Distribusi Probabilitas Diskrit: Geometrik Hipergeometrik
|
|
|
- Yanti Tedjo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Distribusi Probabilitas Diskrit: Geometrik Hipergeometrik 4.3 Debrina Puspita Andriani [email protected] / [email protected]
2 2 Outline Distribusi Geometrik Distribusi Hipergeometrik
3 Distribusi Geometrik Banyaknya ulangan yang diperlukan untuk mencapai satu keberhasilan 3
4 Distribusi Geometrik 1) 4 Berkaitan dengan percobaan Bernoulli, dimana terdapat n percobaan independen yang memberikan hasil dalam dua kelompok sukses dan gagal), variabel random geometric mengukur jumlah percobaan sampai diperoleh sukses yang pertama kali. Fungsi distribusi probabilitas geometrik: gx;p)= pq x 1 dimana x = 1,2,3,..., p dan q adalah parameter probabilitas sukses dan gagal). Rata-rata dan variansi distribusi probabilitas geometrik adalah: µ = 1 p σ 2 = q p 2
5 Distribusi Geometrik 2) 5 Contoh 1 Pada suatu daerah, P-Cola menguasai pangsa pasar sebesar 33.2% bandingkan dengan pangsa pasar sebesar 40.9% oleh C- Cola). Seorang mahasiswa melakukan penelitian tentang produk cola baru dan memerlukan seseorang yang terbiasa meminum P- Cola. Responden diambil secara random dari peminum cola. Berapa probabilitas responden pertama adalah peminum P-cola, berapa probabilitas pada responden kedua, ketiga atau keempat? Penyelesaian: 1 1 ) P 1) =. 332). 668) = ) P 2) =. 332). 668) = ) P 3) =. 332). 668) = ) P 4) =. 332). 668) = 0099.
6 Distribusi Geometrik 3) 6 Contoh 2 Di dalam suatu proses produksi tertentu diketahui bahwa, secara rata-rata, 1 di dalam setiap 100 barang adalah cacat. Berapakah probabilitas bahwa barang kelima yang diperiksa merupakan barang cacat pertama yang ditemukan? Penyelesaian: Dengan menggunakan sebaran geometri dengan x = 5 dan p = 0,01, maka diperoleh g5; 0,01) = 0,01)0,99) 4 = 0,0096
7 Distribusi Geometrik 4) 7 Contoh 3 Pada saat waktu sibuk sebuah papan sakelar telepon sangat mendekati kapasitasnya, sehingga para penelpon mengalami kesulitan melakukan hubungan telepon. Mungkin menarik untuk mengetahui jumlah upaya yang perlu untuk memperoleh sambungan. Andaikan bahwa kita mengambil p = 0,05 sebagai probabilitas dari sebuah sambungan selama waktu sibuk. Kita tertarik untuk mengetahui bahwa 5 kali upaya diperlukan untuk suatu sambungan yang berhasil. Penyelesaian: Dengan menggunakan sebaran geometris dengan x = 5 dan p = 0,05 menghasilkan ) ) ) ) 4 P X = x = g 5;0,05 = 0, 05 0,95 = 0, 041
8 Distribusi Geometrik 5) 8 Contoh 4 Pada seleksi karyawan baru sebuah perusahaan terdapat 3 dari 10 pelamar sarjana komputer sudah mempunyai keahlian komputer tingkat advance dalam pembuatan program. Para pelamar diinterview secara intensif dan diseleksi secara random. a. Hitunglah prosentase yang diterima dari jumlah pelamar yang ada. b. Berapa probabilitas pertama kali pelamar diterima pada 5 interview yang dilakukan? c. Berapakah rata-rata pelamar yang membutuhkan interview guna mendapatkan satu calon yang punya advance training Penyelesaian: a. 3 sarjana komputer yang diterima dari sejumlah 10 calon Prosentase yang diterima = 3/10*100%= 30% b. fx)= p. q x-1, x=1,2,3,4,5 f5)=0,3)0,7) 4 =0.072 c. Ex)=1/p=1/0,3=3,333
9 Distribusi Hipergeometrik Probabilitas kejadian suatu obyek tanpa pengembalian 9
10 Distribusi Hipergeometrik 1) 10 Setiap percobaan statistik keluaran yang telah dihasilkan obyeknya selalu dikembalikan, sehingga probabilitas setiap percobaan peluang seluruh obyek memiliki probabilitas yang sama. Dalam pengujian kualitas suatu produksi, maka obyek yang diuji tidak akan diikutkan lagi dalam pengujian selanjutnya, artinya tidak dikembalikan. Percobaan hipergeometrik memiliki sifat-sifat sebagai berikut: sebuah pengambilan acak dengan ukuran n dipilih tanpa pengembalian dari N obyek k dari N obyek dapat diklasifikasikan sebagai sukses dan N k diklasifikasikan sebagai gagal.
11 Distribusi Hipergeometrik 2) 11 Ukuran statistik deskriptif pada distribusi hipergeometrik Mean Nilai Harapan): nm µ x = E X) = N Varians σ 2 x nm # M $# N n $ = % 1 N &% & ' N ' N 1 Di mana M= k
12 Distribusi Hipergeometrik 3) 12 Contoh 1 Suatu panitia 5 orang dipilih secara acak dari 3 kimiawan dan 5 fisikawan. Hitung distribusi probabilitas banyaknya kimiawan yang duduk dalam panitia. Penyelesaian: Misalkan: X= menyatakan banyaknya kimiawan dalam panitia X={0,1,2,3} Distribusi probabilitasnya dinyatakan dengan rumus 3) 5 ) x 5 x 8) hx; 853,, ) = ; x = 0123,,, 5
13 Distribusi Hipergeometrik 4) 13 3) 5) ) x = 0 h 0853 ;,, ) = = 3) 5) 8) x = 1 h 1853 ;,, ) = = 3) 5) 8) x = 2 h 2853 ;,, ) = = 3) 5) 8) x = 3 h 3853 ;,, ) = = x hx;8,5,3)
14 Distribusi Hipergeometrik 5) 14 Contoh 2 Dari 6 kontraktor jalan, 3 dintaranya telah berpengalaman selama lima tahun atau lebih. Jika 4 kontraktor dipanggil secara random dari 6 kontraktor tersebut, berapa probabilitas bahwa 2 kontraktor telah berpengalaman selama lima tahun atau lebih? Penyelesaian: k 0,6
15 Distribusi Hipergeometrik 6) 15 Contoh 3 Seorang manajer personalia mengambil secara random 3 surat dari seluruh surat yang ditulis karyawan yang mengundurkan diri dari perusahaannya. Dengan anggapan bahwa 4 dari 10 karyawan tersebut berasal dari bagian keuangan, tentukan probabilitas bahwa dua dari 3 surat tersebut dari karyawan bagian keuangan. Penyelesaian: k
16 16 TUGAS 4 DAN 5 Dengan menggunakan distribusi binomial, tentukan probabilitas diperoleh 4 sisi gambar dengan 6 kali membalik koin. Sebuah departemen kepolisian menerima rata-rata 5 panggilan per jam. Tentukan probabilitas menerima 2 panggilan dalam jam yang dipilih secara acak.
Distribusi Probabilitas Diskrit: Poisson
Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran
BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda
Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif
Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Variabel Acak Diskrit Distribusi
PENGUJIAN HIPOTESIS (3) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (3) 4 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Hipotesis untuk Variansi/ Standard Deviasi 3 Uji Hipotesis untuk Variansi (1) 4 Data statistik
Distribusi Sampling 6.2. Debrina Puspita Andriani /
6. Debrina Puspita Andriani E-mail : [email protected] / [email protected] Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling
Distribusi Probabilitas : Gamma & Eksponensial
Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya
Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata
Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil
DISTRIBUSI PROBABILITAS (PELUANG)
DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,
4.1.1 Distribusi Binomial
4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak
KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS
KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : [email protected] Blog : hbp://debrina.lecture.ub.ac.id/ 2
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
DISTRIBUSI PROBABILITAS
DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah
DISTRIBUSI PROBABILITAS
DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISKRIT Distribusi binomial Distribusi binomial - Distribusi peluang diskrit Distribusi geometrik Distribusi hipergeometrik Distribusi poison BERNOULLI TRIAL
Distribusi Probabilitas Diskrit. Dadan Dasari
Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit
Distribusi Probabilitas Diskrit: Binomial & Multinomial
Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi
BAB IV. DISTRIBUSI PROBABILITAS DISKRIT
BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari
MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU
DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan
STATISTIK NON PARAMETRIK (2) Debrina Puspita Andriani /
STATISTIK NON PARAMETRIK (2) 13 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Korelasi Urutan Spearman Statistik Non Parametrik 3 Uji Korelasi Urutan Spearman
BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu
BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.
PENGUJIAN HIPOTESIS (3)
PENGUJIAN HIPOTESIS (3) 3 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Proporsi 3 Uji Hipotesis
BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu
xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif
Distribusi Probabilitas Diskret Teoritis
Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1 TI2131 TEORI PROBABILITAS MINGGU KE-9 Distribusi Seragam Disrit Jia sebuah variabel random X mengambil nilai x 1, x 2,, x dengan probabilitas yang sama, maa distribusi
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya
Beberapa Distribusi Peluang Diskrit
Beberapa Distribusi Peluang Diskrit Departemen Teknik Informatika Institut Teknologi Bandung Page 1 Isi : Distribusi Seragam Distribusi Binomial Distribusi Multinomial Page 2 Distribusi
BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :
BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak
PENGUJIAN HIPOTESIS (1) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (1) 1 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pengertian Pengujian Hipotesis (1) 3 BAHASA YUNANI HUPO Lemah, kurang, di bawah THESIS Teori,
PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015
Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)
Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)
Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:
VARIABEL RANDOM DAN DISTRIBUSI PELUANG
1 VARIABEL RANDOM DAN DISTRIBUSI PELUANG Dr. Vita Ratnasari, M.Si Definisi Variabel Random 2 Variabel random ialah Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel.
BAB II DISTRIBUSI PROBABILITAS
BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)
DISTRIBUSI PROBABILITAS
BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial
BAB 8 DISTRIBUSI PELUANG DISKRIT
BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu
Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
STATISTIK NON PARAMETRIK (1)
11 STATISTIK NON PARAMETRIK (1) Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Metode Statistik : Parametrik
DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat
PENGUJIAN HIPOTESIS (2) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Hipotesis untuk Rata-rata Sampel Berukuran Besar 3 Uji Rata-rata untuk Sampel Berukuran
DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar
DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret
SEBARAN PELUANG DISKRET
SEBARAN PELUANG DISKRET Beberapa Peubah Acak Diskret Seragam Bernoulli Binomial Hipergeometrik Binom Negatif Geometrik Poisson Peubah Acak Seragam Bila setiap kemungkinan percobaan memiliki kesempatan
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E
UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.
DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret
ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG
LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain
PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA
Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)
STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen
Peubah Acak (Lanjutan)
Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat
DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA
DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan
Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ;
Responsi SOAL 1: Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Orang keenam yang mendaftar seleksi adalah orang keempat yang memilih TI
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat
Pengukuran Deskriptif
Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi
DISTRIBUSI PROBABILITAS DISKRET
DISTRIBUSI PROBABILITAS DISKRET 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian Distribusi Probabilitas Binomial
DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30
DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat
PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS
PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS Dalam kehidupan sehari-hari kita sering mendengar dan menggunakan kata probabilitas (peluang). Kata ini mengisyaratkan bahwa kita berhadapan dengan sesuatu
STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP
STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan
STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP
STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah
PEMODELAN KUALITAS PROSES
TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK
Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)
Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6
Pengukuran Deskriptif. Debrina Puspita Andriani /
Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi
Teori Probabilitas 3.2. Debrina Puspita Andriani /
Teori Probabilitas 3.2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Berapa peluang munculnya
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi
STATISTIK NON PARAMETRIK (2)
STATISTIK NON PARAMETRIK (2) 12 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Korelasi Urutan Spearman Statistik
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang
Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang [email protected] Outline Peubah acak Bernoulli Peubah acak binom Peubah acak geometrik Latihan dan Diskusi Review Peubah Acak
Distribusi Probabilitas Variabel Acak Diskrit
Pertemuan ke-8 Distribusi Probabilitas Variabel Acak Diskrit Dr.Eng. Agus S. Muntohar Geotechnical Engineering Division Department of Civil Engineering 2 POKOK BAHASAN 5.1 Distribusi Bernoulli 5.2 Distribusi
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang
DISTRIBUSI PELUANG Distribusi Peluang utk Variabel acak Diskret Distribusi Binom Distribusi Multinom Distribusi Hipergeometrik Distribusi Poison Distribusi Peluang utk Variabel acak Kontinu Distribusi
(ESTIMASI/ PENAKSIRAN)
ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun
STATISTIKA MATEMATIKA I I. Hazmira Yozza Izzati Rahmi HG Jur. Matematika FMIPA Unand
STATISTIKA MATEMATIKA I I Peubah Diskret Khusus Hazmira Yozza Izzati Rahmi HG Jur. Matematika FMIPA Unand KOMPETENSI LOGO a. Mengidentifikasikan peubah-peubah acak diskret khusus : Seragam diskret, bernoulli,
28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω
SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan
STATISTIKA LINGKUNGAN
STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi
DISTRIBUSI PELUANG TEORITIS
Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan
Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG
Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah
Ayundyah Kesumawati. April 20, 2015
Pengujian Kesumawati Nol dan Prodi Statistika FMIPA-UII April 20, 2015 Pengujian Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi Pengujian hipotesis berhubungan dengan penerimaan atau
Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1
Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.
STATISTIK PERTEMUAN VI
STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi
Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu
Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!
Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.
Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang
MATERI KULIAH STATISTIKA
MATERI KULIAH STATISTIKA III. TEORI PROBABILITAS 1. Operasi himpunan a. Gabungan atau union b. Interseksi atau irisan Contoh soal 1 : Dalam sebuah eksperimen pelemparan 1 buah dadu, terdapat kejadian :
Statistika Variansi dan Kovariansi. Adam Hendra Brata
Statistika dan Adam Hendra Brata Kita sudah memahami bahwa nilai harapan peubah acak X seringkali disebut rataan (mean) dan dilambangkan dengan μ. Tetapi, rataan tidak memberikan gambaran dispersi atau
Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang
Bab 2 DISTRIBUSI PELUANG
Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut
Statistika Farmasi
Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu
Peubah Acak dan Distribusi
BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari
Latihan Soal. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Latihan Soal Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Soal 1 Misalkan peluang sebuah kota mengalami gempa bumi setiap bulan adalah 1/100.
Pengantar Statistika Matematika II
Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik
Bab 5 Distribusi Sampling
Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n
REGRESI LINIER BERGANDA. Debrina Puspita Andriani /
REGRESI LINIER BERGANDA 9 Debrina Puspita Andriani E-mail : [email protected] / [email protected] Outline 03//04 Regresi Berganda : PENGERTIAN 3 Menguji hubungan linier antara variabel dependen (y) dan
PENGUJIAN HIPOTESIS (2)
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Rata-rata Sampel
Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2
Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan
Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu
Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat
THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP
THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
