BAB II LANDASAN TEORI. Tower yang tinggi sering dipakai di dunia untuk sistem komunikasi serta viewing

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI. Tower yang tinggi sering dipakai di dunia untuk sistem komunikasi serta viewing"

Transkripsi

1 BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Pengertian Tower Pemancar Tower merupakan salah satu infrastruktur yang umumnya digunakan dalam sistem komunikasi, transmisi tenaga listrik, jaringan distribusi dan tangki. Tower yang tinggi sering dipakai di dunia untuk sistem komunikasi serta viewing and exhibition towers (Raghupathi, 1995). Salah satu tower yang sering digunakan dalam sistem komunikasi adalah tower pemancar atau yang sering dikenal dengan nama BTS (Base Transceiver Station). Tower adalah suatu struktur self supporting kantilever tunggal yang berdiri dengan bebas dengan sistem jepit di dasarnya. Sedangkan tiang adalah sebuah struktur dengan mekanisme sendi di dasarnya dan pengekang dengan guys atau elemen lainnya. Konstruksi tower memiliki rasio yang besar antara tinggi dan lebar tower dengan luas penampang yang kecil. Secara umum, tower pemancar yang sering digunakan dapat digolongkan menjadi tiga jenis, yaitu: a) Self Supporting Tower (SST), adalah tower yang memiliki pola batang yang disusun dan disambung sedemikian sehingga membentuk rangka yang berdiri sendiri tanpa adanya sokongan lainnya. b) Guyed Tower, adalah jenis tower dimana tower tersebut disokong dengan kabel-kabel yang diangkurkan pada landasan tertentu seperti tanah. Tower II - 1 II - 1

2 ini juga memiliki pola batang yang sama halnya dengan SST, akan tetapi tower jenis ini memiliki dimensi batang yang lebih kecil dari SST. c) Monopole, jenis tower ini hanya terdiri satu batang atau satu tiang yang ditancapkan di atas tanah atau gedung. Monopole terdiri dari dua jenis jika ditinjau dari penampangnya, yaitu: 1) Circular-pole, jenis monopole ini memiliki diameter penampang/panel yang seragam dari bawah sampai atas tower. 2) Tapered-pole, jenis monopole ini memiliki diameter penampang/panel yang bervariasi yang mana semakin keatas diameternya semakin kecil. Klasifikasi tower menurut bentuknya dibagi menjadi tiga macam, yaitu: 1) Rectangular, tower ini berbentuk segi empat dengan empat kaki 2) Triangle, tower ini berbentuk segi tiga dengan tiga kaki 3) Pole, tower ini berupa tiang dengan satu kaki. Jenis menara guyed tower dan monopole biasanya memiliki ketinggian tower lebih rendah dari tower pemancar jenis self supporting tower dan dirancang untuk menerima beban-beban yang lebih ringan daripada jenis pemancar self supporting tower, sehingga kedua jenis tower pemancar ini tidak dapat menerima beban seperti beban antenna yang memiliki dimensi dan berat yang besar. (Sumargo, 2007) Antena Pemancar Ada dua jenis antenna pemancar yang sering digunakan untuk tower komunikasi yakni antenna jenis solid dan jenis grid, untuk ukuran diameter yang II - 2

3 sama antenna jenis solid lebih berat dibandingkan dengan antenna jenis grid. Ukuran panjang antenna bervariasi seperti 80 cm, 100 cm, 120 cm, dan lainnya. Sementara berat juga beragam tergantung pada ukuran diameternya. Dengan kemajuan teknologi, satu tower dipakai bersama dengan menggunakan satu antenna jenis multi sektoral atau multi band. Antenna multi sektoral ini memiliki jangkauan frekuensi lebih dari satu polarisasi sehingga mampu mencakup daerah yang lebih luas. Antenna multi band mampu menerima sinyal lebih dari satu frekuensi. Dengan menggunakan jenis antenna multi band dan multi sektoral, beban antenna pemancar pada tower menjadi lebih sedikit. Beberapa jenis antenna yang sering dipakai dalam desain tower BTS, yakni: 1) Microwave antenna Microwave antenna ini memiliki bentuk seperti gendang rebana dengan permukaan yang agak cekung yang berfungsi sebagai pemancar dan penerima gelombang radio dan data dari BTS ke BTS, BTS ke BSC, dan BSC ke MSC. 2) Sectoral antenna (grid) Sectoral antenna berbentuk persegi panjang yang terpasang pada tower dengan ketinggian tertentu sedemikian sehingga dapat mencakup area yang diinginkan (coverage area) yang berfungsi sebagai penghubung antara handphone dengan BTS. II - 3

4 2.2. Konsep Dasar Desain atau Perencanaan Pembebanan Tower Beban Mati Beban mati yang dihitung pada struktur menara tower meliputi beban sendiri tower, beban antenna, beban tangga, dan beban bordes. a. Beban sendiri tower adalah berat profil baja yang digunakan dalam perencanaan tower tersebut. Berat ini secara otomatis dihitung oleh program Ms. Tower 6. b. Beban antenna adalah berat antenna yang mana berat tersebut di bebankan pada tower. Berat antenna tergantung dari dimensi, jenis dan jumlah antenna yang terpasang pada tower. Antenna solid lebih berat dari antenna grid. c. Beban tangga turut diperhitungkan dalam perencanaan struktur tower. Menurut EIA/TIA, bahwa jarak (spasi) antar anak tangga minimum 12 inci (30,48 cm) dan maksimum 16 inci (40,64 cm) dengan lebar bersih minimum 12 inci (30, 48 cm) d. Beban bordes. Setiap tower dengan ketinggian lebih dari 50 ft (15 meter), harus disediakan bordes sebagai tempat istirahat pekerja. e. Tray vertikal tidak diperhitungkan dalan desain tower ini karena pondasi tray vertical yang digunakan sebagai tempat untuk melewatkan kabel feeder ini terpisah dengan pondasi tower, kecuali bila disyaratkan lain. II - 4

5 Beban Hidup Beban hidup yang diperhitungkan dalam desain tower adalah beban pekerja termasuk peralatannya, biasanya diambil angka 100 kg tiap kaki menara Beban Angin Menurut peraturan EIA/TIA-222-F, beban angin selain bekerja pada struktur tower juga bekerja pada antenna berdasarkan rumus: 1. Beban angin yang bekerja pada antenna dihitung berdasarkan rumus sebagai berikut: Fa = Ca * A * Kz * G H * V 2 Fs = Cs * A * Kz * G H * V 2 M = Cm * D * A * Kz * GH * V 2 Ha = (Fa 2 + Fs 2 ) 1/2 Mt = Fa * X + Fs * Y + M dimana, L = the distance the antenna's axis to the frame's joints G H = gust response factor from = /(h/10) 1/7 for h in meters A = outside aperture area of parabolic reflector, grid, or horn antenna = plate area of passive reflector ( ft 2 ) D = outside diameter of parabolic reflector, grid, or horn antenna (ft) = width or length of passive reflector ( ft 2 ) II - 5

6 V = basic wind speed ( m.p.h ) from K Z = exposure coefficient from with z equal to the hight of the origin of the axis system = [z/10] 2/7 for z in meters FA = axial force ( lb ) Fs = side force ( lb ) M = twisting moment ( ft-lb ) Ca, Cs, Cm are load coefficients contained in tables B1 trough B6 as function of wind angle,... TIA page Ha = resultant of F A and F S ( lb ) Mt = total twisting moment ( ft-lb ) X = the offset of the mounting pipe ( ft ) Y = the distance on the reflector axis from the reflector vertex to the center of the mounting pipe ( ft ) Wind Load Calculation method on the parabolic antenna is as follow: Fa = Ca * A * Kz * GH x V 2 Fs = Cs * A * Kz * GH * V 2 M = Cm * D * A * Kz * GH * V 2 Ha = (Fa 2 + Fs 2 ) 1/2 Mt = Fa * X + Fs * Y + M dimana, Ca = wind load coefficient Fa = axial force ( kg ) II - 6

7 Fs = side force ( kg ) M = twisting moment ( kg-m ) Cs Cm = wind load coefficient = wind load coefficient V = wind velocity ( m.p.h ) 2. Beban angin yang bekerja pada struktur tower harus dihitung berdasarkan rumus sebagai berikut: [( ) ( )] dimana, qz = velocity pressure (Pa) = 613 Kz V 2 dengan V dalam m/s Kz = exposure coefficient = [ ] dengan z dalam meter = V z = basic wind speed for structure location (m/s) = height above average ground level to midpoint of panel of the structure and appurtenances (m) G H = gust response factor ( ) = [ ] dimana h dalam meter C F = structure force coefficient = (for square cross section) e = solidity ratio = ( ) II - 7

8 A F = projected area of flat structural component in one face of the section (m 2 ) A G = gross area of one tower face (m 2 ) A R = projected area (m 2 ) of round structural component in one face of the section A E = effective projected area of structural component in one face (m 2 ) = (m 2 ) (note : for tubular steel pole structure, A E shall be the actual projected area based on diameter or overall width) R R = the reduction factor for round structural component = ( ) D F = wind direction factor = ; for square cross section and normal wind direction = e; for square cross section and +45 o normal wind direction (1.2 max) D R = wind direction factor for round structural components = ; for square cross section and normal wind direction = e; for square cross section and +45 o normal wind direction (1.2 max) C A = linear or discrete appurtenance force coefficient = is depended on aspect ratio aspect ratio = overall length/width ration in plane normal to wind direction II - 8

9

10

11

12

13

14 2.2.6 Metode Perhitngan dengan SNI Berdasarkan SNI mengenai tata cara perencanaan struktur baja untuk bangunan gedung, mutu baja diklasifikasikan menjadi 5 kelas mutu sebagai berikut : Jenis Baja Tegangan putus minimum, f u (MPa) Tegangan leleh minimum, f y (MPa) Regangan minimum (%) BJ BJ BJ BJ BJ MPa = 10 kg/cm 2 Tabel 2.1 Sifat mekanis baja struktural Nilai-nilai yang tercantum pada table diatas adalah untuk elemen-elemen yang tebalnya kurang dari 40 mm. untuk elemen-elemen yang tebalnya lebih dari 40 mm, tetapi kurang dari 100 mm, harga-harga pada table diatas harus dikurangi 10%. Sifat-sifat mekanis lainnya perencanaan baja structural untuk maksud perencanaan berdasarkan SNI ditetapkan sebagai berikut: Modulus elastis Modulus geser : E = MPa : G = MPa Nisbah poisson : µ = 0,3 Koefisien pemuaian : α = 12 x 10-6 / o C II - 14

15 Batang Tekan SNI mengenai tata cara perencanaan struktur baja untuk bangunan gedung dinyatakan bahwa suatu komponen struktur yang mengalami gaya tekan konsentris akibat beban terfaktor, N u, harus memenuhi persyaratan sebagai berikut: Keterangan: Ø n = faktor reduksi kekuatan N n = kuat tekan nominal komponen struktur Perbandingan kelangsingan - Kelangsingan elemen penampang < λ r - Kelangsingan komponen struktur tekan Komponen struktur tekan yang elemen penampangnya mempunyai perbandingan lebar terhadap tebal lebih besar dari pada nilai λ r yang ditentukan, maka harus direncanakan dengan analisis rasional yang dapat diterima. Penampang yang mempunyai perbandingan lebar terhadap tebalnya lebih kecil daripada nilai λ r, daya dukung nominal komponen struktur tekan dihitung menggunakan rumus sebagai berikut: Untuk λ c 0,25 maka ω = 1,00 Untuk 0,25 λ c 1,2 maka ω = II - 15

16 Untuk λ c 1,2 maka ω = 1,25 Keterangan : luas penampang bruto, mm 2 tegangan kritis penampang, MPa tegangan leleh material, MPa Batang Tarik Komponen struktur yang memikul gaya tarik aksial terfaktor harus memenuhi syarat kekuatan struktur tarik : Dimana adalah kuat tarik rencana yang besarnya diambil sebagai nilai terendah diantara dua perhitungan menggunakan harga-harga Ø dan N n di bawah ini : Keterangan : = luas penampang bruto, mm 2 = luas penampang efektif, mm 2 = tegangan leleh, MPa = tegangan tarik putus, MPa Penampang efektif adalah luas penampang efektif komponen yang mengalami gaya tarik ditentukan sebagai berikut : II - 16

17 Keterangan : A = luas penampang, mm 2 U = factor reduksi = 1 (X/L) 0,9 X = eksentrisitas sambungan, jarak tegak lurus arah gaya tarik antara titik berat penampang komponen yang disambung dengan bidang sambungan, mm Kombinasi Pembebanan pada Tower Kombinasi pembebanan yang ditinjau didasarkan pada peraturan TIA/EIA-222-F berdasarkan beban-beban yang terjadi dengan beberapa kombinasi pembebanan sebagai berikut: Comb 1 Comb 2 = DL + LL = DL + LL ± WL Dimana, DL = beban mati yang diakibatkan oleh berat sendiri tower, antenna, bordes dan tangga LL WL = beban hidup yang diakibatkan oleh pekerja = beban yang diakibatkan oleh angin tanpa ice Toleransi Desain Tower Toleransi yang disyaratkan dalam desain dan analisis tower adalah sebagai berikut: a. Allowable stress design = 1 II - 17

18 b. Slenderness ratio - Leg Bracing Redundant 250 c. Allowable twist = 0.5 degree d. Allowable sway = 0.5 degree e. Allowable horizontal displacement = Tower Height/200 f. Verticality = Tower Height/ Peraturan dasar perencanaan tower Parameter pembebanan yang digunakan dalam perencanaan tower yang sering dipakai adalah sebagai berikut: BS 8100 part 3 BS 449 ASCE ASCE manual 72 EIA-222-F TIA-222-G AS 3995 ILE tech report 7 II - 18

STUDI PERBANDINGAN PERFORMA TOWER SST KAKI TIGA DENGAN TOWER SST KAKI EMPAT SEBAGAI PILIHAN DALAM PERENCANAAN TOWER BERSAMA

STUDI PERBANDINGAN PERFORMA TOWER SST KAKI TIGA DENGAN TOWER SST KAKI EMPAT SEBAGAI PILIHAN DALAM PERENCANAAN TOWER BERSAMA TUGAS AKHIR - RC 091380 STUDI PERBANDINGAN PERFORMA TOWER SST KAKI TIGA DENGAN TOWER SST KAKI EMPAT SEBAGAI PILIHAN DALAM PERENCANAAN TOWER BERSAMA MASCA INDRA TRIANA NRP 3106 100 039 Dosen Pembimbing

Lebih terperinci

Judul: Masca Indra Triana

Judul: Masca Indra Triana Masca Indra Triana 3106 100 039 Judul: Studi Perbandingan Performa Tower SST Kaki Tiga dengan Tower SST Kaki Empat Sebagai Pilihan dalam Perencanaan Tower Bersama Latar Belakang Semakin menjamurnya tower-tower

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Konstruksi Tower BTS (Base Transmission Station)

BAB II TINJAUAN PUSTAKA. 2.1 Konstruksi Tower BTS (Base Transmission Station) BAB II TINJAUAN PUSTAKA 2.1 Konstruksi Tower BTS (Base Transmission Station) Tower adalah menara yang terbuat dari rangkaian besi atau pipa baik segi empat atau segitiga, dan dapat berupa pipa panjang

Lebih terperinci

STUDI PERBANDINGAN STRUKTUR TOWER BTS TIPE SST KAKI 4, SST KAKI 3, DAN MONOPOLE DENGAN KETINGGIAN 40 M YANG PALING EFISIEN

STUDI PERBANDINGAN STRUKTUR TOWER BTS TIPE SST KAKI 4, SST KAKI 3, DAN MONOPOLE DENGAN KETINGGIAN 40 M YANG PALING EFISIEN STUDI PERBANDINGAN STRUKTUR TOWER BTS TIPE SST KAKI 4, SST KAKI 3, DAN MONOPOLE DENGAN KETINGGIAN 40 M YANG PALING EFISIEN Oleh: Sony Arjanggi 3107 100 037 Dosen Pembimbing Endah Wahyuni, ST, MSc, Ph.D.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menara Telekomunikasi (Tower) Dapat diklasifikasikan sebagai berikut : a. Klasifikasi Tower Berdasarkan Letak Berdirinya

BAB II TINJAUAN PUSTAKA. Menara Telekomunikasi (Tower) Dapat diklasifikasikan sebagai berikut : a. Klasifikasi Tower Berdasarkan Letak Berdirinya BAB II TINJAUAN PUSTAKA 2.1 Menara Telekomunikasi (Tower) Menara Telekomunikasi (Tower) Dapat diklasifikasikan sebagai berikut : a. Klasifikasi Tower Berdasarkan Letak Berdirinya Jika melihat berdasarkan

Lebih terperinci

ANALISA STRUKTUR TOWER BTS BERDASARKAN HASIL RE VERTICALITY MENGGUNAKAN STAAD PRO ABSTRAK

ANALISA STRUKTUR TOWER BTS BERDASARKAN HASIL RE VERTICALITY MENGGUNAKAN STAAD PRO ABSTRAK ANALISA STRUKTUR TOWER BTS BERDASARKAN HASIL RE VERTICALITY MENGGUNAKAN STAAD PRO ABSTRAK Meningkatnya kebutuhan terhadap teknologi komunikasi yang murah dan mudah, memaksa penyedia layanan telepon seluler

Lebih terperinci

PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225 M, 300 M) DENGAN BEBAN ANGIN RENCANA PERIODE ULANG 20 TAHUNAN BMKG SURABAYA

PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225 M, 300 M) DENGAN BEBAN ANGIN RENCANA PERIODE ULANG 20 TAHUNAN BMKG SURABAYA PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225 M, 300 M) DENGAN BEBAN ANGIN RENCANA PERIODE ULANG 20 TAHUNAN BMKG SURABAYA PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225

Lebih terperinci

Studi Perbandingan Struktur Tower BTS Tipe SST Kaki 4, SST Kaki 3 dan Monopole Dengan Ketinggian 40m yang Paling Effisien

Studi Perbandingan Struktur Tower BTS Tipe SST Kaki 4, SST Kaki 3 dan Monopole Dengan Ketinggian 40m yang Paling Effisien JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-5 1 Studi Perbandingan Struktur Tower BTS Tipe SST Kaki 4, SST Kaki 3 dan Monopole Dengan Ketinggian 40m yang Paling Effisien Sony Arjanggi 1), Endah Wahyuni

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Tentang Konstruksi Baja 1. Sejarah perkembangan Secara historis, keberadaan menara telekomunikasi sudah ada di Amerika Utara sejak akhir abad ke-19 yang dibangun oleh

Lebih terperinci

PENGARUH BEBAN ANGIN TERHADAP STRUKTUR ROOF TOP TOWER TELEPON SELULER

PENGARUH BEBAN ANGIN TERHADAP STRUKTUR ROOF TOP TOWER TELEPON SELULER Mahmud Kori E. dan Triono Subagio, Pengaruh Beban Angin terhadap Struktur Roof Top. 69 PENGARUH BEBAN ANGIN TERHADAP STRUKTUR ROOF TOP TOWER TELEPON SELULER Mahmud Kori Effendi dan Triono Subagio Jurusan

Lebih terperinci

BAB IV HASIL ANALISA DAN PEMBEBANAN. 1. Peraturan pembebanan untuk Tower. (EIA Standard Structural

BAB IV HASIL ANALISA DAN PEMBEBANAN. 1. Peraturan pembebanan untuk Tower. (EIA Standard Structural BAB IV HASIL ANALISA DAN PEMBEBANAN 4.1 Desain Menara 4.1.1 Peraturan Perencanaan Menara Didalam analisa struktur tower pemodelan mengacu pada peraturan Perencanaan struktur baja dan konstruksi tower,

Lebih terperinci

BAB III METODOLOGI PENELITIAN 3.1 KONSEP PEMODELAN PENAMBAHAN TINGGI MENARA

BAB III METODOLOGI PENELITIAN 3.1 KONSEP PEMODELAN PENAMBAHAN TINGGI MENARA BAB III METODOLOGI PENELITIAN 3.1 KONSEP PEMODELAN PENAMBAHAN TINGGI MENARA Gambar 3.1KonsepPemodelanPenambahanTinggidariketinggian 45 m menjadi 48 m 3-1 3.2 BAGAN ALIR METODOLOGI Mulai DesainStandar Data

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Umum Tower adalah menara yang terbuat dari rangkaian besi atau pipa baik segi empat atau segi tiga, atau hanya berupa pipa panjang (tongkat), yang bertujuan untuk menempatkan

Lebih terperinci

PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225 M, 300 M) DENGAN BEBAN ANGIN RENCANA PERIODE ULANG 20 TAHUNAN BMKG SURABAYA

PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225 M, 300 M) DENGAN BEBAN ANGIN RENCANA PERIODE ULANG 20 TAHUNAN BMKG SURABAYA PERENCANAAN STRUKTUR TOWER SST TELEKOMUNIKASI (75 M, 150 M, 225 M, 300 M) DENGAN BEBAN ANGIN RENCANA PERIODE ULANG 20 TAHUNAN BMKG SURABAYA Disampaikan di : RUANG SIDANG JURUSAN TEKNIK SIPIL 04 JULI 2011

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

DESAIN TOWER BASE TRANSCEIVER STATION KAKI 4 DENGAN TINGGI 42 M MENGGUNAKAN PERANGKAT LUNAK

DESAIN TOWER BASE TRANSCEIVER STATION KAKI 4 DENGAN TINGGI 42 M MENGGUNAKAN PERANGKAT LUNAK DESAIN TOWER BASE TRANSCEIVER STATION KAKI 4 DENGAN TINGGI 42 M MENGGUNAKAN PERANGKAT LUNAK TOWER BASE TRANSCEIVER STATION DESIGN OF 4 FEET WITH HEIGHT 42 M USING SOFTWARE Laporan ini disusun untuk memenuhi

Lebih terperinci

BAB I PENDAHULUAN. Standart yang dipakai dalam analisa struktur bangunan lattice tower BTS

BAB I PENDAHULUAN. Standart yang dipakai dalam analisa struktur bangunan lattice tower BTS BAB I PENDAHULUAN I.1 Latar Belakang Tower adalah struktur bangunan yang menggunakan baja sebagai bahan material konstruksi. Tower telekomunikasi adalah menara pemancar signal yang merupakan perangkat

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03-1729-2002) MENGGUNAKAN MATLAB R. Dhinny Nuraeni NRP : 0321072 Pembimbing : Ir. Ginardy

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

Analisa Defleksi Struktur Tower Transmisi Menggunakan Metode Elemen Hingga

Analisa Defleksi Struktur Tower Transmisi Menggunakan Metode Elemen Hingga Analisa Defleksi Struktur Tower Transmisi Menggunakan Metode Elemen Hingga Erinofiardi, Hendra Jurusan Mesin Fakultas Teknik Universitas Bengkulu Jl. W.R. Supratman Kandang Limun Bengkulu Telepon (0736)

Lebih terperinci

KOMPARASI PERENCANAAN MENARA TELEKOMUNIKASI DI INDONESIA MENGACU PADA TIA/EIA-222-F DAN TIA/EIA-222-G

KOMPARASI PERENCANAAN MENARA TELEKOMUNIKASI DI INDONESIA MENGACU PADA TIA/EIA-222-F DAN TIA/EIA-222-G KOMPARASI PERENCANAAN MENARA TELEKOMUNIKASI DI INDONESIA MENGACU PADA TIA/EIA--F DAN TIA/EIA--G Oleh : Fisca Igustiany Instutisi : Politeknik Negeri Bandung Alamat Institusi : Jalan Gegerkalong Hilir,

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI

PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI Tedy Ferdian 1, Yosafat Aji Pranata 2, Ronald Simatupang 3 1 Alumnus Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha 2, 3 Dosen

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL oleh

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Jenis Tower BTS Pada tower BTS atau biasa disebut menara pemancar sinyal bisa dibagi ke beberapa jenis. Ini diklasifikasikan dari bentuk material maupun bentuk menara itu sendiri.

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Bagan Alir Perencanaan Ulang Bagan alir (flow chart) adalah urutan proses penyelesaian masalah. MULAI Data struktur atas perencanaan awal, As Plan Drawing Penentuan beban

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN 26750 2500 8375 5000 8375 2500 BAB 4 HASIL DAN PEMBAHASAN 1.1 Permodelan Struktur Panjang ( L ) : 61.4 m ( 201 ft ) Lebar ( B) : 26.75 m ( 88 ft ) Tinggi Bangunan ( h ) : 222 m ( 728 ft ) Kolom Balok Core

Lebih terperinci

ANALISIS KAPASITAS TEKAN PROFIL-C BAJA CANAI DINGIN MENGGUNAKAN SNI 7971:2013 DAN AISI 2002

ANALISIS KAPASITAS TEKAN PROFIL-C BAJA CANAI DINGIN MENGGUNAKAN SNI 7971:2013 DAN AISI 2002 Konferensi Nasional Teknik Sipil 11 Universitas Tarumanagara, 26-27 Oktober 2017 ANALISIS KAPASITAS TEKAN PROFIL-C BAJA CANAI DINGIN MENGGUNAKAN SNI 7971:2013 DAN AISI 2002 Tania Windariana Gunarto 1 dan

Lebih terperinci

BAB II DASAR TEORI. baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM

BAB II DASAR TEORI. baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM BAB II DASAR TEORI 2.1 Sifat Baja Struktural Pengenalan baja struktural sebagai bahan bangunan utama pada tahun 1960, baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM (American

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

BAB IV PERMODELAN DAN ANALISIS STRUKTUR

BAB IV PERMODELAN DAN ANALISIS STRUKTUR BAB IV PERMODELAN DAN ANALISIS STRUKTUR 4.1 Permodelan Elemen Struktur Di dalam tugas akhir ini permodelan struktur dilakukan dalam 2 model yaitu model untuk pengecekan kondisi eksisting di lapangan dan

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 Sub Pokok Bahasan : Perilaku Mekanis Baja Pengantar LRFD Untuk

Lebih terperinci

Kita akan menyelesaikan permasalahan struktur kuda-kuda berikut, Panjang Bentang = 10 meter; Tinggi = 3m.

Kita akan menyelesaikan permasalahan struktur kuda-kuda berikut, Panjang Bentang = 10 meter; Tinggi = 3m. BELAJAR SAP 2000 (Ref : Struktur 2D & 3D dengan SAP 2000, Handi Pramono, disadur ulang dengan penambahan keterangan oleh penyusun dengan menggunakan SAP 2000 ver 9,03 untuk latihan) Penyusun : MUHAMMAD

Lebih terperinci

DESAIN DAN ANALISIS STRUKTUR MENARA LATTICE PEMBANGKIT LISTRIK TENAGA ANGIN 100 Kw DI DESA TAMANJAYA, SUKABUMI, JAWA BARAT

DESAIN DAN ANALISIS STRUKTUR MENARA LATTICE PEMBANGKIT LISTRIK TENAGA ANGIN 100 Kw DI DESA TAMANJAYA, SUKABUMI, JAWA BARAT Ketenagalistrikan dan Energi Terbarukan Vol. 15 No. 1 Juni 2016 : 21-32 P-ISSN 1978-2365 E-ISSN 2528-1917 DESAIN DAN ANALISIS STRUKTUR MENARA LATTICE PEMBANGKIT LISTRIK TENAGA ANGIN 100 Kw DI DESA TAMANJAYA,

Lebih terperinci

Komponen Struktur Tarik

Komponen Struktur Tarik Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Komponen Struktur Tarik Pertemuan 2, 3 Sub Pokok Bahasan : Kegagalan Leleh Kegagalan Fraktur Kegagalan Geser Blok Desain Batang Tarik

Lebih terperinci

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1 MODUL PERKULIAHAN Struktur Baja 1 Batang Tarik #1 Fakultas Teknik Perencanaan dan Desain Program Studi Teknik Sipil Tatap Kode MK Disusun Oleh Muka 03 MK11052 Abstract Modul ini bertujuan untuk memberikan

Lebih terperinci

BAB III METODE PERANCANGAN. Dalam dunia konstruksi, tugas dari seorang civil structure engineer adalah

BAB III METODE PERANCANGAN. Dalam dunia konstruksi, tugas dari seorang civil structure engineer adalah BAB III METODE PERANCANGAN 3.1 Kriteria dan Tujuan Perancangan Dalam dunia konstruksi, tugas dari seorang civil structure engineer adalah melakukan perhitungan struktur baik struktur baja maupun sipil

Lebih terperinci

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Estika 1 dan Bernardinus Herbudiman 2 1 Jurusan Teknik Sipil,

Lebih terperinci

BAB III LANDASAN TEORI. ur yang memikul gaya tarik aksial terfaktor N u harus memenuhi : N u. N n... (3-1)

BAB III LANDASAN TEORI. ur yang memikul gaya tarik aksial terfaktor N u harus memenuhi : N u. N n... (3-1) BAB III LANDASAN TEORI 3.1 Batang Tarik Menurut SNI 03-1729-2002-2002 pasal 10.1 menyatakan bahwa komponen struktur ur yang memikul gaya tarik aksial terfaktor N u harus memenuhi : N u. N n... (3-1) Dengan

Lebih terperinci

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member)

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member) STRUKTUR BAJA 1 MODUL 3 S e s i 1 Batang Tarik (Tension Member) Dosen Pengasuh : Materi Pembelajaran : 1. Elemen Batang Tarik.. 2. Kekuatan Tarik Nominal Metode LRFD. Kondisi Leleh. Kondisi fraktur/putus.

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

3.3. BATASAN MASALAH 3.4. TAHAPAN PELAKSANAAN Tahap Permodelan Komputer

3.3. BATASAN MASALAH 3.4. TAHAPAN PELAKSANAAN Tahap Permodelan Komputer 4) Layout Pier Jembatan Fly Over Rawabuaya Sisi Barat (Pier P5, P6, P7, P8), 5) Layout Pot Bearing (Perletakan) Pada Pier Box Girder Jembatan Fly Over Rawabuaya Sisi Barat, 6) Layout Kabel Tendon (Koordinat)

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

STRUKTUR BAJA 1 KONSTRUKSI BAJA 1

STRUKTUR BAJA 1 KONSTRUKSI BAJA 1 STRUKTUR BAJA 1 KONSTRUKSI BAJA 1 GATI ANNISA HAYU, ST, MT, MSc. PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER 2015 MODUL 3 STRUKTUR BATANG TARIK PROFIL PENAMPANG BATANG TARIK BATANG TARIK PADA KONSTRUKSI

Lebih terperinci

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Bagan Alir Mulai PENGUMPULAN DATA STUDI LITERATUR Tahap Desain Data: Perhitungan Beban Mati Perhitungan Beban Hidup Perhitungan Beban Angin Perhitungan Beban Gempa Pengolahan

Lebih terperinci

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT TUGAS AKHIR MODIFIKASI PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT Dosen Pembimbing : Ir. Heppy Kristijanto, MS Oleh : Fahmi Rakhman

Lebih terperinci

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan BAB I PENDAHULUAN I. 1 LATAR BELAKANG Batang-batang struktur baik kolom maupun balok harus memiliki kekuatan, kekakuan dan ketahanan yang cukup sehingga dapat berfungsi selama umur layanan struktur tersebut.

Lebih terperinci

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG TUGAS AKHIR 1 HALAMAN JUDUL PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program

Lebih terperinci

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN TUGAS AKHIR PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Strata Satu (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

PERHITUNGAN TUMPUAN (BEARING ) 1. DATA TUMPUAN. M u = Nmm BASE PLATE DAN ANGKUR ht a L J

PERHITUNGAN TUMPUAN (BEARING ) 1. DATA TUMPUAN. M u = Nmm BASE PLATE DAN ANGKUR ht a L J PERHITUNGAN TUMPUAN (BEARING ) BASE PLATE DAN ANGKUR ht h a 0.95 ht a Pu Mu B I Vu L J 1. DATA TUMPUAN BEBAN KOLOM DATA BEBAN KOLOM Gaya aksial akibat beban teraktor, P u = 206035 N Momen akibat beban

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA PENGARUH BRACING PADA PORTAL STRUKTUR BAJA (Studi Literatur) TUGAS AKHIR Diajukan Untuk Melengkapi Tugas - Tugas dan Memenuhi Syarat Dalam Menempuh Ujian Sarjana Teknik Sipil Disusun Oleh : ADVENT HUTAGALUNG

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

Pertemuan 4 DEFINE, ASSIGN & ANALYZE

Pertemuan 4 DEFINE, ASSIGN & ANALYZE Halaman 1 dari Pertemuan 4 Pertemuan 4 DEFINE, ASSIGN & ANALYZE 4.1 Define Material & Section Define material bertujuan untuk menentukan karakteristik material yang digunakan dalam analisis struktur. Karakteristik

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

BAB IV METODOLOGI PENELITIAN START. Pengumpulan data. Analisis beban. Standar rencana tahan gempa SNI SNI

BAB IV METODOLOGI PENELITIAN START. Pengumpulan data. Analisis beban. Standar rencana tahan gempa SNI SNI 6 BAB IV METODOLOGI PENELITIAN 4.1 Tahapan Penelitian 1. Langkah-langkah Penelitian Secara Umum Langkah-langkah yang dilaksanakan dalam penelitian analisis komparasi antara SNI 03-176-00 dan SNI 03-176-01

Lebih terperinci

ANALISIS PERKUATAN TOWER SITE GREENFIELD JENIS SELF SUPPORT TOWER (SST) TUGAS AKHIR

ANALISIS PERKUATAN TOWER SITE GREENFIELD JENIS SELF SUPPORT TOWER (SST) TUGAS AKHIR ANALISIS PERKUATAN TOWER SITE GREENFIELD JENIS SELF SUPPORT TOWER (SST) TUGAS AKHIR Diajukan Untuk Memenuhi Salah Satu Syarat Akademis Dalam Menyelesaikan Pendidikan Strata 1 Program Studi Teknik Sipil

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Batang Tarik Pertemuan - 2

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Batang Tarik Pertemuan - 2 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Batang Tarik Pertemuan - 2 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa mampu

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN

PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN TUJUAN: 1. Dapat menerapkan rumus tegangan tekuk untuk perhitungan batang tekan. 2. Dapat merencanakan dimensi batang tekan. PENDAHULUAN Perencanaan batang tekan

Lebih terperinci

DESAIN STRUKTUR JEMBATAN RANGKA BAJA BENTANG 80 METER BERDASARKAN RSNI T ABSTRAK

DESAIN STRUKTUR JEMBATAN RANGKA BAJA BENTANG 80 METER BERDASARKAN RSNI T ABSTRAK DESAIN STRUKTUR JEMBATAN RANGKA BAJA BENTANG 80 METER BERDASARKAN RSNI T-03-2005 Retnosasi Sistya Yunisa NRP: 0621016 Pembimbing: Ir. Ginardy Husada, MT. ABSTRAK Jembatan rangka baja merupakan salah satu

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

ANALISA DESAIN STRUKTUR DAN PONDASI MENARA PEMANCAR TIPE SELF SUPPORTING TOWER DI KOTA PALEMBANG

ANALISA DESAIN STRUKTUR DAN PONDASI MENARA PEMANCAR TIPE SELF SUPPORTING TOWER DI KOTA PALEMBANG ANALISA DESAIN STRUKTUR DAN PONDASI MENARA PEMANCAR TIPE SELF SUPPORTING TOWER DI KOTA PALEMBANG Sheilla Fadila Mahasiswa Jurusan Teknik Sipil, Universitas Sriwijaya Jl. Srijaya Negara Bukit Besar,, 30139,

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN JURUSAN DIPLOMA IV TEKNIK SIPIL FTSP ITS SURABAYA MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO Oleh : M. ZAINUDDIN 3111 040 511 Dosen Pembimbing

Lebih terperinci

PERHITUNGAN BALOK DENGAN PENGAKU BADAN

PERHITUNGAN BALOK DENGAN PENGAKU BADAN PERHITUNGAN BALOK DENGAN PENGAKU BADAN A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan sisa (residual stress ), f r = 70 MPa Modulus elastik baja (modulus

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA

ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA Helmi Kusuma NRP : 0321021 Pembimbing : Daud Rachmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD

ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD Ghinan Azhari 1 Jurnal Konstruksi Sekolah Tinggi Teknologi Garut Jl. Mayor Syamsu No. 1 Jayaraga Garut 44151 Indonesia Email

Lebih terperinci

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni.

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni. III. BATANG TARIK A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni. Gaya aksial tarik murni terjadi apabila gaya tarik yang bekerja tersebut

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH BINA BANGSA JALAN JANGLI BOULEVARD SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH BINA BANGSA JALAN JANGLI BOULEVARD SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH BINA BANGSA JALAN JANGLI BOULEVARD SEMARANG Diajukan Sebagai Syarat Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil

Lebih terperinci

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural BAB III LANDASAN TEORI 3.1 Kolom Pendek Menurut McComac dan Nelson dalam bukunya yang berjudul Structural Steel Design LRFD Method yang berdasarkan dari AISC Manual, persamaan kekuatan kolom pendek didasarkan

Lebih terperinci

ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA

ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA TUGAS AKHIR Diajukan Untuk Melengkapi Syarat Penyelesaian Pendidikan Sarjana Teknik Sipil

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA Yonatan Tua Pandapotan NRP 0521017 Pembimbing :Ir Daud Rachmat W.,M.Sc ABSTRAK Sistem struktur pada gedung bertingkat

Lebih terperinci

ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI ) MENGGUNAKAN MICROSOFT EXCEL 2002

ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI ) MENGGUNAKAN MICROSOFT EXCEL 2002 ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI 03 1729 2002 ) MENGGUNAKAN MICROSOFT EXCEL 2002 Maulana Rizki Suryadi NRP : 9921027 Pembimbing : Ginardy Husada

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 12

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 12 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Sambungan Baut Pertemuan - 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON TUGAS AKHIR RC09 1380 MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON OLEH: RAKA STEVEN CHRISTIAN JUNIOR 3107100015 DOSEN PEMBIMBING: Ir. ISDARMANU, M.Sc

Lebih terperinci

PERHITUNGAN TUMPUAN (BEARING )

PERHITUNGAN TUMPUAN (BEARING ) PERHITUNGAN TUMPUAN (BEARING ) BASE PLATE DAN ANGKUR [C]2011 : M. Noer Ilham ht h a 0.95 ht a f Pu f Mu f f B I Vu L J 1. DATA TUMPUAN BEBAN KOLOM DATA BEBAN KOLOM Gaya aksial akibat beban terfaktor, P

Lebih terperinci

Desain Struktur Beton Bertulang Tahan Gempa

Desain Struktur Beton Bertulang Tahan Gempa Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan 13, 14 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK

Lebih terperinci

BAB I. Perencanaan Atap

BAB I. Perencanaan Atap BAB I Perencanaan Atap 1. Rencana Gording Data perencanaan atap : Penutup atap Kemiringan Rangka Tipe profil gording : Genteng metal : 40 o : Rangka Batang : Kanal C Mutu baja untuk Profil Siku L : BJ

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR Diajukan sebagai salah satu persyaratan menyelesaikan Tahap Sarjana pada

Lebih terperinci

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2) 8 BAB III LANDASAN TEORI 3.1. Elemen Struktur 3.1.1. Kuat Perlu Kuat yang diperlukan untuk beban-beban terfaktor sesuai pasal 4.2.2. dan pasal 7.4.2 SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2.

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

BEARING STRESS PADA BASEPLATE DENGAN CARA TEORITIS DIBANDINGKAN DENGAN PROGRAM SIMULASI ANSYS

BEARING STRESS PADA BASEPLATE DENGAN CARA TEORITIS DIBANDINGKAN DENGAN PROGRAM SIMULASI ANSYS BEARING STRESS PADA BASEPLATE DENGAN CARA TEORITIS DIBANDINGKAN DENGAN PROGRAM SIMULASI ANSYS TUGAS AKHIR Diajukan untuk melengkapi tugas tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik

Lebih terperinci

STUDI DIAGRAM INTERAKSI SHEARWALL BETON BERTULANG PENAMPANG C DENGAN BANTUAN VISUAL BASIC 9

STUDI DIAGRAM INTERAKSI SHEARWALL BETON BERTULANG PENAMPANG C DENGAN BANTUAN VISUAL BASIC 9 TUGAS AKHIR STUDI DIAGRAM INTERAKSI SHEARWALL BETON BERTULANG PENAMPANG C DENGAN BANTUAN VISUAL BASIC 9 SWANDITO PURNAIUDA 3106 100 088 Dosen Pembimbing : Ir. Iman Wimbadi, MS Tavio, ST. MT. Ph.D PENDAHULUAN

Lebih terperinci

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM. PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Mulai Pengumpulan Data Perencanaan Awal Pelat Balok Kolom Flat Slab Ramp Perhitungan beban gempa statik ekivalen Analisa Struktur Cek T dengan

Lebih terperinci

ANALISA DAN DESAIN PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI

ANALISA DAN DESAIN PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI ANALISA DAN DESAIN PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI TEDY FERDIAN NRP: 032161 Pembimbing : Dr. YOSAFAT AJI PRANATA, S.T., M.T. Pembimbing Pendamping : Ronald Simatupang. ST., M.T ABSTRAK

Lebih terperinci