasi dalam Graf Berbobot
Studi Algoritma Optimasi dalam Graf Berbobot Vandy Putrandika NIM : 13505001 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail : [email protected]
Pemrograman Algoritma Dan Struktur Data
MODUL PERKULIAHAN Modul ke: 14Fakultas Agus FASILKOM Pemrograman Algoritma Dan Struktur Data ADT BINARY TREE Hamdi.S.Kom,MMSI Program Studi Teknik Informatika ISTILAH-ISTILAH DASAR Pohon atau Tree adalah
STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit.
Pertemuan 9 STRUKTUR POHON (TREE) ISTILAH-ISTILAH DASAR Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada Pohon (Tree)
ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM
ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan
STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit.
Pertemuan 9 STRUKTUR POHON (TREE) ISTILAH-ISTILAH DASAR Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada Pohon (Tree)
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya
Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa
Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa Darwin Prasetio ( 001 ) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem
Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Arie Tando (13510018) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
BAB 7 POHON BINAR R S U
BAB 7 POHON BINAR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya
TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada
II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf
Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer
Membangun Pohon Merentang Minimum Dari Algoritma Prim dengan Strategi Greedy Doni Arzinal 1 Jursan Teknik Informatika, Institut Teknologi Bandung Labtek V, Jl. Ganesha 10 Bandung 1 [email protected],
Pohon. Modul 4 PENDAHULUAN. alam modul-modul sebelumnya Anda telah mempelajari graph terhubung tanpa sikel, misalnya model graph untuk molekul C 4
Modul 4 Pohon Dr. Nanang Priatna, M.Pd. D PENDAHULUAN alam modul-modul sebelumnya Anda telah mempelajari graph terhubung tanpa sikel, misalnya model graph untuk molekul C 4 H 10, hierarki administrasi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul
Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari
Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang
Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang berbeda. Bilangan kromatik dari G adalah jumlah warna
I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc
I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA- Dosen Pengasuh : Ir. Bahder Djohan, MSc Tugas ke Pertemuan TIK Soal-soal Tugas. Mendefinisikan Proposisi Membedakan
Aplikasi Pohon Keputusan dalam Pemilihan Penerima Beasiswa UKT
Aplikasi Pohon Keputusan dalam Pemilihan Penerima Beasiswa UKT Renjira Naufhal Dhiaegana 135160141 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Aplikasi Graf dalam Rute Pengiriman Barang
Aplikasi Graf dalam Rute Pengiriman Barang Christ Angga Saputra - 09 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 0, Indonesia
Penerapan Algoritma Prim dan Kruskal Acak dalam Pembuatan Labirin
Penerapan Algoritma Prim dan Kruskal Acak dalam Pembuatan Labirin Jason Jeremy Iman 13514058 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Gambar 6. Graf lengkap K n
. Jenis-jenis Graf Tertentu Ada beberapa graf khusus yang sering dijumpai. Beberapa diantaranya adalah sebagai berikut. a. Graf Lengkap (Graf Komplit) Graf lengkap ialah graf sederhana yang setiap titiknya
Penerapan Pohon dalam Kombinasi Gerakan Karakter Game
Penerapan Pohon dalam Kombinasi Gerakan Karakter Game Daniel Christian P. B / 13515020 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
INTRODUCTION TO GRAPH THEORY LECTURE 2
INTRODUCTION TO GRAPH THEORY LECTURE Operasi-Operasi Pada Graph Union Misal G dan H adalah dua graph yang saling asing. Union G H adalah graph dengan V(G H)=V(G) V(H) dan E(G H)=E(G) E(H). Join Join dari
ALGORITMA GREEDY : MINIMUM SPANNING TREE. Perbandingan Kruskal dan Prim
ALGORITMA GREEDY : MINIMUM SPANNING TREE Perbandingan Kruskal dan Prim AGENDA Pendahuluan Dasar Teori Contoh Penerapan Algoritma Analisis perbandingan algoritma Prim dan Kruskal Kesimpulan PENDAHULUAN
Penerapan Pohon Biner dalam Proses Pengamanan Peer to Peer
Penerapan Pohon Biner dalam Proses Pengamanan Peer to Peer Eka Yusrianto Toisutta - NIM : 13504116 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganesha 10, Bandung email: [email protected]
Penerapan Pohon Untuk Menyelesaikan Masalah Labirin
Penerapan Pohon Untuk Menyelesaikan Masalah Labirin Andru Putra Twinanda Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Bandung 40135 email: [email protected]
INFIX, POSTFIX, dan PREFIX Bambang Wahyudi
INFIX, POSTFIX, dan PREFIX Bambang Wahyudi ([email protected]) Ada tiga bentuk penulisan notasi matematis di komputer, satu bentuk adalah yang umum digunakan manusia (sebagai input di komputer)
Pemanfaatan Pohon dalam Realisasi Algoritma Backtracking untuk Memecahkan N-Queens Problem
Pemanfaatan Pohon dalam Realisasi Algoritma Backtracking untuk Memecahkan N-Queens Problem Halida Astatin (13507049) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
BAB 2. LANDASAN TEORI 2.1. Algoritma Huffman Algortima Huffman adalah algoritma yang dikembangkan oleh David A. Huffman pada jurnal yang ditulisnya sebagai prasyarat kelulusannya di MIT. Konsep dasar dari
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 8
POHON / TREE Dalam dunia informatika, pohon memegang peranan penting bagi seorang programmer untuk menggambarkan hasil karyanya. Bagi seorang user, setiap kali berhadapan dengan monitor untuk menjalankan
KLASIFIKASI BINARY TREE
TREE (Struktur Pohon) TREE merupakan struktur data yang menyatakan simpul-simpul data sebagai hubungan hirarki (parent and child structured), dimana simpul yang mempuyai derajat/hirarki lebih tinggi berada
STUDI OPTIMALISASI JUMLAH PELABUHAN TERBUKA DALAM RANGKA EFISIENSI PEREKONOMIAN NASIONAL
BAB III METODOLOGI 3.1 POLA PIKIR Proses analisis diawali dari identifikasi pelabuhan yang terbuka bagi perdagangan luar negeri, meliputi aspek legalitas, penerapan ISPS Code dan manajemen pengelolaan
Algoritma Greedy (lanjutan)
Algoritma Greedy (lanjutan) 5. Penjadwalan Job dengan Tenggat Waktu (Job Schedulling with Deadlines) Persoalan: -Adan buah job yang akan dikerjakan oleh sebuah mesin; -tiapjob diproses oleh mesin selama
BAB VII Tujuan 7.1 Deskripsi dari Binary Tree
A VII Tree Tujuan 1. Mempelajari variasi bagian-bagian dari tree sebagai suatu bentuk struktur tak linier 2. Mempelajari beberapa hubungan fakta yang direpresentasikan dalam sebuah tree, sehingga mampu
LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf
Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex
Optimalisasi Algoritma Pencarian Data Memanfaatkan Pohon Biner Terurut
Optimalisasi Algoritma Pencarian Data Memanfaatkan Pohon Biner Terurut Mohammad Rizky Adrian 1) 1) Jurusan Teknik Informatika ITB, Bandung 40132, email: [email protected] Abstract Makalah ini
BAB 7 POHON BINAR. Contoh : Pohon berakar T R S U
BB 7 POHON BINR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam
Struktur dan Organisasi Data 2 POHON BINAR
POHON BINR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam pohon.
Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER
Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER DEFINISI POHON (TREE) Pohon (Tree) termasuk struktur non linear yang didefinisikan sebagai data yang terorganisir dari suatu item informasi cabang yang
Pohon dan Aplikasinya dalam Bagan Silsilah Keturunan
Pohon dan Aplikasinya dalam Bagan Silsilah Keturunan Edmund Ophie 13512095 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Variasi Pohon Pencarian Biner Seimbang
Variasi Pohon Pencarian Biner Seimbang Tony 13516010 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia [email protected]
Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana
Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana Muhammad Fiqri Muthohar NIM : 13506084 1) 1) Jurusan Teknik Informatika ITB, Bandung, email: [email protected] Abstrak makalah
SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11
. Kompetensi 1. Utama STUN R PERKULIHN (SP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11 Mahasiswa dapat memahami tentang konsep pemrograman menggunakan
BAB 1 PENDAHULUAN. minimum secara langsung didasarkan pada algoritma MST (Minimum Spanning
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Hubungan antara titik-titik dalam graf kadang-kadang perlu diperjelas. Hubungannya tidak cukup hanya menunjukkan titik-titik mana yang berhubungan langsung, tetapi
STRUKTUR POHON & KUNJUNGAN POHON BINER
STRUKTUR POHON & KUNJUNGAN POHON BINER Pohon (Tree) termasuk struktur non linear yang didefinisikan sebagai data yang terorganisir dari suatu item informasi cabang yang saling terkait Istilah istilah Dalam
ANALISIS ALGORITMA PEMBANGUN POHON EKSPRESI DARI NOTASI PREFIKS DAN POSTFIKS
ANALISIS ALGORITMA PEMBANGUN POHON EKSPRESI DARI NOTASI PREFIKS DAN POSTFIKS R. Raka Angling Dipura NIM : 13505056 Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jalan Ganesha 10, Bandung
I. PENDAHULUAN II. DASAR TEORI. Penggunaan Teori Graf banyak memberikan solusi untuk menyelesaikan permasalahan yang terjadi di dalam masyarakat.
Aplikasi Pohon Merentang (Spanning Tree) Dalam Pengoptimalan Jaringan Listrik Aidil Syaputra (13510105) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Penerapan Pohon dan Himpunan dalam Klasifikasi Bahasa
Penerapan Pohon dan Himpunan dalam Klasifikasi Bahasa Jeremia Jason Lasiman - 13514021 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik Filman Ferdian - 13507091 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha
6. TREE / BINARY TREE
6. TREE / BINARY TREE TUJUAN PRAKTIKUM 1. Praktikan mengenal Struktur data Tree. 2. Praktikan mengenal jenis-jenis tree, seperti binary tree. 3. Praktikan mengenal istilah-istilah yang terdapat didalam
Penyelesaian Five Coins Puzzle dan Penghitungan Worst-case Time dengan Pembuatan Pohon Keputusan
Penyelesaian Five Coins Puzzle dan Penghitungan Worst-case Time dengan Pembuatan Pohon Keputusan Lio Franklyn Kemit (13509053) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
Pertemuan 10. Tumpukan (Stack) Dipersiapkan oleh : Boldson Herdianto. S., S.Kom., MMSI.
Pertemuan 10 Tumpukan (Stack) Dipersiapkan oleh : Boldson Herdianto. S., S.Kom., MMSI. Definisi Tumpukan adalah kumpulan elemen-elemen data yang disimpan dalam satu lajur linier. Kumpulan elemen-elemen
Penerapan Pohon dalam Algoritma Expectiminimax untuk Permainan Stokastik
Penerapan Pohon dalam Algoritma Expectiminimax untuk Permainan Stokastik Jordhy Fernando 13515004 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
KUNJUNGAN PADA POHON BINER
KUNJUNGAN PADA POHON BINER Kunjungan pada Pohon Binar merupakan salah satu operasi yang sering dilakukan pada suatu Pohon Binar tepat satu kali(binary Tree Traversal). Operasi ini terbagi menjadi 3 bentuk:
Algoritma Greedy (lanjutan)
Algoritma Greedy (lanjutan) 5. Penjadwalan Job dengan Tenggang Waktu (Job Schedulling with Deadlines) Persoalan: - Ada n buah job yang akan dikerjakan oleh sebuah mesin; - tiap job diproses oleh mesin
RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL
RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL Naskah Publikasi diajukan oleh: Trisni jatiningsih 06.11.1016 kepada JURUSAN TEKNIK INFORMATIKA SEKOLAH TINGGI MANAJEMEN
Penerapan Graf dan Pohon pada Klasifikasi Aplikasi di Play Store
Penerapan Graf dan Pohon pada Klasifikasi Aplikasi di Play Store Amal Qurany 13514078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
Aplikasi Pohon Keputusan dalam Pendaratan Pesawat Terbang
Aplikasi Pohon Keputusan dalam Pendaratan Pesawat Terbang Putu Arya Pradipta - 13515017 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
Implementasi Pohon Keputusan untuk Membangun Jalan Cerita pada Game Engine Unity
Implementasi Pohon Keputusan untuk Membangun Jalan Cerita pada Game Engine Unity Winarto - 13515061 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
PEMAMPATAN DATA DENGAN KODE HUFFMAN (APLIKASI POHON BINER)
PEAPATAN DATA DENGAN KODE HUFFAN (APLIKASI POHON BINER) Winda Winanti (350507) Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung E-mail : [email protected] Abstraksi
I. PENDAHULUAN. Gambar 1. Contoh-contoh graf
Quad Tree dan Contoh-Contoh Penerapannya Muhammad Reza Mandala Putra - 13509003 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
Penerapan strategi runut-balik dalam penyelesaian permainan puzzle geser
Penerapan strategi runut-balik dalam penyelesaian permainan puzzle geser Dimas Angga 13510046 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penerapan Algoritma Branch and Bound pada Penentuan Staffing Organisasi dan Kepanitiaan
Penerapan Algoritma Branch and Bound pada Penentuan Staffing Organisasi dan Kepanitiaan Mikhael Artur Darmakesuma - 13515099 Program Studi Teknik Informaitka Sekolah Teknik Elektro dan Informatika Institut
MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM
MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM Pudy Prima (13508047) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika
NASKAH UJIAN UTAMA. JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016
NASKAH UJIAN UTAMA MATA UJIAN : LOGIKA DAN ALGORITMA JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016 NASKAH UJIAN INI TERDIRI DARI 80 SOAL PILIHAN GANDA
Aplikasi Pohon dalam Pengambilan Keputusan oleh Sebuah Perusahaan
Aplikasi Pohon dalam Pengambilan Keputusan oleh Sebuah Perusahaan Ahmad Aidin (13513020) Program Sarjana Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Teori graf menurut Munir (2012), merupakan salah satu cabang dari ilmu matematika dengan pokok bahasan yang sudah sejak lama digunakan dan memiliki banyak terapan hingga
Penerapan Pohon Keputusan pada Penerimaan Karyawan
Penerapan Pohon Keputusan pada Penerimaan Karyawan Mathias Novianto - 13516021 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
