BAB II STUDI PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II STUDI PUSTAKA"

Transkripsi

1 BAB II STUDI PUSTAKA 2.1 Jenis Tower BTS Pada tower BTS atau biasa disebut menara pemancar sinyal bisa dibagi ke beberapa jenis. Ini diklasifikasikan dari bentuk material maupun bentuk menara itu sendiri. Berikut ini adalah jenis-jenis dari tower BTS : Self Supporting Tower Kaki 4 Menara yang memiliki pola yang disambung pada bagian strukturnya dan mampu berdiri sendiri tanpa adanya sokongan lain. Tower SST kaki 4 sesuai dengan gambar 2.1. Tower jenis ini paling banyak digunakan oleh operator operator yang ada karena jarang ditemukan tower jenis ini rubuh.tower ini dinilai sangat aman karena jika satu kakinya lemah masih terdapat tiga kaki yang menahannya. Tower ini juga sangat mampu menahan banyak antena yang berada diatasnya karena ada 4 sisi. sumber : google Gambar 2.1 Tower SST 4 Kaki Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 4

2 2.1.2 Self Supporting Tower Kaki 3 Tower ini ditunjukan pada gambar 2.2. Tower jenis ini dibagi 2 macam, pertama tower tiga kaki diameter besi pipa minimal 9 cm atau yang lebih dikenal dengan nama Triangle, Tower ini juga mampu menampung banyak antenna dan radio. Kedua, tower tiga kaki diameter minimal 2 cm, beberapa kejadian robohnya tower jenis ini karena memakai besi dengan diameter di bawah 2 cm dan ketinggian maksimal tower jenis ini yang direkomendasi adalah 60 meter. Sedangkan ratarata ketinggian yang digunakan adalah 40 meter. Tower jenis ini disusun atas beberapa stage (potongan), 1 stage ada yang 4 meter namun ada yang 5 meter. Makin pendek stage maka makin kokoh, namun biaya pembuatannya makin tinggi, karena setiap stage membutuhkan tali pancang/spanner.jarak patok spanner dengan tower minimal 8 meter. Makin panjang makin baik, karena ikatannya makin kokoh, sehingga tali penguat tersebut tidak makin meruncing di tower bagian atas. \ sumber : google Gambar 2.2 Tower SST 3 kaki Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 5

3 2.1.3 Monopole Tower jenis ini terbuat dari pipa atau plat baja yang memiliki diameter 40cm-50cm, tinggi tower jenis ini bisa mencapai 42 meter ditunjukan pada gambar 3. Ada juga beberapa tower monopole yang digunakan hanya untuk menangkap sinyal di bidang informatika yang memiliki diameter lebih kecil dan digunakan biasanya untuk pribadi yaitu untuk akses internet. Tower jenis ini biasanya sering digunakan pada rooftop. sumber : google Gambar 2.3 Tower Monopole Guyed Tower Guyed Tower, sesuai dengan Gambar 2.4 adalah jenis menara yang disokong dengn kabel-kabel yang diangkurkan pada landasan tanah, menara ini juga disusun atas pola batang sama halnya dengan self supporting tower, akan tetapi menara jenis guyed tower memiliki jenis dimensi batang yang lebih kecil dari pada jenis menara self supporting tower. Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 6

4 sumber : sumargo, 2008 Gambar 2.4 Guyed Tower Tower Kamuflase Tower jenis ini banyak digunakan pada perkotaan yang mengedepankan nilai estetika dan juga karena sulitnya perizinan untuk mendirikan tower. Piranti tersebut secara kasat mata tidak lagi nampak seperti antenna dan menara BTS yang bisa di lihat karena penempatannya cenderung disesuaikan dengan desain atau dikamuflasekan dimana antena tersebut ditempatkan. sumber : google Gambar 2.5 Tower Kamuflase Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 7

5 2.2 Jenis Antenna Tower merupakan sarana untuk memasang sebuah perangkat pada ketinggian tertentu. Perangkat disini bisa disebut yaitu antenna, antenna ini merupakan alat tertentu untuk memancarkan sebuah sinyal untuk kebutuhan teknologi seluler. Berikut ini adalah beberapa jenis antenna yang biasa digunakan vendor-vendor telekomunikasi seluler : Antenna Microwave Antenna ini berbentuk parabola yang dapat menjangkau jarak jauh dan mempunyai radiasi gelombang elektro magnetik yang menyempit. Jenis antenna ini memiliki berbagai macam ukuran dari diameter yang paling kecil 0.2 m, 0.3m, 0.6 m, 0.9 m, 1.2 m, 1.8 m, 2.7 m, 3.0 m sampai yang terbesar diameter 3.7 m bahkan 4.5 m. Makin kecil antenna makin sempit radiasinya, sehingga makin jauh jangkaunnya, tetapi untuk pemakaian antenna yang besar harus memperhatikan ruang dan juga kekuatan strukturnya. Dalam dunia telekomunikasi, Antenna yang bundar ini atau antenna parabola ini dipakai oleh perangkat yang dinamai perangkat transmisi microwave (gelombang mikro). sumber : google Gambar 2.6 Microwave Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 8

6 2.2.2 Antenna Grid Karakteristik antenna ini memiliki radiasi yang lebih lebar yang berguna untuk menangkap sinyal dari handphone di sekitar tower. Antenna jenis ini yang dipakai oleh perangkat yang disebut sebagai BTS (2G), NodeB (3G) maupun enodeb (LTE). sumber : google Gambar 2.7 Antenna Grid Antenna Sectoral Antenna ini mempunyai polarisasi vertikal dan dirancang untuk digunakan pada tower BTS. Antenna sectoral memberikan servis pada wilayah dan sector yang terbatas, biasanya berkisar antara Keuntungan yang diperoleh dengan membatasi wilayah servis tersebut, antenna sectoral mempunyai gain yang lebih besar dibanding antena lainnya. sumber : google Gambar 2.8 Antenna Sectoral \ Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 9

7 Adapun contoh spesifikasi dari data antenna, sebagai berikut : Antenna Tabel 2.1 Contoh Data Antenna One Antenna Area Wind (m 2 ) (m 2 ) 3 GSM Antennas L 2.20 m 3 GSM Antennas L 1.80 m 1 MW Antennas D 0.60 m 0,310 0,138 0,279 0,124 0,318 0, Microsoft Tower Ms.Tower adalah program khusus yang mampu membantu dan memeriksa struktur baja tower telekomunikasi dan tower transmisi listrik. Ms.Tower berisi pilihan untuk menentukan geometri, beban, analisis, merencanakan input. Hasil dan pengecekan member atau batang. Untuk geometri tower dapat dilihat pada gambar Tower yang mungkin mempunyai 3 atau 4 sisi dirakit dengan menggabungkan serangkaian face standar, plan, hip dan cross-arm panels. Profil tower didefinisikan dengan memberikan tinggi dan lebar setiap panel. Semua lebar lainnya diperoleh dengan interpolasi. Jika panel yang sesuai standar tidak ada maka sistem atau aplikasi bisa menggunakan sistem UDP. Sistem UDP tersebut adalah dengan metode penggambaran panel agar sesuai dengan bentuk yang di inginkan. Beban yang dihitung oleh MS.Tower adalah beban berat sendiri, es dan angin. Beban angin dalam program ini dapat memperhitungkan berbagai item tambahan yang ditemukan di menara komunikasi. Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 10

8 sumber : google Gambar 2.9 Ms. Tower V6 Desain menara BTS tentu tidak selalu sama disesuaikan dengan kebutuhan dan kondisi geografis wilayah bersangkutan. Semua desain yang dilakukan harus memenuhi safety margin yang telah disyaratkan ITU (International Telecomunication Union). Hal-hal yang harus diperhatikan dalam mendesain tower adalah faktor beban menara yang diprediksi pemakaian perangkat hardware yang ditempatkan diatas tower. Semisal tower yang hanya ditempati tiga antenna Trx dan microwave, tentu tidak memerlukan menara rangka tinggi. Namun umumnya operator sudah menyiapkan beban menara untuk penambahan beberapa perangkat untuk kebutuhan kedepan, contohnya beban tambahan hardware 3G.(Kuliseluler,2008). Faktor kekuatan angin juga harus diperhitungkan karena setiap wilayah biasanya mempunyai kekuatan angin yang berbeda-beda dan data ini bisa diambil langsung melalui BMG atau biasanya owner punya ketentuan Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 11

9 tersendiri tentang data angin yang ingin digunakan untuk towernya.(kuliseluler,2008). Di dalam Ms. Tower terdapat input tersendiri mengenai semua hal yang berkenaan dengan tower, seperti yang sudah dijelaskan diatas input ini biasa disebut Ancillaries Library. Ancillaries Library adalah file teks bisa dan dapat dengan mudah ditambahkan oleh pengguna. Ini digunakan untuk menambahkan spesifikasi antenna, tangga ataupun kabel yang belum ada di Ms.Tower tersebut. Kekurangan software Ms. Tower : Metoda penggambaran bentuk struktur harus melakukan input data seperti system DOS, belum bisa langsung menggambar secara manual. Secara tampilan tidak bisa melihat section secara detail. Nilai-nilai output yang ditampilkan tidak cukup informatif. Kelebihan software Ms.Tower : Perhitungan beban angin yang memenuhi standar acuan. biasa digunakan dalam perhitungan beban angin pada tower yaitu TIA/EIA-222-F Terdapatnya data-data mengenai spesifikasi antenna, baut, kabel dan tangga. Tersedianya contoh gambar-gambar panel ataupun plan sehingga dengan mudah kita bisa menentukan bentuk dari tower. sumber : MS. Tower Gambar 2.10 Geometri Tower pada Ms.Tower Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 12

10 2.4 LRFD Desain Dalam metoda LRFD terdapat beberapa prosedur perencanaan dan biasa disebut perancangan kekuatan batas, perancangan plastis, perancangan limit, atau perancangan keruntuhan (collapse design). LRFD didasarkan pada filosofi kondisi batas (limit state). Istilah kondisi batas digunakan untuk menjelaskan kondisi dari suatu struktur atau bagian dari suatu struktur tidak lagi melakukan fungsinya. Ada dua kategori dalam kondisi batas, yaitu batas kekuatan dan batas layan (serviceability). Kondisi kekuatan batas (strength limit state) didasarkan pada keamanan atau kapasitas daya dukung beban dari struktur termasuk kekuatan plastis, tekuk (buckling), hancur, fatik, guling, dll. (Sumargo,2009). Metode LRFD mengkosentrasikan pada persyaratan khusus dalam kondisi batas kekuatan dan memberikan keluasaan pada perancang teknik untuk menentukan sendiri batas layannya. Dalam LRFD, beban kerja atau beban layan (Qi) dikalikan dengan faktor beban atau faktor keamanan (λi) hampir selalu lebih besar dari 1,0 dan dalam perancangan digunakan beban terfaktor. (Sumargo,2009). Struktur direncanakan mempunyai cukup kekuatan ultimate untuk mendukung beban terfaktor. Kekuatan ini dianggap sama dengan kekuatan nominal atau kekuatan teoritis dari elemen struktur (Rn) yang dikalikan dengan suatu faktor resistansi atau faktor overcapacity (φ) yang umumnya lebih kecil dari 1,0. Sebagaimana disebutkan dalam Pasal 6.3 SNI , untuk suatu elemen penjelasan paragraf diatas dapat diringkas menjadi: (Jumlah faktor perkalian beban dan faktor beban) (faktor resistansi)(kekuatan/resistansi nominal)....(2.4) Ruas sebelah kiri menyatakan pengaruh beban pada struktur sedangkan ruas sebelah kanan menyatakan ketahanan atau kapasitas dari elemen struktur. Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 13

11 2.4.1 Faktor Beban Tujuan dari faktor beban adalah untuk menaikkan nilai beban akibat ketidakpastian dalam menghitung besar beban mati dan beban hidup. Nilai faktor beban yang digunakan untuk beban mati lebih kecil daripada beban hidup karena perancang teknik dapat menentukan dengan lebih pasti besar beban mati dibandingkan dengan beban hidup. Kombinasi beban yang ditinjau di bawah ini berdasarkan pada Pasal SNI , berikut :...(5.2)...(5.2)...(5.2)...(5.2)...(5.2) (5.2) (5.2) (5 Dimana : D adalah beban mati yang diakibatkan oleh berat kostruksi permanen, termasuk dinding, lantai, atap, plafon, partisi tetap, tangga, dan peralatan layan tetap. L adalah beban hidup dari pengguna gedung dan beban bergerak didalamnya, termasuk kejut, tetapi tidak termasuk beban lingkungan seperti angin, air hujan, dll. adalah beban hidup atap yang ditimbulkan selama perawatan oleh pekerja, peralatan, dan material, atau selama penggunaan biasa oleh orang dan benda bergerak. H adalah beban hujan, tidak termasuk yang diakibatkan genangan air. W adalah beban angin. E adalah beban gempa yang ditentukan menurut SNI atau penggantinya. Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 14

12 U adalah menyatakan beban ultimate Kelebihan LRFD Tujuan adanya LRFD bukan untuk mendapatkan penghematan melainkan untuk memberikan reliabilitas yang seragam untuk semua struktur baja. Dalam ASD faktor keamanan sama diberikan pada beban mati dan beban hidup, sedangkan pada LRFD faktor keamanan atau faktor beban yang lebih kecil diberikan untuk beban mati karena beban mati dapat ditentukan dengan lebih pasti dibandingkan beban hidup. Akibatnya perbandingan berat yang dihasilkan dari ASD dan LRFD akan tergantung pada rasio beban hidup terhadap beban mati. (Sumargo,2009) Batang Tarik Batang tarik dapat dijumpai pada jembatan, rangka atap, tower, ikatan angin, sistem pengaku, dll. Pemilihan penampang batang tarik sangat sederhana karena tidak ada bahaya tekuk (buckling) sehingga untuk mendapat luas penampang yang diperlukan cukup menghitung beban terfaktor yang dipikul oleh batang dibagi dengan tegangan tarik rencana. Kemudian memilih profil sesuai dengan luas penampang yang diperlukan. Pemilihan tipe penampang batang yang digunakan lebih banyak dipengaruhi oleh sambungan yang akan digunakan dalam struktur. Beberapa profil tidak cocok untuk disambung dengan baut dengan perantaraan pelat buhul atau pelat panyambung, sedangkan profil lain dapat disambungkan dengan las. Batang tarik dari profil siku, kanal, dan W atau S dapat digunakan jika sambungan dilakukan dengan baut, sedangkan pelat, kanal, dan T dapat disambung dengan las. Jika sambungan menggunakan las, maka tidak perlu menambahkan luas lubang pada luas netto untuk mendapatkan luas bruto yang diperlukan. Tetapi perlu disadari, meskipun batang disambung dengan Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 15

13 las, lubang seringkali tetap diperlukan lubang untuk pemasangan baut sementara sebelum pengelasan dilakukan. Lubang ini harus diperhitungkan dalam desain. Untuk batang tarik dengan lubang, kemungkinan keruntuhan akan terjadi pada penampang netto yang melalui lubang. Beban runtuh ini bisa jauh lebih kecil dari beban yang diperlukan untuk membuat penampang bruto (tidak melalui lubang) untuk meleleh. Perlu disadari bahwa bagian dari batang yang berlubang biasanya lebih pendek dibandingkan panjang batangnya. Meskipun strain hardening bisa dicapai dengan cepat pada bagian penampang netto dari suatu batang, kelelehan tidak selalu merupakan kondisi batas yang menentukan, oleh karena itu perubahan panjang akibat leleh pada bagian kecil dari batang ini dapat diabaikan. (Sumargo,2009)...(2.4.3) Untuk kelelehan elemen penyambung dengan baut atau rivet = 0,90 (SNI Pers a) Untuk keruntuhan pada elemen penyambung dengan baut atau rivet = 0,75 (SNI Pers b) Dimana : = luas penampang bruto, mm 2 = luas penampang efektif = kuat leleh, Mpa = kuat tarik, Mpa Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 16

14 2.4.4 Batang Tekan Jika beban berusaha untuk menekan atau membuat pendek suatu batang, tegangan yang dihasilkan disebut tegangan tekan dan batangnya disebut batang tekan. Secara umum ada tiga ragam keruntuhan dari batang tekan yaitu tekuk lentur (flexural buckling), tekuk lokal (local buckling), dan tekuk torsional (torsional buckling). Ada dua perbedaan utama antara batang tarik dan tekan, yaitu: 1. Gaya tarik menyebabkan batang lurus sedangkan gaya tekan menyebabkan batang melentur ke luar bidang gaya tersebut bekerja dan ini merupakan kondisi berbahaya. 2. Lubang baut atau rivet dalam batang tarik akan mereduksi luas penampang, sedangkan pada batang tekan seluruh luas penampang dapat menahan beban. Untuk menghitung tegangan tekan yang terjadi pada batang tekan dapat menggunakan rumus :.(2.4.4) dengan =0,85 ( ) untuk ( ) untuk Dimana : = luas penampang bruto, mm 2 = tekuk inelastis = kuat leleh, Mpa = panjang unsur struktur, mm = panjang efektif = jari-jari girasi, mm Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 17

15 = parameter kelangsingan Pelat Buhul Jika pelat buhul digunakan sebagai elemen penyambung beban tarik, kekuatannya harus ditentukan sebagai berikut : Untuk kelelehan elemen penyambung dengan baut atau rivet = 0,90 (SNI Pers a) Untuk keruntuhan pada elemen penyambung dengan baut atau rivet = 0,75 dengan A 0,85 A (SNI Pers b) e g Dimana : = luas penampang bruto, mm 2 = luas netto = kuat leleh, Mpa = kuat tarik, Mpa Luas netto A yang digunakan dalam Pers. (3.6) tidak boleh lebih e dari 85% A. Hasil uji menunjukkan bahwa elemen penyambung gaya g tarik dengan sambungan baut hampir selalu mempunyai efiensi kurang dari 85%, meskipun persentase lubang sangat kecil dibandingkan luas bruto elemen (SNI Pasal ayat 2) Pelat Landasan Tegangan tekan rencana dalam beton atau tipe pondasi lain jauh lebih kecil dari pada tegangan yang terjadi pada strukutr baja. Jika strukturbaja ditumpu oleh pondasi, maka beban kolom harus disebar pada luas pondasi yang cukup sehingga terhindar dari tegangan yang berlebihan. Beban dari struktur baja ditransfer melalui pelat landasan Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 18

16 baja ke pondasi dibawahnya. Pelat landasan dapat dilas langsung atau dengan alat penyambung lain seperti baut atau dilas. Pada gambar dijelaskan pada kondisi gambar a baja dilaskan pada plat dan pada gambar b baja dilaskan melalui siku terlebih dahulu. (Sumargo,2009). (a) (b) sumber : Sumargo, 2009 Gambar 2.11 Pelat Landasan Tahapan kritis dalam pelaksanaan bangunan baja adalah akurasi penempatan posisi pelat landasan. Jika pelat tidak ditempatkan pada elevasi yang tepat maka akan terjadi perubahan tegangan pada struktur. Salah satu dari tiga metoda berikut dapat digunakan untuk menempatkan pada posisi yang tepat: pelat pembantu penyetara ketinggian, baut pembantu penyetara ketinggian, atau pelat landasan tambahan. (Sumargo,2009) Kuat rencana beton dibawah pelat landasan harus lebih besar atau sama dengan beban yang dipikul. Jika pelat landasan menutupi seluruh luas tumpuan beton, kuat rencana ini sama dengan φc (0,60 untuk tumpuan diatas beton) dikalikan dengan kekuatan nominal beton 0,85 f c dikalikan dengan A 1 (dimana f c adalah kuat tekan beton umur 28 hari dalam ksi dan A 1 adalah luas pelat landasan).(sumargo,2009). Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 19

17 ( ) Jika tidak seluruh luas tumpuan beton ditutup oleh pelat landasan, beton dibawah pelat, yang dikelilingi oleh beton diluar pelat landasan, akan lebih kuat. Untuk situasi seperti ini spesifikasi LRFD mengijinkan kuat rencana diatas dan ditingkatkan dengan mengalikan adalah luas maksimum dari tumpuan beton yang tidak tertutup pelat dimana secara geometris akan konsentris dengan luas yang terbebani. Nilai dibatas sebesar 2 seperti dinyatakan dalam rumus berikut.. (Sumargo,2009). ( ) Baut Setiap struktur baja merupakan gabungan dari beberapa komponen batang yang disatukan dengan alat pengencang di samping las yang cukup popular adalah baut terutama baut mutu tinggi. Baut mutu tinggi menggeser penggunaan paku keeling sebagai alat pengencang karena beberapa, seperti jumlah tenaga yang lebih sedikit, kemampuan menerima gaya yang lebih besar dan secara keseluruhan dapat menghemat biaya konstruksi. Selain mutu tinggi ada pula baut mutu normal A307 terbuat dari baja karbon rendah.(agus Setiawan,2008). Dua tipe dasar baut mutu tinggi yang distandarkan ASTM adalah tipe A235 dan A490. Baut ini mempunyai kepala berbentuk segi enam. Baut A235 terbuat dari baja karbon yang memiliki kuat leleh Mpa, baut A490 terbuat dari baja alloy dengan kuat leleh Mpa, tergantung pada diameternya. Diameter baut mutu tinggi berkisar antara ½ - 1 ½ inch, yang sering digunakan dalam desain jembatan antara 7/8 hingga 1 inch..(agus Setiawan,2008). Dalam pemasangan baut mutu tinggi memerlukan gaya tarik awal yang cukup yang diperoleh dari pengencangan awal. Gaya ini akan Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 20

18 memberikan friksi sehingga cukup kuat untuk memikul beban yang bekerja.(agus Setiawan,2008). Berikut ini adalah perhitungan kekuatan untuk sambungan baut : Tahanan Geser Baut Tahanan satu buah baut yang memikul gaya geser memenuhi persamaan:.. ( ) Dimana : = 0.50 untuk baut tanpa ulir, 0.40 untuk baut dengan ulir = Kuat tarik baut (MPa) = Luas bruto penampang baut pada daerah tak berulir = Jumlah bidang geser Tahanan Tarik Baut Baut yang memikul gaya tarik tahanan nominalnya di hitung menurut : ( ) Dimana : = Kuat tarik baut (MPa) = Luas bruto penampang baut Tahanan Tumpu Baut Tahanan tumpu nominal tergantung kondisi yang terlemah dari baut atau komponen pelat yang disambung. Besarnya ditentukan sebagai berikut : ( ) Dimana : = Kuat tarik terendah dari baut atau pelat(mpa) Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 21

19 = tebal pelat = diameter baut pada daerah tak berulir Las Pengelasan merupakan penyambungan bahan logam yang menghasilkan peleburan bahan dengan memanasinya hingga suhu yang tepat dengan atau tanpa pemberian tekanan dan dengan atau tanpa bahan pengisi. Proses penyambungan dengan menggunakan las dapat memberikan beberapa keuntungan yaitu : Struktur yang disambung dengan las akan lebih kaku Komponen struktur dapat tersambung secara kontinu Pada elemen struktur tertentu ada kemungkinan tidak dapat disambung menggunakan baut maka menggunakan las. Terdapat beberapa jenis sambungan pada las yang sering digunakan diantaranya : 1. Sambungan sebidang : sambungan ini umumnya dipakai untuk pelat-pelat datar dengan ketebalan yang sama.keuntungan sambungan ini tidak terdapat eksentrisitas. 2. Sambungan lewatan : sambungan ini cocok digunakan untuk ketebalan plat yang berbeda dan sangat mudah disesuaikan dengan keadaan dilapangan. 3. Sambungan tegak : sambungan ini banyak dipakai untuk membuat penampang tersusun seperti bentuk I. 4. Sambungan sudut : sambungan ini dipakai untuk penampang berbentuk kotak yang biasanya digunakan untuk kolom dan balok yang menerima gaya torsi yang besar. 5. Sambungan sisi : sambungan ini bukan sambungan struktural dan digunakan untuk menjaga agar dua atau lebih pelat tidak bergeser satu dengan lainnya. Filosofi umum LRFD terhadap persyaratan keamanan dan struktur. dalam hal ini terutama untuk las adalah menggunakan persamaan : Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 22

20 ..(2.4.8.) Dimana : = faktor tahanan = tahanan nominal per satuan panjang las = terfaktor persatuan panjang las Las tumpul terbagi menjadi dua yaitu las tumpul penetrasi penuh dan penetrasi sebagian. Las tumpul penetrasi penuh adalah las tumpul di mana terdapat penyatuan antara las dan bahan induk sepanjang kedalaman penuh sambungan. Sedangkan las tumpul penetrasi sebagian adalah las tumpul di mana kedalaman penetrasi lebih kecil daripada kedalaman penuh sambungan. Pada perencanaan ini menggunakan las tumpul. Ukuran las adalah jarak antara permukaan luar las (tidak termasuk perkuatannya) terhadap kedalaman penetrasinya yang terkecil. Khusus sambungan antara dua bagian yang membentuk T atau siku, ukuran las penetrasi penuh adalah tebal bagian yang menumpu.untuk tebal rancana las ditetapkan sebagai berikut : a. Las Tumpul Penetrasi Penuh: tebal rencana las untuk las tumpul penetrasi penuh adalah ukuran las. b. Las Tumpul Penetrasi Sebagian: tebal rencana las untuk las tumpul penetrasi sebagian ditetapkan sesuai dengan ketentuan dibawah ini: i. Sudut antara bagian yang disambung 60 Satu sisi : tt =(d - 3) mm Dua sisi : tt =(d3 + d4-6) mm ii. Sudut antara bagian yang disambung > 60 Satu sisi : tt =d mm Dua sisi : tt =(d3 + d4) mm dengan d adalah kedalaman yang dipersiapkan untuk las (d3 dan d4 adalah nilai untuk tiap sisi las). Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 23

21 Panjang efektif las tumpul adalah panjang las ukuran penuh yang menerus. Luas efektif las tumpul adalah perkalian panjang efektif dengan tebal rencana las. Sambungan las tumpul antara bagian yang tebalnya berbeda atau lebarnya tidak sama yang memikul gaya tarik harus mempunyai peralihan halus antara permukaan dan ujung. Peralihan harus dibuat dengan melandaikan bagian yang lebih tebal atau dengan melandaikan permukaan las atau dengan kombinasi dari keduanya. Kuat las tumpul penetrasi penuh ditetapkan sebagai berikut : Bila sambungan dibebani gaya tarik atau gaya tekan aksial terhadap luas efektif,maka : ( bahan dasar ) ( las ) Bila sambungan dibebani gaya geser terhadap luas efektif,maka ( bahan dasar ) ( las ) Dimana : y = 0,9 adalah faktor tahanan saat leleh, adalah kuat leleh dan kuat tarik. Sumber : SNI Baja Gambar 2.12 Transisi Ketebalan Las Tumpul yang Memikul Gaya Tarik Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 24

22 Ukuran las sudut ditentukan oleh panjang kaki. Panjang kaki harus ditentukan sebagai panjang tw1, tw2, dari sisi yang terletak sepanjang kaki segitiga yang terbentuk dalam penampang melintang las (lihat Gambar 2.12). Bila kakinya sama panjang, ukurannya adalah tw. Bila terdapat sela akar, ukuran tw diberikan oleh panjang kaki segitiga yang terbentuk dengan mengurangi sela akar seperti pada Gambar Ukuran minimum las sudut, selain dari las sudut yang digunakan untuk memperkuat las tumpul, ditetapkan sesuai dengan Tabel 2.2 kecuali bila ukuran las tidak boleh melebihi tebal bagian yang tertipis dalam sambungan. Tebal bagian paling tebal, t [mm] Tabel 2.2 Ukuran Minimum Las Sudut Tebal bagian paling tebal, t [mm] t < t < t < t 6 Sumber : SNI Baja Gambar 2.13 Ukuran Las Sudut Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 25

23 Ukuran maksimum disambung adalah: las sudut sepanjang tepi komponen yang a. Untuk komponen dengan tebal kurang dari 6,4 mm, diambil setebal komponen; b. Untuk komponen dengan tebal 6,4 mm atau lebih, diambil 1,6 mm kurang dari tebal komponen kecuali jika dirancang agar memperoleh tebal rencana las tertentu. Panjang efektif las sudut adalah seluruh panjang las sudut berukuran penuh. Panjang efektif las sudut paling tidak harus 4 kali ukuran las; jika kurang, maka ukuran las untuk perencanaan harus dianggap sebesar 0,25 dikali panjang efektif. Persyaratan panjang minimum berlaku juga pada sambungan pelat yang bertumpuk (lap). Tiap segmen las sudut yang tidak menerus (selang-seling) harus mempunyai panjang efektif tidak kurang dari 40 mm dan 4 kali ukuran nominal las. Luas efektif las sudut adalah perkalian panjang efektif dan tebal rencana las.jarak melintang antar las sudut Bila dua las sudut menerus sejajar menghubungkan dua komponen dalam arah gaya untuk membentuk komponen struktur tersusun, jarak melintang antara las tidak boleh melebihi 32t p, kecuali untuk kasus las sudut tidak menerus pada ujung komponen struktur tarik, jarak melintang tidak boleh melebihi 16t p atau 200 mm, dengan t p adalah tebal terkecil dari dua komponen yang disambung. Agar butir ini terpenuhi maka las sudut boleh berada dalam selot dan lubang pada arah gaya. Kuat rencana persatuan panjang las sudut,ditentukan sebagai berikut: ( bahan dasar ) ( las ) Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 26

24 Untuk mencari panjang las sudut dapat menggunakan rumus sebagai berikut: L= F/φ R nw Untuk Jarak antar las sudut tidak menerus Kecuali pada ujung komponen struktur tersusun, jarak bersih sepanjang garis las, antara las sudut tidak menerus yang berdekatan, tidak boleh melebihi nilai terkecil dari: i. Untuk komponen yang menerima gaya tekan: 16t p dan 300 mm. ii. Untuk komponen yang menerima gaya tarik: 24t p dan 300 mm Destyanto Priyo P, Satriya Zhyllullah, Desain Tower BTS.. 27

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun.

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun. SAMBUNGAN LAS 13.5.1 Lingkup 13.5.1.1 Umum Pengelasan harus memenuhi standar SII yang berlaku (2441-89, 2442-89, 2443-89, 2444-89, 2445-89, 2446-89, dan 2447-89), atau penggantinya. 13.5.1.2 Jenis las

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

DESAIN TOWER BASE TRANSCEIVER STATION KAKI 4 DENGAN TINGGI 42 M MENGGUNAKAN PERANGKAT LUNAK

DESAIN TOWER BASE TRANSCEIVER STATION KAKI 4 DENGAN TINGGI 42 M MENGGUNAKAN PERANGKAT LUNAK DESAIN TOWER BASE TRANSCEIVER STATION KAKI 4 DENGAN TINGGI 42 M MENGGUNAKAN PERANGKAT LUNAK TOWER BASE TRANSCEIVER STATION DESIGN OF 4 FEET WITH HEIGHT 42 M USING SOFTWARE Laporan ini disusun untuk memenuhi

Lebih terperinci

Komponen Struktur Tarik

Komponen Struktur Tarik Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Komponen Struktur Tarik Pertemuan 2, 3 Sub Pokok Bahasan : Kegagalan Leleh Kegagalan Fraktur Kegagalan Geser Blok Desain Batang Tarik

Lebih terperinci

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan.

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. II. KONSEP DESAIN A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. Beban yang bekerja pada struktur bangunan dapat bersifat permanen (tetap)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menara Telekomunikasi (Tower) Dapat diklasifikasikan sebagai berikut : a. Klasifikasi Tower Berdasarkan Letak Berdirinya

BAB II TINJAUAN PUSTAKA. Menara Telekomunikasi (Tower) Dapat diklasifikasikan sebagai berikut : a. Klasifikasi Tower Berdasarkan Letak Berdirinya BAB II TINJAUAN PUSTAKA 2.1 Menara Telekomunikasi (Tower) Menara Telekomunikasi (Tower) Dapat diklasifikasikan sebagai berikut : a. Klasifikasi Tower Berdasarkan Letak Berdirinya Jika melihat berdasarkan

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Las Pertemuan - 14

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Las Pertemuan - 14 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Sambungan Las Pertemuan - 14 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Konstruksi Tower BTS (Base Transmission Station)

BAB II TINJAUAN PUSTAKA. 2.1 Konstruksi Tower BTS (Base Transmission Station) BAB II TINJAUAN PUSTAKA 2.1 Konstruksi Tower BTS (Base Transmission Station) Tower adalah menara yang terbuat dari rangkaian besi atau pipa baik segi empat atau segitiga, dan dapat berupa pipa panjang

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 12

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 12 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Sambungan Baut Pertemuan - 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Jembatan Rangka Baja Jembatan rangka baja adalah struktur jembatan yang terdiri dari rangkaian batang batang baja yang dihubungkan satu dengan yang lain. Beban atau

Lebih terperinci

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni.

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni. III. BATANG TARIK A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni. Gaya aksial tarik murni terjadi apabila gaya tarik yang bekerja tersebut

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 Sub Pokok Bahasan : Perilaku Mekanis Baja Pengantar LRFD Untuk

Lebih terperinci

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2 Perencanaan Material Baja Perlu ditetapkan kriteria untuk menilai tercapai atau tidaknya penyelesaian optimum Biaya minimum Berat minimum Bahan minimum Waktu konstruksi

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAHAN KULIAH STRUKTUR BAJA 1. Program Studi Teknik Sipil Fakultas Teknik dan Informatika Undiknas University

BAHAN KULIAH STRUKTUR BAJA 1. Program Studi Teknik Sipil Fakultas Teknik dan Informatika Undiknas University 3 BAHAN KULIAH STRUKTUR BAJA 1 4 Program Studi Teknik Sipil Fakultas Teknik dan Informatika Undiknas University Batang tarik 1 Contoh batang tarik 2 Kekuatan nominal 3 Luas bersih 4 Pengaruh lubang terhadap

Lebih terperinci

Judul: Masca Indra Triana

Judul: Masca Indra Triana Masca Indra Triana 3106 100 039 Judul: Studi Perbandingan Performa Tower SST Kaki Tiga dengan Tower SST Kaki Empat Sebagai Pilihan dalam Perencanaan Tower Bersama Latar Belakang Semakin menjamurnya tower-tower

Lebih terperinci

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member)

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member) STRUKTUR BAJA 1 MODUL 3 S e s i 1 Batang Tarik (Tension Member) Dosen Pengasuh : Materi Pembelajaran : 1. Elemen Batang Tarik.. 2. Kekuatan Tarik Nominal Metode LRFD. Kondisi Leleh. Kondisi fraktur/putus.

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

Struktur Baja 2. Kolom

Struktur Baja 2. Kolom Struktur Baja 2 Kolom Perencanaan Berdasarkan LRFD (Load and Resistance Factor Design) fr n Q i i R n = Kekuatan nominal Q = Beban nominal f = Faktor reduksi kekuatan = Faktor beban Kombinasi pembebanan

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur sistematika perancangan struktur Kubah, yaitu dengan cara sebagai berikut: START

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

BAB III LANDASAN TEORI. ur yang memikul gaya tarik aksial terfaktor N u harus memenuhi : N u. N n... (3-1)

BAB III LANDASAN TEORI. ur yang memikul gaya tarik aksial terfaktor N u harus memenuhi : N u. N n... (3-1) BAB III LANDASAN TEORI 3.1 Batang Tarik Menurut SNI 03-1729-2002-2002 pasal 10.1 menyatakan bahwa komponen struktur ur yang memikul gaya tarik aksial terfaktor N u harus memenuhi : N u. N n... (3-1) Dengan

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan BAB II TINJAUAN PUSTAKA 2.1 Profil C Baja adalah salah satu alternatif bahan dalam dunia konstruksi. Baja digunakan sebagai bahan konstruksi karena memiliki kekuatan dan keliatan yang tinggi. Keliatan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR Pendahuluan POKOK BAHASAN 1 PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan

Lebih terperinci

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax: Kuliah ke-6 Bar (Batang) digunakan pada struktur rangka atap, struktur jembatan rangka, struktur jembatan gantung, pengikat gording dn pengantung balkon. Pemanfaatan batang juga dikembangkan untuk sistem

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Batang Tarik Pertemuan - 2

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Batang Tarik Pertemuan - 2 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Batang Tarik Pertemuan - 2 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa mampu

Lebih terperinci

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG STUDI KONFIGURASI LAS SUDUT PADA STRUKTUR BAJA YANG MEMIKUL MOMEN SEBIDANG BERDASARKAN SPESIFIKASI SNI 03 1729 2002 TENTANG TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG Elfrida Evalina NRP

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

1- PENDAHULUAN. Baja Sebagai Bahan Bangunan

1- PENDAHULUAN. Baja Sebagai Bahan Bangunan 1- PENDAHULUAN Baja Sebagai Bahan Bangunan Sejak permulaan sejarah, manusia telah berusaha mencari bahan yang tepat untuk membangun tempat tinggalnya, jembatan untuk menyeberangi sungai dan membuat peralatan-peralatan

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

Pertemuan IX : SAMBUNGAN BAUT (Bolt Connection)

Pertemuan IX : SAMBUNGAN BAUT (Bolt Connection) Pertemuan IX : SAMBUNGAN BAUT (Bolt Connection) Mata Kuliah : Struktur Baja Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Pendahuluan Dalam konstruksi baja, setiap bagian elemen dari strukturnya dihubungkan

Lebih terperinci

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan BAB I PENDAHULUAN I. 1 LATAR BELAKANG Batang-batang struktur baik kolom maupun balok harus memiliki kekuatan, kekakuan dan ketahanan yang cukup sehingga dapat berfungsi selama umur layanan struktur tersebut.

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah Kode SKS : Perancangan Struktur Baja : TSP 306 : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur

Lebih terperinci

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perancangan struktur suatu bangunan gedung didasarkan pada besarnya kemampuan gedung menahan beban-beban yang bekerja padanya. Disamping itu juga harus memenuhi

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Baut.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Baut. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Sambungan Baut Pertemuan 6, 7 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: BAB VIII SAMBUNGAN MOMEN DENGAN PAKU KELING/ BAUT Momen luar M diimbangi oleh

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Metode Desain LRFD dengan Analisis Elastis o Kuat rencana setiap komponen struktur tidak boleh kurang dari kekuatan yang dibutuhkan yang ditentukan berdasarkan kombinasi pembebanan

Lebih terperinci

ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD

ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD Ghinan Azhari 1 Jurnal Konstruksi Sekolah Tinggi Teknologi Garut Jl. Mayor Syamsu No. 1 Jayaraga Garut 44151 Indonesia Email

Lebih terperinci

Sambungan diperlukan jika

Sambungan diperlukan jika SAMBUNGAN Batang Struktur Baja Sambungan diperlukan jika a. Batang standar kurang panjang b. Untuk meneruskan gaya dari elemen satu ke elemen yang lain c. Sambungan truss d. Sambungan sebagai sendi e.

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung

BAB III METODOLOGI PERANCANGAN. Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung BAB III METODOLOGI PERANCANGAN 3.1 Data Perencanaan Studi kasus pada penyusunan Tugas Akhir ini adalah perancangan gedung bertingkat 5 lantai dengan bentuk piramida terbalik terpancung menggunakan struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Tentang Konstruksi Baja 1. Sejarah perkembangan Secara historis, keberadaan menara telekomunikasi sudah ada di Amerika Utara sejak akhir abad ke-19 yang dibangun oleh

Lebih terperinci

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul Sistem Struktur 2ton y Sambungan batang 5ton 5ton 5ton x Contoh Detail Sambungan Batang Pelat Buhul a Baut Penyambung Profil L.70.70.7 a Potongan a-a DESAIN BATANG TARIK Dari hasil analisis struktur, elemen-elemen

Lebih terperinci

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD MODUL 4 BATANG TEKAN METODE ASD 4.1 MATERI KULIAH Panjang tekuk batang tekan Angka kelangsingan batang tekan Faktor Tekuk dan Tegangan tekuk batang tekan Desain luas penampang batang tekan Syarat kekakuan

Lebih terperinci

4.3.5 Perencanaan Sambungan Titik Buhul Rangka Baja Dasar Perencanaan Struktur Beton Bertulang 15

4.3.5 Perencanaan Sambungan Titik Buhul Rangka Baja Dasar Perencanaan Struktur Beton Bertulang 15 3.3 Dasar Perencanaan Struktur Beton Bertulang 15 3.3.1 Peraturan-Peraturan 15 3.3.2 Pembebanan ]6 3.3.3 Analisis Struktur 18 3.3.4 Perencanaan Pelat 18 3.3.5 Perencanaan Struktur Portal Beton Bertulang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling BAB I PENDAHULUAN 1.1. Latar Belakang Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling melengkapi dengan kelebihan dan kekurangan masing-masing bahan, sehingga membentuk suatu jenis

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Struktur Atas Bangunan MULAI Skematik struktur 1. Penentuan spesifikasi material Input : 1. Beban Mati 2. Beban Hidup 3. Beban Angin 4. Beban

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci

STRUKTUR BAJA 1 KONSTRUKSI BAJA 1

STRUKTUR BAJA 1 KONSTRUKSI BAJA 1 STRUKTUR BAJA 1 KONSTRUKSI BAJA 1 GATI ANNISA HAYU, ST, MT, MSc. PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER 2015 MODUL 3 STRUKTUR BATANG TARIK PROFIL PENAMPANG BATANG TARIK BATANG TARIK PADA KONSTRUKSI

Lebih terperinci

Meliputi pertimbangan secara detail terhadap alternatif struktur yang

Meliputi pertimbangan secara detail terhadap alternatif struktur yang BAB II TINJAUAN PIISTAKA 2.1 Pendahuluan Pekerjaan struktur secara umum dapat dilaksanakan melalui 3 (tiga) tahap (Senol,Utkii,Charles,John Benson, 1977), yaitu : 2.1.1 Tahap perencanaan (Planningphase)

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Batang tekan merupakan batang yang mengalami tegangan tekan aksial. Dengan berbagai macam sebutan, tiang, tonggak dan batang desak, batang ini pada hakekatnya jarang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pembebanan Struktur bangunan yang aman adalah struktur bangunan yang mampu menahan beban-beban yang bekerja pada bangunan. Dalam suatu perancangan struktur harus memperhitungkan

Lebih terperinci

ELEMEN STRUKTUR TARIK

ELEMEN STRUKTUR TARIK ELEMEN STRUKTUR TARIK Desain kekuatan elemen struktur tarik merupakan salah satu masalah sederhana yang dijumpai oleh perencana struktural. Meskipun demikian perencana perlu berhati hati, karena telah

Lebih terperinci

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1 MODUL PERKULIAHAN Struktur Baja 1 Batang Tarik #1 Fakultas Teknik Perencanaan dan Desain Program Studi Teknik Sipil Tatap Kode MK Disusun Oleh Muka 03 MK11052 Abstract Modul ini bertujuan untuk memberikan

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Perencanaan merupakan langkah awal dari suatu pembangunan fisik berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman oleh perencana agar

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan BAB 1 PENDAHULUAN 1.1. Latar Belakang Dengan semakin pesatnya perkembangan dunia teknik sipil di Indonesia saat ini menuntut terciptanya sumber daya manusia yang dapat mendukung dalam bidang tersebut.

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Beban Struktur Pada suatu struktur bangunan, terdapat beberapa jenis beban yang bekerja. Struktur bangunan yang direncanakan harus mampu menahan beban-beban yang bekerja pada

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Las.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Las. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Sambungan Las Pertemuan 9, 10 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

struktur. Pertimbangan utama adalah fungsi dari struktur itu nantinya.

struktur. Pertimbangan utama adalah fungsi dari struktur itu nantinya. BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pekerjaan struktur secara umum dilaksanakan melalui 3 (tiga) tahap {senol utku, Charles, John Benson, 1977). yaitu : 1. Tahap Perencanaan (Planning phase) Meliputi

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil diajukan

Lebih terperinci

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Estika 1 dan Bernardinus Herbudiman 2 1 Jurusan Teknik Sipil,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING )

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) [C]2011 : M. Noer Ilham Gaya tarik pada track stank akibat beban terfaktor, T u = 50000 N 1. DATA BAHAN PLAT SAMBUNG DATA PLAT SAMBUNG Tegangan leleh baja, f

Lebih terperinci

BAB VI KONSTRUKSI KOLOM

BAB VI KONSTRUKSI KOLOM BAB VI KONSTRUKSI KOLOM 6.1. KOLOM SEBAGAI BAHAN KONSTRUKSI Kolom adalah batang tekan vertikal dari rangka struktur yang memikul beban dari balok. Kolom merupakan suatu elemen struktur tekan yang memegang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dalam tekan sebelum terjadi kegagalan (Bowles, 1985).

BAB II TINJAUAN PUSTAKA. dalam tekan sebelum terjadi kegagalan (Bowles, 1985). BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah salah satu bahan konstruksi yang penting. Sifat-sifatnya yang terutama adalah kekuatannya yang tinggi dan sifat keliatannya. Keliatan (ductility) adalah kemampuan

Lebih terperinci

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus BAB III LANDASAN TEORI 3.1 Perencanaan Beban Gempa 3.1.1 Klasifikasi Situs Dalam perumusan kriteria desain seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa

Lebih terperinci

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang ABSTRAK Dalam tugas akhir ini memuat perancangan struktur atas gedung parkir Universitas Udayana menggunakan struktur baja. Perencanaan dilakukan secara fiktif dengan membahas perencanaan struktur atas

Lebih terperinci

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran:

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran: BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API 3.1. Kerangka Berpikir Dalam melakukan penelitian dalam rangka penyusunan tugas akhir, penulis melakukan penelitian berdasarkan pemikiran: LATAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gempa di Indonesia Tahun 2004, tercatat tiga gempa besar di Indonesia yaitu di kepulauan Alor (11 Nov. skala 7.5), gempa Papua (26 Nov., skala 7.1) dan gempa Aceh (26 Des.,skala

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB III METODE PERANCANGAN

BAB III METODE PERANCANGAN BAB III METODE PERANCANGAN 3.1 Penyajian Laporan Dalam penyajian bab ini dibuat kerangka agar memudahkan dalam pengerjaan laporan tugas akhir. Berikut adalah diagram alur yang akan diterapkan : Mulai Pengumpulan

Lebih terperinci

MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO

MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO PRESENTASI TUGAS AKHIR MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO MAHASISWA : WAHYU PRATOMO WIBOWO NRP. 3108 100 643 DOSEN PEMBIMBING:

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan BAB I PENDAHULUAN 1.6 Latar Belakang Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan kolom, baik yang terbuat dari baja, beton atau kayu. Pada tempat-tempat tertentu elemen-elemen

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Mulai Studi Literatur Konstruksi Baja Untuk Struktur Atas bangunan Spesifikasi Bangunan - Pembebanan - Data-data fisik - Data-data struktur Konfigurasi

Lebih terperinci

PERKUATAN KOLOM YANG MIRING AKIBAT GEMPA BUMI

PERKUATAN KOLOM YANG MIRING AKIBAT GEMPA BUMI Konferensi Nasional Teknik Sipil I (KoNTekS I) Universitas Atma Jaya Yogyakarta Yogyakarta, 11 12 Mei 2007 PERKUATAN KOLOM YANG MIRING AKIBAT GEMPA BUMI F.X. Nurwadji Wibowo 1,Yoyong Arfiadi 2, Fransisca

Lebih terperinci

2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang

2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang BAB II TINJAUAN PUSTAKA 2.1. Pendahuiuan Menurut Nawi, (1990) kolom adalah batang tekan vertikal dari rangka (frame) struktur yang memikul beban dari balok, kolom meneruskan beban-beban dari elevasi atas

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. : Perancangan Struktur Beton. Pondasi. Pertemuan 12,13,14

Integrity, Professionalism, & Entrepreneurship. : Perancangan Struktur Beton. Pondasi. Pertemuan 12,13,14 Mata Kuliah Kode SKS : Perancangan Struktur Beton : CIV-204 : 3 SKS Pondasi Pertemuan 12,13,14 Sub Pokok Bahasan : Pengantar Rekayasa Pondasi Jenis dan Tipe-Tipe Pondasi Daya Dukung Tanah Pondasi Telapak

Lebih terperinci

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA Roland Martin S 1*)., Lilya Susanti 2), Erlangga Adang Perkasa 3) 1,2) Dosen,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Pembebanan merupakan faktor penting dalam merancang stuktur bangunan. Oleh karena itu, dalam merancang perlu diperhatikan beban-bean yang bekerja pada struktur agar

Lebih terperinci