Propositional Logic dan Predicate Calculus
|
|
|
- Adi Kartawijaya
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Chapter 2 Propositional Logic dan Predicate Calculus Tujuan Instruksional Khusus Mahasiswa mampu merepresentasikan knowledge ke dalam bentuk propositional logic dan predicate calculus. Mahasiswa mampu menganalisis permasalahan yang direpresentasikan dalam bentuk propositional logic dan predicate calculus. 2.1 Propositional Logic Propositional logic merupakan salah satu bentuk (bahasa) representasi logika yang paling tua dan paling sederhana. Note: Dengan cara ini beberapa fakta dapat digambarkan dan dimanipulasi dengan menggunakan aturan-aturan aljabar Boolean. Propositional logic membentuk statement sederhana atau statement yang kompleks dengan menggunakan propositional connec- 16
2 tive, dimana mekanisme ini menentukan kebenaran dari sebuah statement kompleks dari nilai kebenaran yang direpresentasikan oleh statement lain yang lebih sederhana. Beberapa operator penghubung dasar yang seringkali dipakai dalam propositional logic ditunjukkan dalam Tabel 2.1 sedangkan tabel kebenaran untuk masing-masing operator dapat dilihat pada Tabel 2.2. Table 2.1: Operator Penghubung English Name Connective Name Symbol Conjunction AND Disjunction OR Negation Not Material Implication If-Then Material equivalence Equals Table 2.2: Tabel Kebenaran p q p p q p q p q p q T T F T T T T T F F F T F F F T T F T T F F F T F F T T Pemahaman antara operator penghubung dan tabel kebenaran dapat dijelaskan dengan menggunakan kalimat sederhana (kecuali operator implikasi material). Misalnya, seseorang sedang memegang dua buah benda, pensil dan penghapus. Lalu orang tersebut mengatakan: "saya sedang memegang pensil dan penghapus". Maka kita tahu bahwa peryataan tersebut adalah BENAR (TRUE). Jika kemudian orang tersebut 17
3 mengatakan: "saya sedang memegang pensil dan tinta", maka kita tahu bahwa pernyataan tersebut SALAH (FALSE). Tetapi jika ia mengubah pernyataan menjadi: "saya sedang memegang pensil atau tinta", maka pernyataan tersebut adalah BENAR (TRUE). Satu-satunya kaitan antara operator dan tabel kebenaran yang tidak dapat dijelaskan dengan menggunakan kalimat sederhana adalah implikasi material. Tetapi bukan berarti nilai dari tabel kebenaran tidak benar, karena tabel kebenaran implikasi material telah teruji benar dalam aljabar boolean. Simaklah kutipan berikut: "Material implication as you and many others have noted elsewhere is not the same as what people are talking about in ordinary speech when they say that one thing is implied by another" Arti Dari Operator Penghubung Hubungan variabel dengan operator penghubung dalam propositional logic dapat diartikan seperti dalam Tabel 2.3 di bawah ini. Contoh 1: Tentukan bentuk propositional logic dari kalimat ini: Jika Pluto mengitari matahari, maka Pluto adalah planet, jika tidak demikian maka pluto bukan planet. pm... Pluto mengitari matahari pp... Pluto adalah planet 18
4 Table 2.3: Operator penghubung dan artinya Operator p q p q p q p q Arti p dan q adalah sahih p dan q keduanya sahih p dan q adalah sahih pada saat bersamaan p atau q adalah sahih p dan/atau q adalah sahih paling tidak satu dari p dan p adalah sahih q adalah sahih, jika p sahih jika p sahih, demikian juga q adalah sahih jika p sahih, maka q juga sahih dari p mengikuti q p adalah syarat cukup untuk q q adalah syarat perlu untuk p p sama dengan q p benar-benar sahih jika q adalah sahih p hanya sahih jika q adalah sahih p adalah syarat cukup dan perlu untuk q p adalah sahih jika dan hanya jika q sahih Kalimat di atas dapat ditranslasikan ke dalam bentuk yang lain: Hanya jika Pluto mengitari matahari, maka Pluto adalah planet. Sehingga berdasarkan Tabel 2.3, kalimat tersebut dapat diubah ke dalam bentuk propositional logic: pm pp Contoh 2: Tentukan bentuk propositional logic dari kalimat ini: If Romeo jatuh 19
5 cinta AND Juliet menerima cintanya, THEN Cupid sedang beraksi 1. Contoh 3: Tentukan bentuk propositional logic dari kalimat ini: barangsiapa memahami aturan perkuliahan atau memiliki buku pedoman dan melanggar aturan tersebut dengan sengaja atau tidak akan mendapat hukuman Predicate Calculus Kalkulus predikat, disebut juga logika predikat memberi tambahan kemampuan untuk merepresentasikan pengetahuan dengan lebih cermat dan rinci. Istilah kalkulus disini berbeda dengan istilah kalkulus dalam bidang matematika. Suatu proposisi atau premis dibagi menjadi dua bagian, yaitu AR- GUMEN (atau objek) dan PREDIKAT (keterangan). Argumen adalah individu atau objek yang membuat keterangan. Predikat adalah keterangan yang membuat argumen dan predikat. Dalam suatu kalimat, predikat bisa berupa kata kerja atau bagian kata kerja. Representasi pengetahuan dengan menggunakan predicate calculus merupakan dasar bagi penulisan bahasa pemrograman PROLOG. 1 r(romeo jatuh cinta),j(juliet menerima cinta),c(cupid sedang beraksi), propositional logic: r j c 2 map(memahami aturan perkuliahan),mbp(memiliki buku pedoman),ms(melanggar sengaja ),mts(melanggar tidak sengaja),mh(mendapat hukuman), propositional logic: (map mbp) (ms mts) mh 20
6 Misalnya sebuah proposisi: Rumput berwarna hijau. Dapat dinyatakan dalam bentuk predicate calculus: berwarna(rumput, hijau) Seperti terlihat dalam contoh di atas, dengan menggunakan predicate calculus statemen/kalimat yang lebih kompleks dapat direpresentasikan lebih baik daripada menggunakan propositional logic. Beberapa contoh lain: Proposition : Manusia menjelajah Mars Predicate calculus : Jelajah(manusia, mars) Proposition : Jono menyukai Rebeca Predicate calculus : suka(jono, rebeca) Proposition : Rebeca cantik Predicate calculus : cantik(rebeca) Variabel Dalam predicate calculus huruf dapat digunakan untuk menggantikan argumen. Simbol-simbol juga bisa digunakan untuk merancang beberapa objek atau individu. Contoh: x = Jono, y = Rebeca, maka pernyataan Jono menyukai Rebeca dapat ditulis dalam bentuk predicate calculus: suka(x,y). Dalam beberapa hal variabel dibutuhkan agar pengetahuan dapat diekspresikan dalam kalkulus predikat sehingga nantinya dapat dimanipulasi dengan mudah dalam proses inferensi. 21
7 2.2.2 Fungsi Predicate calculus memperbolehkan penggunaan simbol untuk mewakili fungsi-fungsi. Contoh: ayah(jono)=santoso, ibu(rebeca)=rini. Fungsi juga dapat digunakan bersamaan dengan predikat. Contoh: teman(ayah(jono),ibu(rebeca)) = teman(santoso,rini) Operator Predicate calculus menggunakan operator yang sama seperti operatoroperator yang berlaku pada propositional logic. Contoh: Diketahui dua buah statement sebagai berikut: suka(jono,rebeca) suka(dani,rebeca) Pada 2 predikat diatas, terdapat dua orang menyukai Rebeca. Untuk memberikan pernyataan adanya kecemburuan di antara mereka, maka: Jika suka(x,y) AND suka(z,y), maka TIDAK suka(x,z). atau suka(x,y) suka(z,y) suka(x,z) Dalam predicate calculus di atas, pengetahuan yang tersirat adalah : Jika dua orang pria menyukai wanita yang sama, maka kedua pria itu pasti tidak saling suka (saling membenci). 22
8 2.3 Quantifier Dalam bagian terdahulu, sebuah obyek atau argumen dapat diwakili oleh sebuah variabel, akan tetapi variabel yag telah dibicarakan hanya mewakili sebuah obyek atau individu atau argumen. Bagaimana representasi dapat dilakukan apabila terdapat beberapa obyek? Atau dengan kata lain, bagaimana kuantitas dari sebuh obyek dapat dinyatakan? Variabel dapat dikuantitaskan dengan dua cara, yaitu: Ukuran kuantitas universal, yang berarti untuk semua. Ukuran kuantitas eksistensial, yang berarti ada beberapa. Contoh 1: Proposisi: Semua planet tata-surya mengelilingi matahari. Dapat diekspresikan ke dalam bentuk: X, [planet-tata-surya(x) mengelilingi(x,matahari)]. Contoh 2: Proposisi: Asteroid mengelilingi beberapa planet. Dapat diekspresikan ke dalam bentuk: Y, [planet(y) mengelilingi(asteroid,y)]. Contoh 3: Proposisi: Jika rata-rata nilai dari mahasiswa lebih besar dari 80%, maka mahasiswa akan mendapat nilai huruf A. Dapat diekspresikan ke dalam bentuk: Nama, X, [mahasiswa(nama) rata-nilai(nama,x) mendapat(x,80) nilai-huruf(nama, "A")]. Latihan: Rubahlah proposisi di bawah ini ke dalam bentuk predicate calculus: 23
9 Garfield adalah seekor kucing. Garfield adalah tokoh kartun. Semua kucing adalah binatang. Setiap orang menyukai seseorang. Semua kucing menyukai atau membenci anjing. Seseorang hanya mencoba melukai seseorang yang mereka tidak suka. Garfield mencoba melukai anjing Rover. 2.4 Model-Model Inferensi Inti dasar dari predicate calculus sebenarnya adalah kemampuan untuk melakukan inferensi logis. Pada proses inferensi kebenaran baru dapat diturunkan dari aksioma-aksioma yang sudah ada. Konsep ini sebenarnya merupakan dasar dari sistem berbasis pengetahuan yang akan kita bicarakan pada Bab selanjutnya. Terdapat beberapa model inferensi yang secara umum digunakan dalam persoalan-persoalan logika, antara lain: Note: Modus Ponens Seperti dijelaskan di atas, melakukan proses inferensi berarti juga menurunkan fakta baru dari beberapa fakta yang sudah ada. Modus Ponens melakukan inferensi dengan mengikuti aturan sebagai berikut: Jika pernyataan p dan (p q) adalah benar, maka dapat ditarik kesimpulan bahwa q adalah benar. 24
10 Modus Ponens merupakan dasar bagi sistem berbasis aturan (rulebased system). Sebagai contoh perhatikan pernyataan di bawah ini: Jika seseorang rajin belajar maka ia bisa menjadi sarjana Jika representasikan dalam bentuk predicate calculus, menjadi: X, [rajin-belajar(x) jadi-sarjana(x)] Apabila sebuah fakta (pernyataan) ditemukan dalam database seperti: rajin-belajar(alex) maka melalui Modus Ponens, dapat ditarik kesimpulan: jadi-sarjana(alex) Modus Tolens Model inferensi yang lain disebut sebagai Modus Tolens yang dinyatakan dengan rumusan: Jika (p q) adalah benar, dan q tidak benar, maka p tidak benar. Sebagai contoh, dengan menggunakan pernyataan pada contoh terdahulu ditemukan sebuah fakta sebagai berikut: jadi-sarjana(alex) maka dengan menggunakan Modus Tolens dapat ditarik kesimpulan: rajin-belajar(alex) 25
11 2.5 Automated Reasoning Ada tiga macam metoda reasoning yang secara umum digunakan yaitu: Deduksi (Deduction), Abduksi (Abduction) dan Induksi (Induction). Deduksi Deduksi didefinisikan sebagai: reasoning dari fakta yang sudah diketahui menuju fakta yang belum diketahui, dari hal-hal umum menuju ke hal-hal spesifik, dari premis menuju ke kesimpulan logis. Jika obyek A lebih besar dari beberapa obyek B dan obyek B lebih besar daripada obyek C, maka obyek A lebih besar daripada obyek C. Definisi di atas dapat dinyatakan dalam bentuk predicate calculus sebagai: A, B, C, [lebih-besar(a,b) lebih-besar(b,c) lebih-besar(a,c)] Misalkan di dalam sebuah knowledge-based ditemukan fakta-fakta sebagai berikut: lebih-besar(bumi,merkurius) lebih-besar(yupiter,bumi) maka dengan menggunakan reasoning deduktif dapat ditarik suatu kesimpulan: lebih-besar(yupiter,merkurius) Abduksi Abduksi adalah metoda reasoning yang sering dipakai untuk memberikan/menghasilkan penjelasan terhadap fakta. Berbeda dengan metoda deduksi, pada metoda 26
12 ini tidak ada jaminan bahwa kesimpulan yang didapat selalu benar. Sebagai contoh, sebuah aturan seperti pada contoh terdahulu dituliskan sebagai berikut: X, [rajin-belajar(x) jadi-sarjana(x)] Misalkan didapati bahwa Alex telah diwisuda, maka bentuk predicate calculus nya adalah: jadi-sarjana(alex) Dengan menggunakan abduksi dapat disimpulkan bahwa: rajin-belajar(alex) Tetapi tidak ada jaminan bahwa kesimpulan tersebut benar. Menjadi sarjana tidak selalu berarti rajin belajar. Induksi Induksi berarti proses reasoning dari fakta-fakta khusus atau kasus-kasus individual menuju ke kesimpulan secara general. Sebagai contoh: P(a) adalah benar P(b) adalah benar maka dengan induksi dapat disimpulkan bahwa: X, P(X) adalah benar Kembali pada contoh terdahulu, misalnya setelah melakukan observasi berulang-berulang ternyata kita menemukan bahwa hanya mahasiswa yang belajar dengan rajin menjadi sarjana, maka dengan induksi dapat ditarik kesimpulan bahwa: X, [jadi-sarjana(x) rajin-belajar(x)] 27
13 2.6 Soal-Soal Latihan 1. Diberikan fakta-fakta dari PROLOG sebagai berikut : job(smith,clerk) job(dell, stock-person) job(jones, clerk) job(putnam, assistant-manager) job(fishback, clerk) job(adams, stock-person) job(philips, manager) job(stevens, vice-president) job(johnson, president) boss(clerk, assistant-manager) boss(stock-person, assistant-manager) boss(assistant-manager, manager) boss(manager, vice-president) boss(vice-president, president) Tentukan respons yang diberikan oleh PROLOG terhadap Query berikut (a)? job(philips, X), boss(x, Y), job(z, Y). (b)? boss(stock-person, X); boss(clerk, X). (c) Jawab kembali kedua pertanyaan di atas apabila ditambahkan Rule : Boss(X, Z) :- boss(x, Y), boss(y, Z) Note: dalam PROLOG operator AND (konjungsi) direpresentasikan dengan tanda komma (,), sedangkan operator OR (disjungsi) direpresentasikan dengan tanda titik-koma (;). Sementara itu tanda := merupakan representasi dari implikasi material dan tanda adalah 28
14 representasi dari negasi. 2. Rubahlah fakta-fakta di bawah ini ke dalam bentuk predicate calculus menggunakan hubungan: meninggal(x), sex(x,y), mengenal(x,y), membenci(x,y), korban(x), pembunuh(x). Lalu dengan menggunakan metoda inferensi tentukan siapa pembunuh dalam kasus ini. Korban meninggal. Korban adalah perempuan. Jono dan Suryo mengenal korban. Korban mengenal Toni dan Jono. Si pembunuh mengenal korban. Susi adalah korban. Jono membenci Susi. Suryo membenci Toni. Toni membenci Jono. Korban mengenal seseorang yang membenci pembunuh tersebut. 29
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Pengetahuan adalah fakta yang timbul karena keadaan (Sutojo, 2011) Contoh : Pengetahuan tentang penyakit, gejala-gejala dan pengobatannya. Pengetahuan tentang tanaman, jenis-jenis
Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono
Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono [email protected] Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang
LOGIKA INFORMATIKA PROPOSITION LOGIC. Materi-2. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
Materi-2 PROPOSITION LOGIC LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta STMIK AMIKOM YOGYAKARTA Jl. Ringroad Utara Condong Catur Yogyakarta. Telp. 0274 884201 Fax 0274-884208 Website:
REPRESENTASI PENGETAHUAN (KNOWLEDGE REPRESENTATION)
REPRESENTASI PENGETAHUAN (KNOWLEDGE REPRESENTATION) KNOWLEDGE IS POWER! Pengetahuan adalah kekuatan! Representasi Pengetahuan : Definisi dlm ES: Metode yang digunakan untuk mengkodekan pengetahuan dalam
LOGIKA INFORMATIKA PROPOSITION LOGIC. Materi 1. Proposition Sentences Notation Interpretation Exercise
Materi 1 PROPOSITION LOGIC Proposition Sentences Notation Interpretation Exercise LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2010 1 Propositions Komponen dasar pembentuk kalimat logika
Logika Informatika. Bambang Pujiarto
Logika Informatika Bambang Pujiarto LOGIKA mempelajari atau berkaitan dengan prinsip-prinsip dari penalaran argument yang valid studi tentang kriteria-kriteria untuk mengevaluasi argumenargumen dengan
Logika Proposisi 1: Motivasi Pohon Urai (Parse Tree)
Logika Proposisi 1: Motivasi Pohon Urai (Parse Tree) Kuliah Logika Matematika Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Logika Proposisi
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Representasi Pengetahuan (Knowledge Representation) dimaksudkan untuk menangkap sifatsifat penting masalah dan membuat infomasi dapat diakses oleh prosedur pemecahan masalah. Bahasa
Buku Pegangan Kuliah SISTEM PAKAR. Jusak Irawan, PhD. Sekolah Tinggi Manajemen Informatika dan Teknik Komputer Surabaya STIKOM
Buku Pegangan Kuliah SISTEM PAKAR Jusak Irawan, PhD Sekolah Tinggi Manajemen Informatika dan Teknik Komputer Surabaya STIKOM Last Updated: November 30, 2006 Chapter 0 Kontrak Perkuliahan Nama Matakuliah
KECERDASAN BUATAN REPRESENTASI PENGETAHUAN (PART - I) ERWIEN TJIPTA WIJAYA, ST., M.KOM
KECERDASAN BUATAN REPRESENTASI PENGETAHUAN (PART - I) ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Logika Logika Predikat Pengukuran Kuantitas PENGETAHUAN Diklasifikasikan menjadi 3 : 1. Procedural
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
Logika Proposisi. Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic)
Logika Proposisi Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic) Logika Proposisional Tujuan pembicaraan kali ini adalah untuk menampilkan suatu bahasa daripada kalimat abstrak
Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences
Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.
Dasar-dasar Logika. (Review)
Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat
TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8
P a g e 8 TABEL KEBENARAN A. Logika Proposisional dan Predikat Logika proposional adalah logika dasar yang harus dipahami programmer karena logika ini yang menjadi dasar dalam penentuan nilai kebenaran
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Basis Pengetahuan Langkah pertama dalam membuat sistem kecerdasan buatan adalah membangun basis pengetahuan Digunakan oleh motor inferensi dalam menalar dan mengambil kesimpulan
PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
1 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2 Properties of Sentences Adalah sifat-sifat yang dimiliki
REPRESENTASI PENGETAHUAN. Pertemuan 6 Diema Hernyka Satyareni, M. Kom
REPRESENTASI PENGETAHUAN Pertemuan 6 Diema Hernyka Satyareni, M. Kom KOMPETENSI DASAR Mahasiswa dapat merepresentasi pengetahuan dalam Sistem Intelegensia MATERI BAHASAN Logika Jaringan Semantik Frame
MATERI 1 PROPOSITIONAL LOGIC
MATERI 1 PROPOSITIONAL LOGIC 1.1 Pengantar Beberapa pernyataan (statement) dapat langsung diterima kebenarannya tanpa harus tahu kebenaran pembentuknya Ada kehidupan di Bulan atau tidak ada kehidupan di
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
Kecerdasan Buatan. Representasi Pengetahuan & Penalaran... Pertemuan 05. Husni
Kecerdasan Buatan Pertemuan 05 Representasi Pengetahuan & Penalaran... Husni [email protected] http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2013 Outline Pendahuluan Logika Proposisi
Dian Wirdasari, S.Si.,M.Kom
IntelijensiBuatan Dian Wirdasari, S.Si.,M.Kom IntelijensiBuatan Materi-4 Representasi Pengetahuan-1 Dian Wirdasari, S.Si.,M.Kom Definisi: fakta atau kondisi sesuatu atau keadaan yg timbul karena suatu
Representasi Pengetahuan (Bagian 3) Logika dan Himpunan. Pertemuan 6
Representasi Pengetahuan (Bagian 3) Logika dan Himpunan Pertemuan 6 Syllogisme Adalah logika formal pertama yang dikembangkan oleh filsuf Yunani, Aristotle pada abad ke-4 SM. Syllogisme mempunyai dua premises
Bahasan Terakhir... Pencarian Iteratif. Pencarian Adversarial. Simulated Annealing Pencarian Tabu Mean Ends. Minimax (Min-Max) Alpha-Beta Pruning
Bahasan Terakhir... Pencarian Iteratif Simulated Annealing Pencarian Tabu Mean Ends Pencarian Adversarial Minimax (Min-Max) Alpha-Beta Pruning Tugas Hard Copy (Lanjutan...) Pencarian Iteratif Simulated
IMPLEMENTASI STRATEGI PERLAWANAN UNTUK PEMBUKTIAN VALIDITAS ARGUMEN DENGAN METODE REDUCTIO AD ABSURDUM
IMPLEMENTASI STRATEGI PERLAWANAN UNTUK PEMBUKTIAN VALIDITAS ARGUMEN DENGAN METODE REDUCTIO AD ABSURDUM Abstrak Pembuktian validitas argumen dengan menggunakan tabel kebenaran memerlukan baris dan kolom
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).
Knowledge Representation
Kecerdasan Buatan Pertemuan 2 Knowledge Representation IT-EEPIS Basis Pengetahuan Langkah pertama untuk membangun Kecerdasan Buatan adalah bagaimana membangun sebuah knowledge base Selanjutnya kita akan
Berdasarkan tabel 1 diperoleh bahwa p q = q p.
PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus
Refreshing Materi Kuliah Semester Pendek 2010/2011. Logika dan Algoritma. Heri Sismoro, M.Kom.
Refreshing Materi Kuliah Semester Pendek 2010/2011 Logika dan Algoritma Heri Sismoro, M.Kom. STMIK AMIKOM YOGYAKARTA 2011 Materi 1. Logika Informatika Adalah logika dasar dalam pembuatan algoritma pada
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Proposisi adalah pernyataan yang dapat ditentukan nilai kebenarannya, bernilai benar atau salah tetapi tidak keduanya. Sedangkan, Kalkulus Proposisi (Propositional
MODUL 3 OPERATOR LOGIKA
STMIK STIKOM BALIKPAPAN 1 MODUL 3 OPERATOR LOGIKA 1. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Operator Logika 2. Fokus Pembahasan Materi Pokok : 1. Operator Logika Konjungsi 2. Operator Logika Disjungsi
Dua bagian dasar sistem kecerdasan buatan (menurut Turban) : dalam domain yang dipilih dan hubungan diantara domain-domain tersebut
REPRESENTASI PENGETAHUAN (MINGGU 3) Pendahuluan Dua bagian dasar sistem kecerdasan buatan (menurut Turban) : - Basis pengetahuan : Berisi fakta tentang objek-objek dalam domain yang dipilih dan hubungan
SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11.54406/ Logika Informatika 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot
Blaise Pascal logika pernyataan atau proposisi logika penghubung atau predikat
Logika Matematika Dalam setiap kegiatan kita dituntut untuk mempunyai pola pikir yang tepat, akurat, rasional dan kritis agar tidak salah dalam penalaran yang menyebabkan kesalahan dalam mengambil kebijakan.
Artificial Intelegence. Representasi Logica Knowledge
Artificial Intelegence Representasi Logica Knowledge Outline 1. Logika dan Set Jaringan 2. Logika Proposisi 3. Logika Predikat Order Pertama 4. Quantifier Universal 5. Quantifier Existensial 6. Quantifier
Refresentasi Pengetahuan 1
ب س م ا ه لل الر ح ن الر ح ي السالم عليكم ورحمة هللا وبركاته PERTEMUAN 08 PENGETAHUAN = data/fakta + mekanisme penalaran Fakta, ide, teori, hubungannya dalam domain tertentu Mekanisme Penalaran KNOWLEDGE
Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I)
Berpikir Komputasi Sisilia Thya Safitri, MT Citra Wiguna, M.Kom 3 Logika Proposisional (I) Capaian Sub Pembelajaran Mahasiswa dapat memahami logika proposisional sebagai dasar penerapan algoritma. Outline
Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta
Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta Logika proposisional merupakan ilmu dasar untuk mempelajari algoritma dan logika yang terkait di dalamnya yang berperanan sangat penting dalam pemrograman.
Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009
Selamat Datang di MA 2151 Matematika Diskrit Semester I 2008/2009 Hilda Assiyatun & Djoko Suprijanto 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 5 th edition. On the
BAB I DASAR-DASAR LOGIKA
BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11.54406/ Logika Informatika Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam seminggu
Representasi Pengetahuan
Representasi Pengetahuan Representasi masalah state space Pengetahuan dan kemampuan melakukan penalaran merupakan bagian terpenting dari sistem yang menggunakan AI. Cara representasi pengetahuan: Logika
Program Kuliah Fondasi Matematika Pertemuan 4-7
Program Kuliah Fondasi Matematika Pertemuan 4-7 Pertemuan 4 Memahami denisi fungsi proposisi Mengidentikasi nilai kebenaran fungsi proposisi Menentukan domain di mana fungsi proposisi bernilai benar Memahami
Knowledge Representation
Entiti Representasi Pengetahuan Knowledge Representation By: Uro Abdulrohim, S.Kom, MT Fakta Adalah kejadian sebenarnya, fakta ini yang akan kita representasikan Representasi dari fakta Bagaimana cara
LOGIKA INFORMATIKA. Bahan Ajar
LOGIKA INFORMATIKA Bahan Ajar Digunakan sebagai salah satu bahan ajar mata kuliah Logika Informatika Oleh Achmad Fauzan TEKNIK INFORMATIKA POLITEKNIK HARAPAN BERSAMA TEGAL 2016 Daftar Isi Daftar Isi ii
PERANAN DOMAIN PENAFSIRAN DALAM MENENTUKAN JENIS KUANTOR 1)
PERANAN DOMAIN PENAFSIRAN DALAM MENENTUKAN JENIS KUANTOR 1) Septilia Arfida 2) Jurusan Teknik Informatika, Informatics & Business Institute Darmajaya Jl. Z.A Pagar Alam No.93 Bandar Lampung Indonesia 35142Telp:
BAB 3 TABEL KEBENARAN
BAB 3 TABEL KEBENARAN 1. Pendahuluan Logika adalah ilmu tentang penalaran (reasoning). Penalaran berarti mencari bukti validitas dari suatu argumen, mencari konsistensi dan pernyataan-pernyataan, dan membahas
Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa
Selamat Datang di MA 2251 Matematika Diskrit Semester II, 2016/2017 Rinovia Simanjuntak & Saladin Uttunggadewa 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition,
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro
Selamat Datang di MA 2151 Matematika Diskrit Semester I, 2012/2013 Rinovia Simanjuntak & Edy Tri Baskoro 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition, 2007.
LOGIKA. Ratna Wardani Pendidikan Teknik Informatika. 2 September 2007 Pertemuan-1-2 1
LOGIKA Ratna Wardani Pendidikan Teknik Informatika 2 September 2007 Pertemuan-1-2 1 Materi Perkuliahan Logical Connectives Tabel Kebenaran 2 September 2007 Pertemuan-1-2 2 Arti Kalimat Arti kalimat = nilai
Representasi Kalimat Logika ke dalam Matriks Trivia
Representasi Kalimat Logika ke dalam Matriks Trivia Rio Chandra Rajagukguk 13514082 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Farah Zakiyah Rahmanti, M.T Overview Definisi Representasi Pengetahuan Entitas Representasi Pengetahuan Kategori dari Representasi Ilustrasi Representasi Pengetahuan Logika Contoh
q = Socrates is a man r = Socrates is mortal Bila dibuat tabel kebenaran, hasilnya invalid.
METODE INFERENSI (2) KETERBATASAN LOGIKA PROPOSISI - Perhatikan contoh berikut : All men are mortal Socrates is a man Therefore, Socrates is mortal Misal : p = All men are mortal q = Socrates is a man
SINTAKS DAN SEMANTIK PADA LOGIKA PROPOSISI. Matematika Logika Semester Ganjil 2011/2012
SINTAKS DAN SEMANTIK PADA LOGIKA PROPOSISI Matematika Logika Semester Ganjil 2011/2012 PROPOSISI Proposisi atau kalimat dalam logika proposisi bisa berupa Atom/kalimat sederhana Kalimat kompleks, komposisi
Soal Ujian Akhir Semester Pendek TA. 2006/2007 D3-Manajemen Informatika
Soal Ujian Akhir Semester Pendek TA. 2006/2007 D3-Manajemen Informatika Mata Ujian : Logika dan Algoritma Dosen : Heri Sismoro, S.Kom., M.Kom. Hari, tanggal : Selasa, 07 Agustus 2007 Waktu : 100 menit
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.1.0.2009 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi -
RENCANA PEMBELAJARAN
ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Logika Informatika Semester : Kode :
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
2.1. Definisi Logika Proposisi Logika proposisi Atomic proposition compound proposition
2. LOGIKA PROPOSISI 2.1. Definisi Logika Proposisi Logika proposisi adalah logika pernyataan majemuk yang disusun dari pernyataanpernyataan sederhana yang dihubungkan dengan penghubung Boolean (Boolean
PTI 206 Logika. Semester I 2007/2008. Ratna Wardani
PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari
Teori Dasar Logika (Lanjutan)
Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah
DASAR-DASAR LOGIKA. Membangun Penalaran Yang Baik. Sujanti, M.Ikom. Modul ke: Fakultas ILMU KOMUNIKASI. Program Studi Hubungan Masyarakat
Modul ke: 06 Ety Fakultas ILMU KOMUNIKASI DASAR-DASAR LOGIKA Membangun Penalaran Yang Baik Sujanti, M.Ikom. Program Studi Hubungan Masyarakat Dasar-dasar Logika Membangun Penalaran Yang Baik 1. Mengimplementasikan
Representasi Pengetahuan : LOGIKA
Representasi Pengetahuan : LOGIKA Representasi Pengetahuan : LOGIKA 1/16 Outline Logika dan Set Jaringan Logika Proposisi Logika Predikat Order Pertama Quantifier Universal Quantifier Existensial Quantifier
LOGIKA INFORMATIKA. Bahan Ajar
LOGIKA INFORMATIKA Bahan Ajar Digunakan sebagai salah satu bahan ajar mata kuliah Logika Informatika Oleh Achmad Fauzan TEKNIK INFORMATIKA POLITEKNIK HARAPAN BERSAMA TEGAL 2016 Bab 1 Pengantar Logika Proposisional
METODE INFERENSI. Level 2. Level 3. Level 4
METODE INFERENSI Tree (Pohon) dan Graph - Tree (pohon) adalah suatu hierarki struktur yang terdiri dari Node (simpul/veteks) yang menyimpan informasi atau pengetahuan dan cabang (link/edge) yang menghubungkan
Logika Matematika. Bab 2: Kalkulus Proposisi. Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan
Logika Matematika Bab 2: Kalkulus Proposisi Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan 1 Kalkulus Proposisi-Pendahuluan kalkulus proposisi merupakan metoda untuk
CALCULUS PREDICATE, SENTENCES REPRESENTATION LECTURE 8. DR. Herlina Jayadianti., ST., MT
CALCULUS PREDICATE, SENTENCES REPRESENTATION LECTURE 8 DR. Herlina Jayadianti., ST., MT Materi Apa itu kalkulus predikat Simbol, term, proposisi, kalimat Subterm, subkalimat Representasi kalimat Variabel
BAB III REPRESENTASI PENGETAHUAN
BAB III REPRESENTASI PENGETAHUAN Basis pengetahuan dan kemampuan untuk melakukan penalaran merupakan bagian terpenting dari sistem yang menggunakan kecerdasan buatan. Meskipun suatu sistem memiliki banyak
Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika
Pengantar Logika 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika. Tetapi,
Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan
Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya
INTELEGENSI BUATAN. Pertemuan 4,5 Representasi Pengetahuan. M. Miftakul Amin, M. Eng. website :
INTELEGENSI BUATAN Pertemuan 4,5 Representasi Pengetahuan M. Miftakul Amin, M. Eng. e-mail: [email protected] website : http://mafisamin.web.ugm.ac.id Jurusan Teknik Komputer Jurusan Teknik Komputer
ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
ARGUMENTASI Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 1 + 2 = 3 b. Kuala
PROPOSISI. Novy SetyaYunas. Pertemuan 4
Pertemuan 4 PROPOSISI Novy SetyaYunas Phone: [+62 8564 9967 841] Email: [email protected] Online Course: https://independent.academia.edu/yunaszone KAITAN LOGIKA DAN BAHASA Ada dua aspek penting
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C
MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)
REPRESENTASI PENGETAHUAN UTHIE
REPRESENTASI PENGETAHUAN PENDAHULUAN Basis pengetahuan dan kemampuan untuk melakukan penalaran merupakan bagian terpenting dari sistem yang menggunakan kecerdasan buatan. Meskipun suatu sistem memiliki
PENARIKAN KESIMPULAN/ INFERENSI
PENARIKAN KESIMPULAN/ INFERENSI Proses penarikan kesimpulan dari beberapa proposisi disebut inferensi (inference). Argumen Valid/Invalid Kaidah-kaidah Inferensi Modus Ponens Modus Tollens Silogisme Hipotesis
METODE INFERENSI (1)
METODE INFERENSI (1) Tree (Pohon) dan Graph - Tree (pohon) adalah suatu hierarki struktur yang terdiri dari Node (simpul/veteks) yang menyimpan informasi atau pengetahuan dan cabang (link/edge) yang menghubungkan
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB
Materi Kuliah IF2091 Struktur Diskrit Pengantar Logika Oleh: Rinaldi Munir Program Studi Informatika STEI - ITB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti
BAB IV REPRESENTASI PENGETAHUAN
BAB IV REPRESENTASI PENGETAHUAN Dua bagian dasar sistem kecerdasan buatan (menurut Turban) - Basis pengetahuan : Berisi fakta tentang objek-objek dalam domain yang dipilih dan hubungan diantara domain-domain
Pertemuan 10. Introduction to Logic Propositional Logic
Pertemuan 10 Introduction to Logic Propositional Logic Logical Intelligent Agent Problem solving agent hanya bisa menyelesaikan masalah yang lingkungannya accessible Kita membutuhkan agen yang dapat menambah
LOGIKA PROPOSISI 3.1 Proposisi logika proposisional. Contoh : tautologi yaitu proposisi-proposisi yang nilainya selalu benar. Contoh 3.
LOGIKA PROPOSISI 3.1 Proposisi Proposisi adalah suatu pernyataan yang bernilai benar atau salah, tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya.
KUANTIFIKASI Nur Insani, M.Sc
KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan
Mahdhivan Syafwan. PAM 123 Pengantar Matematika
Mahdhivan Syafwan PAM 123 Pengantar Matematika APAKAH LOGIKA ITU PENTING? http://hukum.kompasiana.com/2012/03/31/dpr-menunda-sementara-kenaikan-bbm-bersubsidi-451248.html Pasal 7 Ayat 6 : Harga jual eceran
Logika Proposisi. Adri Priadana ilkomadri.com
Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Representasi pengetahuan adalah cara untuk menyajikan pengetahuan yang diperoleh ke dalam suatu skema/diagram tertentu sehingga dapat diketahui relasi antara suatu pengetahuan
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
STMIK Banjarbaru LOGIKA PROPOSISIONAL. 9/24/2012 H. Fitriyadi & F. Soesianto
1 LOGIKA PROPOSISIONAL PENDAHULUAN STMIK Banjarbaru 2 Logika adalah pernyataan-pernyataan, yang berarti suatu kalimat yang memiliki arti tertentu dan memiliki nilai benar atau salah. Dilihat dari bentuk
PENGANTAR LOGIKA INFORMATIKA
P a g e 1 PENGANTAR LOGIKA INFORMATIKA 1. Pendahuluan a. Definisi logika Logika berasal dari bahasa Yunani logos. Logika adalah: ilmu untuk berpikir dan menalar dengan benar ilmu pengetahuan yang mempelajari
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
Oleh : Fiftin Noviyanto
Oleh : Fiftin Noviyanto A. Apa Definisi Operator? Operator adalah aksi yang digunakan untuk memproses variabel atau angka. Contoh operator untuk memproses angka, antara lain : penambahan (+), Pengurangan
Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali
Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika
BAB III ANALISIS DAN PERANCANGAN
BAB III ANALISIS DAN PERANCANGAN 3.1 Analisis Analisis atau bisa juga disebut dengan Analisis sistem (systems analysis) dapat didefinisikan sebagai penguraian dari suatu sistem informasi yang utuh ke dalam
LOGIKA Pendidikan Teknik Informatika
LOGIKA Materi Perkuliahan Konsep Logika, Sejarah dan Peranannya Bentuk Formal Logika dan Kaidah-kaidah Dasarnya Logika Proposisi Bentuk Argumen dan validitasnya Variabel dan Konstanta proposional Logical
