BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Hasil Pertanian dan Perkebunan Pengeringan hasil pertanian dan perkebunan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pasca panen. Unit operasi ini diterapkan untuk mengurangi kadar air produk seperti berbagai buah-buahan, sayuran, dan produk pertanian atau perkebunan lainnya setelah panen. Pengeringan adalah proses pemindahan panas dan uap air secara simultan yang memerlukan panas untuk menguapkan air dari permukaan bahan tanpa mengubah sifat kimia dari bahan tersebut. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan uap air antara udara dan bahan yang dikeringkan. Laju pemindahan kandungan air dari bahan akan mengakibatkan berkurangnya kadar air dalam bahan tersebut. Pada prinsipnya, pengeringan hasil pertanian dan perkebunan bertujuan untuk mengurangi kadar air yang terkandung pada bahan sampai pada kadar air yang diinginkan. Tujuan mengurangi kadar air adalah untuk memperpanjang kehidupan rak-produk bio-asal dengan mengurangi kadar air ke tingkat yang cukup rendah sehingga menghambat pertumbuhan mikroorganisme, reaksi enzimatik, dan reaksi lainnya yang memperburuk produk pertanian dan perkebunan tersebut. Faktor-faktor yang berpengaruh dalam proses pengeringan adalah suhu, kelembaban udara, laju aliran udara, kadar air awal bahan dan kadar air akhir bahan. 2.2 Jenis - Jenis Pengeringan Jenis-jenis pengeringan berdasarkan karakteristik umum dari beberapa pengering konvensional dibagi atas 8 bagian, yaitu : (Arun S. Mujumdar, Chung Lim Law. 2009) a) Baki atau wadah Pengeringan jenis baki atau wadah adalah dengan meletakkan material yang akan dikeringkan pada baki yang lansung berhubungan dengan media pengering. Cara perpindahan panas yang umum digunakan adalah 6

2 konveksi dan perpindahan panas secara konduksi juga dimungkinkan dengan memanaskan baki tersebut. b) Rotary Pada jenis ini ruang pengering berbentuk silinder berputar sementara material yang dikeringkan jauh di dalam ruang pengering. Medium pengering, umumnya udara panas, dimasukkan ke ruang pengering dan bersentuhan dengan material yang dikeringkan dengan arah menyilang. Alat penukar kalor yang dipasang di dalam ruang pengering untuk memungkinkan terjadinya konduksi. c) Flash Pengering dengan flash (flash dryer) digunakan untuk mengeringkan kandungan air yang ada di permukaan produk yang akan dikeringkan. Materi yang dikeringkan dimasukkan dan mengalir bersama medium pengering dan proses pengeringan terjadi saat aliran medium pengering ikut membawa produk yang dikeringkan. Setelah proses pengeringan selesai, produk yang dikeringkan akan dipisahkan dengan menggunakan hydrocyclone. d) Spray Teknik pengeringan spray umumnya digunakan untuk mengeringkan produk yang berbentuk cair atau larutan suspensi menjadi produk padat. Contohnya, proses pengeringan susu cair menjadi susu bubuk dan pengeringan produk-produk farmasi. Cara kerjanya adalah cairan yang akan dikeringkan dibuat dalam bentuk tetesan oleh atomizer dan dijatuhkan dari bagian atas. Medium pengering (umumnya udara panas) dialirkan dengan arah berlawanan atau searah dengan jatuhnya tetesan. Produk yang dikeringkan akan berbentuk padatan dan terbawa bersama medium pengering dan selanjutnya dipisahkan dengan hydrocyclone. e) Fluidized bed Pengeringan dengan menggunakan kecepatan aliran udara yang relatif tinggi menjamin medium yang dikeringkan terjangkau oleh udara. Jika dibandingkan dengan jenis wadah, jenis ini mempunyai luas kontak yang lebih besar. 7

3 f) Vacum Pengeringan dengan memanfaatkan ruangan bertekanan udara rendah. Dimana pada ruangan tersebut tidak terjadi perpindahan panas, tetapi yang terjadi adalah perpindahan massa pada suhu rendah. g) Membekukan Pengeringan dengan menggunakan suhu yang sangat rendah. Biasanya digunakan pada produk-produk yang bernilai sangat tinggi, seperti produk farmasi dan zat-zat kimia lainnya. h) Batch dryer Pengeringan jenis ini hanya baik digunakan pada jumlah material yang sangat sedikit, seperti penggunaan pompa panas termasuk pompa panas kimia Konsep Dasar Pengeringan Pengeringan adalah proses pengeluaran air dari suatu bahan pertanian menuju kadar air kesetimbangan dengan udara sekeliling atau pada tingkat kadar air dimana mutu bahan pertanian dapat dicegah dari serangan jamur, enzim aktifitas serangga (Hederson and Perry, 1976). Sedangkan, menurut Hall (1957) and Brooker et. al. (1981), proses pengeringan adalah proses pengambilan atau penurunan kadar air sampai batas tertentu sehingga dapat memperlambat laju kerusakan bahan pertanian akibat aktivitas biologis dan kimia sebelum bahan diolah atau dimanfaatkan. Pengeringan merupakan salah satu cara dalam teknologi pangan yang dilalakukan dengan tujuan pengawetan. Manfaat lain dari pengeringa adalah memperkecil volume dan berat bahan dibanding kondisi awal sebelum pengeringan. Sehingga, akan menghemat ruang (Rahman dan Yuyun, 2005). Pengeringan produk atau hasil pertanian dipengaruhi oleh beberapa faktor, diantaranya adalah suhu, kelembaban udara, kecepatan aliran udara serta kadar 8

4 air. Ukuran bahan juga mempengaruhi cepat lambatnya pengeringan. Selain itu jenis alat pengering juga mempengaruhi proses pengeringan (Taib, dkk, 1988). Kelembaban udara (RH) juga mempengaruhi proses pengeringan. Kelembaban udara berbanding lurus dengan waktu pengeringan. Semakin tinggi kelembaban udara maka proses pengeringan (waktu pengeringan) akan berlangsung lebih lama. Apabila bahan pangan dikeringkan dengan menggunakan udara sebagai medium pengering, maka semakin panas udara tersebut semakin cepat perngeringan. Berbeda dengan RH, kecepatan aliran udara berbanding tebalik dengan waktu pengeringa. Semakin tinggi kecepatan aliran udara, proses pengeringan akan berjalan lebih cepat (Brooker, dkk., 1981). Faktor lain yaitu kadar air bahan yang dikeringkan bahwa pengeringan bertujuan untuk mengurangi kadar air bahan untuk menghambat perkembangan organisme pembusuk. Kadar air suatu bahan berpengaruh terhadap banyaknya air yang diuapkan dan lamanya proses pengeringan. Kadar air bahan pangan dapat dinyatakan sebagai kadar air basi kering dan kadar air basis basah. Kadar air basis kering adalah perbandingan berat air dalam bahan dengan berat bahan keringnya. Kadar air basis basah adalah perbandingan berat air dalam bahan dengan berat bahan total (Heldman and Signh, 1981). Pada bagian tugas akhir ini akan dilakukan simulasi pada pengeringan tipe wadah dengan menggunakan sinar matahari sebagai sumber energi pemanas udara pengering. 2.3 Matahari (Surya) Karakteristik Matahari Matahari adalah bintang terdekat dari bumi. Seperti halnya bintang yang lain, matahari memancarkan cahayanya sendiri. Cahaya yang terpancar dari matahari disebabkan oleh adanya reaksi fusi nuklir yang terjadi di inti matahari. Selain memancarkan cahaya, matahari juga menghasilkan energy yang sangat besar dalam bentuk panas. Energi dari proses reaksi di inti hingga terhantar ke permukaan matahari berlangsung melalui proses yang kompleks. Terjadinya 9

5 reaksi nuklir di inti dan proses penghantarannya di bagian dalam matahari menyebabkan matahari selalu beraktivitas secara dinamis sepanjang waktu. Gambar 2.1 Matahari a) Inti matahari Matahari bukanlah satu benda padat yang homogen, tetapi seperti bola gas raksasa yang terdiri atas lapisan-lapisan yang berbeda. Pada bagian inti, reaksi fusi nuklir berlangsung pada suhu sekitar 15 juta derajat Celcius. Inti matahari mengsisi sepertiga jari-jari terdalam dari matahari. Di sini, bergabung empat inti hydrogen membentuk satu buah inti helium. Reaksi ini menghasilkan energy yang sangat besar dalam bentuk gelombang electromagnet dan partikel. Energi yang besar ini kemudian merambat ke bagian yang lebih luar melalui cara radiasi atau pancaran. b) Daerah radiasi Bagian dalam matahari yang menghantarkan energy secara radiasi disebut sebagai daerah radiasi (radiation zone). Daerah radiasi ada pada bagian terluar inti matahari hingga jarak sekitar 0.8 jari-jari matahari. Daerah radiasi memiliki kerapatan yang sangat tinggi sehingga gelombang elektromagnetik dari inti matahari membutuhkan waktu hingga ratusan ribu tahun untuk sampai di bagian terluarnya. Pada bagian dasar daerah radiasi, suhunya mencapai 7 juta derajat Celcius, sedangkan bagian luarnya memiliki suhu 2 juta derajat Celcius. c) Daerah konveksi 10

6 Di bagian luar daerah radiasi terdapat daerah konveksi. Di bagian ini, energy menjalar ke permukaan matahari melalui proses konveksi atau aliran. Aliran energy ini terbawa oleh medium plasma yang mengisi daerah konveksi. Plasma adalah gas yang terionisasi oleh suhu yang sangat tinggi sehingga electron-elektronnya terpisah dari atom atau molekulnya. Pada daerah konveksi, aliran plasma begitu kompleks sehingga menghasilkan medan magnet yang berfluktuasi sepanjang waktu. Dinamika medan magnet ini sangat aktif sehingga mempengaruhi munculnya beragam aktivitas di permukaan matahari. Aktivitas matahari ini kadang teramati dari bumi dan sering mengakibatkan pengaruh yang besar terhadap kondisi cuaca antariksa secara keseluruhan. Bagian matahari yang terlihat dari bumi adalah permukaan matahari atau fotosfer. Fotosfer terletak di atas daerah konveksi. Suhu di fotosfer sekitar 6000 derajat Celcius. Sebagian dari proses konveksi tampak di fotosfer berupa luapan plasma seperti gelembung yang disebut granula. Di fotosfer juga terjadi beberapa aktivitas matahari akibat dari dinamika medan magnet di daerah konveksi. Di atas fotosfer terdapat lapisan atmosfer matahari yang disebut kromosfer. Kromosfer memiliki suhu antara 4500 hingga derajat Celcius. Suhu di atas kromosfer meningkat dengan tajam hingga mencapai 2 juta derajat Celcius pada daerah yang dinamakan korona. Meskipun jauh lebih panas dari permukaan matahari, korona lebih redup darinya sehingga tidak tampak dari bumi kecuali pada saat gerhana matahari. Pada bagian atmosfer matahari ini terjadi beberapa aktivitas matahari yang dapat berpengaruh pada cuaca anatraiksa Teori Dasar Radiasi Surya Radiasi adalah proses perpindahan panas tanpa melalui media. Bila energi radiasi menimpa permukaan suatu bahan, maka sebagian akan dipantulkan (refleksi), sebagian lagi akan diserap (absorbsi) dan sebagian lagi akan diteruskan (transmisi). Kebanyakan benda padat tidak bisa mentransmisikan radiasi thermal sehingga penerapan transmisivitas dianggap nol. 11

7 Gambar 2.2 Radiasi surya Terdapat dua jenis pantulan radiasi yaitu spekular dan diffuse. Jika sudut pantulan radiasi sama, maka pantulannya disebut spektular. Jika sudut pantulannya beragam ke semua arah maka pantulannya adalah diffuse. Atmosfer bumi terdiri atas empat lapisan dari yang terdekat dari permukaan bumi yaitu troposfer (0-10 km), stratosfer (10-40 km), mesosfer (40-50 km), dan thermosfer ( km). Gambar 2.3 Lapisan atmosfer bumi Radiasi yang sampai di lapisan thermosfer dilambangkan (G on ). Radiasi yang diteruskan ke permukaan bumi dilambangkan (G beam ). Radiasi akibat pemantulan dan pembiasan dilambangkan (G diffuse ). 12

8 2.3.3 Rumusan Radiasi Surya Matahari mempunyai diameter 1, m. Bumi mengelilingi matahari dengan lintasan berbentuk ellipse dan matahari berada pada salah satu pusatnya. Jarak rata-rata matahari dari permukaan bumi adalah 1, m. Lintasan bumi terhadap matahari berbentuk ellipse, maka jarak antara bumi dan matahari adalah tidak konstan. Jarak terdekat adalah 1,47x10 11 m yang terjadi pada tanggal 3 Januari 2011,dan jarak terjauh pada tanggal 3 juli dengan jarak 1,52x10 11 m. Karena adanya perbedaan jarak ini, menyebabkan radiasi yang diterima atmosfer bumi juga akan berbeda. Gambar 2.4 Pergerakan bumi terhadap matahari Untuk menghitung radiasi pada hari ke- n, diperlukan rumusan Duffie dan Beckmann (1991): Gambar 2.5 Hubungan matahari dan bumi 13

9 1971. Persamaan radiasi pada atmosfer yang diajukan oleh Spencer pada tahun G on = G sc (1, , cos B + 0,00128 sin B + 0, cos 2B + 0, sin 2B)....(2.1) dengan nilai B (konstanta hari) sebagai berikut : B = n (2.2) Dimana : G sc = Daya radiasi rata-rata yang diterima atmosfer bumi (1367 W/m 2 ) B = konstanta yang bergantung pada nilai n G on = radiasi yang diterima atmosfer bumi (W/m 2 ) Nilai n bergantung pada urutan hari (i) Tabel 2.1 Urutan Hari Berdasarkan Bulan Bulan N Januari I Februari 31+i Maret 59+i April 90+i Mei 120+i Juni 151+i Juli 181+i Agustus 212+i September 243+i Oktober 273+i November 304+i Desember 334+i 14

10 Beberapa Istilah yang biasanya dijumpai pada perhitungan radiasi adalah : a) Air Mass (m) Adalah perbandingan massa udara sampai ke permukaan bumi pada posisi tertentu dengan massa udara yang dilalui sinar jika matahari tepat pada posisi zenit. Artinya pada posisi tegak lurus (zenit =0) nilai m=1, pada sudut zenith 60 0, m=2. Pada sudut zenit dari m = 1 COS θ... (2.3) b) Beam Radiation Radiasi energy dari matahari yang tidak dibelokkan oleh atmosfer. Istilah ini sering juga disebut radiasi langsung (direct solar radiation). c) Diffuse Radiation Radiasi energy surya dari matahari yang telah dibelokkan oleh atmosfer. d) Total Radiation Adalah jumlah beam dan diffuse radiation. e) Irradiance (W/m 2 ) Adalah laju energi radiasi yang diterima suatu permukaan persatuan luas permukaan tersebut Solar irradiance biasanya disimbolkan dengan G. Dalam bahasa Indonesia besaran ini biasanya disebut dengan Intensitas radiasi. f) Irradiation atau Radian Exposure (J/m 2 ) Jumlah energi radiasi (bukan laju) yang diterima suatu permukaan dalam interval waktu tertentu. Besaran ini didapat dengan mengintegralkan G pada interval waktu yang diinginkan, misalnya untuk 1 hari biasa disimbolkan H dan untuk 1 jam biasa disimbolkan I. g) Solar Time atau Jam Matahari Adalah waktu berdasarkan pergerakan semu matahari di langit pada tempat tertentu. Jam matahari (disimbolkan ST) berbeda dengan penunjukkan jam biasa (standard time, disimbolkan STD). Hubungannya adalah: 15

11 ST =STD ±4(L st -L loc )+E. (2.4) Dimana : STD = waktu lokal Lst = standart meridian untuk waktu lokal ( o ) Lloc = derajat bujur untuk daerah yang dihitung ( o ) ; untuk bujur timur, digunakan -4, untuk bujur barat digunakan +4 E = faktor persamaan waktu Pada persamaan ini L st standard meridian untuk waktu lokal. L loc adalah derajat bujur daerah yang sedang dihitung, jika daerah yang dihitung ada pada bujur timur, maka gunakan tanda minus didepan angka 4 dan jika bujur barat adalah tanda plus. E adalah equation of time, dalam satuan menit dirumuskan oleh Spencer pada tahun E = 229,2(0, , cos B - 0, sin B - 0, cos 2B - 0,04089 sin 2B....(2.5) Dimana : B = konstanta yang bergantung pada nilai n E = faktor persamaan waktu Dalam menentukan arah radiasi terdapat beberapa sudut yang harus diketahui. Dapat dilihat pada gambar 2.6. Beberapa sudut untuk mendefenisikan arah radiasi matahari. Gambar 2.6 Sudut sinar dan posisi sinar matahari 16

12 Slope β adalah sudut antara permukaan yang dianalisis dengan horizontal. Nilai 0 β permukaan γ adalah sudut penyimpangan sinar pada bidang proyeksi dimana 0 o pada selatan dan positif ke barat. Sudut penyinaran θ (angle accident) adalah sudut yang dibentuk sinar dan garis normal dari suatu permukaan. Sudut zenith θ z adalah sudut yang dibentuk garis sinar terhadap garis zenith. Sudut ketinggian matahari α s (solar altitude angel) adalah sudut antara sinar dengan permukaan. Sudut azimut matahari γ s adalah sudut antara proyeksi matahari terhadap selatan, ke timur adalah negatif dan ke barat adalah positif. Sudut lain yang sering digunakan dalam menentukan jumlah radiasi yang dapat diterima oleh sebuah permukaan di bumi antara lain sudut deklinasi δ, yaitu kemiringan sumbu matahari terhadap garis normalnya. Kemudian sudut jam ω adalah sudut pergeseran semu matahari dari dari garis siang. Perhitungan berdasarkan jam matahari (ST), setiap berkurang 1 jam, ω berkurang 15 0 dan setiap bertambah 1 jam, ω bertambah Artinya tepat pukul siang, ω=0, pukul pagi ω= dan pukul 14.00, ω = Spencer (1971) mengajukan persamaan untuk menghitung sudut deklinasi : = C 1 + C 2 CosB + C 3 sinb + C 4 cos2b + C 5 sin2b + C 6 cos3b + C 7 sin3b..(2.6) Dimana = sudut deklinasi (rad) C1 = 0, C5 = 0, C2 = -0, C6 = -0, C3 = 0, C7 = 0,00148 C4 = -0, Nilai B dihitung dengan menggunakan persamaan (2.2) dan n adalah urutan hari pada suatu tahun. Berdasarkan bulan yang diketahui ditampilkan pada Tabel 2.1. Sudut zenith (θ z ) adalah sudut yang dibentuk garis sinar terhadap garis zenith. Cosinus sudut zenith dapat dicari melalui persamaan berikut. cos θ z = cos θ cos δ cos ω + sin θ sin δ... (2.7) 17

13 Dimana z = sudut zenith θ = sudut posisi lintang = sudut deklinasi. ω = sudut jam matahari. Sudut jam matahari (ω) dihitung berdasarkan jam matahari. Definisi sudut jam matahari adalah sudut pergeseran semu matahari dari garis siangnya. Perhitungan berdasarkan jam matahari (ST), setiap berkurang 1 jam, ω berkurang 15 o, setiap bertambah 1 jam, ω bertambah 15 o. ω = 15(STD 12) + (ST-STD) x (2.8) Dimana : STD = waktu lokal ST = solar time ω = sudut jam matahari ( o ) Dengan estimasi langit cerah, radiasi matahari yang diteruskan dari atmosphere ke permukaan bumi (Duffle, 2006) adalah, η b = a o + a 1 exp k cos θ z... (2.9) Dimana a o = r o (0,4237-0,0082 (6 A) 2 ) a 1 = r 1 (0, ,00595 (6.5 A) 2 ) k = r k ( (2.5 A) 2 ) Tabel 2,2 Faktor Koreksi Iklim Iklim r o r 1 r k Tropical 0,95 0,98 1,02 Midatude summer 0,97 0,99 1,02 Subarctic Summer ,99 1,01 Midatude Winter 1,03 1,01 1,00 18

14 Radiasi beam adalah radiasi yang langsung di transmisikan dari atmosphere ke permukaan bumi. Adapun persamaan yang digunakan untuk mencari radiasi beam : G beam = G on η b cos θ z... (2.10) Dimana : G on = radiasi yang diterima atmosphere (W/m 2 ) η b cos θ z G beam = faksi radiasi yang diteruskan ke bumi = cosinus sudut zenith = radiasi yang ditransmisikan dari atmosphere ke permukaan bumi (W/m 2 ) Radiasi diffuse adalah radiasi yang di pantulkan ke segala arah, dan kemudian dimanfaatan. Adapun persamaan yang digunakan untuk mencari radiasi diffuse adalah : G difuse = G on cos θ z (0,271 0,294 η b)... (2.11) dimana : G difuse = Radiasi yang dipantulkan ke segala arah dan kemudian dapat dimanfaatkan. G on = radiasi yang diterima atmosphere (W/m 2 ) η b cos θ z = faksi radiasi yang diteruskan ke bumi = cosinus sudut zenith Radiasi total adalah jumlah dari radiasi beam dan radiasi diffuse seperti pada persamaan berikut : G total = G beam + G difuse... (2.12) Radiasi yang dapat ditangkap oleh luasan kolektor dengan asumsi effisiensi kaca 90%, intensitas radiasi diperoleh dari alat ukur, dan dihitung permenit, sehingga energi radiasi dapat di hitung mengunakan rumus : Q = I A Δt 90% (2.13) 19

15 Dimana: Q = Energi Radiasi (J) I = Intensitas radiasi (W/m 2 ) A = Luas penampang kolektor(m 2 ) Δt = Selang waktu perhitungan (s) 2.4 Kolektor Surya Kolektor surya merupakan sebuah alat yang mampu menyerap sinar radiasi matahari, sehingga dapat memanaskan udara yang ada di dalam ruang kolektor tersebut. Panas di dalam ruang kolektor dapat digunakan untuk berbagai keperluan salah satunya adalah untuk pengeringan di dalam bidang pertanian. Kolektor datar dan konsentrator merupakan alat yang digunakan untuk mengumpulkan energi radiasi surya sedemikian sehingga energi termal yang dihasilkan dapat dimanfaatkan secara lebih praktis untuk berbagai proses. Kolektor surya yang pada umumnya memiliki komponen-komponen utama, yaitu: a) Cover (penutup) transparan Cover berfungsi untuk meyerap panas dari sinar radiasi matahari dan untuk mengurangi rugi panas secara konveksi menuju lingkungan. b) Absorber Absorber berfungsi untuk menyerap panas dari radiasi cahaya matahari dan dengan panas tersebut digunakan untuk memanaskan udara yang ada di dalam kolektor. c) Kanal Kanal berfungsi sebagai saluran transmisi fluida kerja atau tempat mengalirnya udara panas dari dalam kolektor menuju ruang pengeringan. d) Isolator Isolator berfungsi meminimalisasi kehilangan panas secara konduksi dari absorber menuju lingkungan. e) Frame Frame berfungsi sebagai struktur pembentuk dan penahan beban kolektor. 20

16 Gambar 2.7 Komponen-komponen umum kolektor Panas dari absorber dimanfaatkan melalui penukar panas ke media pembawa panas. Media pembawa panas yang umum digunakan dapat merupakan udara atau air. Ketika menggunakan air sebagai media, absorber akan mengkonduksikan panas menuju ke permukaan pipa-pipa bagian luar. Selanjutnya berlangsung konduksi panas dari permukaan luar ke permukaan dalam. Dengan proses konveksi, panas akan berpindah dari permukaan dalam ke air yang mengalir di dalam pipa tersebut, sehingga suhu air akan meningkat. Air dengan suhu yang tinggi kemudian dimanfaatkan pada di bagian lain di luarkolektor datar. Proses yang mirip terjadi ketika udara digunakan sebagai media pembawa panas, namun dalam hal ini pipa jarang digunakan. Udara di atas (atau di bawah) absorber dipanaskan melalui proses konveksi akibat kontak langsung dengan absorber. Udara dengan suhu tinggi ini kemudian dialirkan keluar kolektor untuk dimanfaatkan pada proses-proses yang memerlukan udara panas. Kinerja sebuah kolektor surya akan bergantung dari karakteristik absorptivitas dari absorber, transmisivitas dari bahan transparan, overall heat transfer coefficient (koefisien pindah panas keseluruhan) dari insulator, bahan transparan serta absorber. Absorbtivitas merupakan porsi cahaya yang diserap oleh suatu objek; transmisivitas merupakan porsi cahaya yang diteruskan oleh suatu objek; sedangkan koefisien pindah panas keseluruhan merupakan daya hantar panas atau kebalikan dari resistansi panas. 21

17 Terdapat empat jenis kolektor surya yang diklasifikasikan ke dalam Solar Thermal Collector System dan juga memiliki korelasi dengan pengklasifikasian kolektor surya berdasarkan dimensi dan geometri dari receiver yang dimilikinya yaitu : a) Flat-Plate Collectors ( Kolektor Pelat Datar ) Keuntungan utama dari sebuah kolektor surya plat datar adalah bahwa memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah. Pada umumnya kolektor jenis ini digunakan untuk memanaskan ruangan dalam rumah, pengkondisian udara, dan proses-proses pemanasan dalam industri. Tipe ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur di bawah 100 C. Spesifikasi tipe ini dapat dilihat dari absorbernya yang berupa plat datar yang terbuat dari material dengan konduktivitas termal tinggi, dan dilapisi dengan cat berwarna hitam. Kolektor pelat datar memanfaatkan radiasi matahari langsung dan terpencar (beam dan diffuse), tidak membutuhkan pelacak matahari, dan hanya membutuhkan sedikit perawatan. Aplikasi umum kolektor tipe ini antara lain digunakan untuk pemanas air, pemanas gedung, pengkondisian udara, dan proses panas industri. Komponen penunjang yang terdapat pada kolektor pelat datar antara lain; transparent cover, absorber, insulasi, dan kerangka Gambar 2.8 Kolektor surya pelat datar 22

18 b) Prismatic Solar Colector ( Kolektor Surya Prismatik ) Kolektor surya tipe prismatik dapat digolongkan dalam kolektor plat datar dengan permukaan kolektor berbentuk prisma yang tersusun dari 4 bidang yang membentuk prisma, 2 bidang berbentuk segi-tiga sama kaki dan 2 bidang yang lain berbentuk segi-empat siku-siku. Keunggulan dari kolektor surya tipe prismatik ini adalah kemampuannya untuk dapat menerima energi radiasi matahari dari segala posisi matahari. Gambar 2.9 Kolektor surya prismatic c) Concentrating Collectors ( Kolektor Surya Konsentrasi ) Jenis ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur antara C. Kolektor surya jenis ini mampu memfokuskan energi radiasi cahaya matahari pada suatu receiver, sehingga dapat meningkatkan kuantitas energi panas yang diserap oleh absorber. Berdasarkan komponen absorber-nya jenis ini dikelompokan menjadi dua jenis yaitu line focus dan point focus. 23

19 Gambar 2.10 Kolektor surya konsentrator d) Evacuated Tube Collectors Jenis ini dirancang untuk menghasilkan energi panas yang lebih tinggi dibandingkan dengan tiga jenis kolektor surya sebelumnya. Keistimewaannya terletak pada efisiensi transfer panasnya yang tinggi tetapi faktor kehilangan panasnya yang relatif rendah. Hal ini dikarenakan fluida yang terjebak diantara absorber dan cover-nya dikondisikan dalam keadaan vakum, sehingga mampu meminimalisasi kehilangan panas yang terjadi secara konveksi dari permukaan luar absorber menuju lingkungan. Gambar 2.11 Evacuated tube collector 24

20 2.5 Perpindahan Panas Apabila dua logam saling berhimpitan dan suhu-suhu benda itu berbeda, maka akan terjadi proses perpindahan panas dari benda yang panas menuju benda yang lebih dingin, sehingga menyebabkan suhu keduanya menjadi sama. Perpindahan panas dibagi menjadi tiga klasifikasi, yaitu perpindahan panas konduksi, konveksi, dan radiasi. Untuk lebih mengetahui defenisi dari klasifikasi perpindahan panas ini dapat kita lihat pada penjelasan di bawah ini Perpindahan Panas Konduksi Perpindahan panas secara konduksi adalah perpindahan panas dari partikel yang bertemperatur tinggi ke partikel yang bertemperatur rendah sebagai hasil dari interaksi antar partikel tersebut. Karena partikelnya tidak berpindah, umumnya konduksi terjadi pada medium padat atau benda padat lainnya. Perpindahan panas di sini terjadi akibat interaksi antara partikel tanpa diikuti perpindahan partikelnya. Dimana pada alat ini terjadi pada peristiwa kehilangan panas dari kolektor surya yang hilang melewati dinding-dinding dari kolektor. Gambar 2.12 Perpindahan panas konduksi. Secara matematik laju perpindahan panas konduksi dapat dinyatakan dengan Hukum Fourrier : dt Q c ka dx.....(2.14) 25

21 Dimana :. Q c = laju perpindahan panas (Watt) k = konduktivitas thermal ( W /m.k) A = luas penampang yang terletak pada aliran panas (m 2 ) dt dx = gradien temperatur dalam aliran panas (K/m) Perpindahan Panas Konveksi Perpindahan panas secara konveksi adalah adalah perpindahan panas antara permukaan padat yang berbatasan dengan fluida yang mengalir. Fluida di sini bisa dalam fasa cair atau fasa gas. Syarat utama mekanisme perpindahan panas konveksi adalah adanya aliran fluida. Perpindahan panas konveksi pada alat ini terjadi pada fluida kerja yang digunakan (udara). Gambar 2.13 Perpindahan panas konveksi. Perpindahan panas konveksi pada saluran kolektor sangat dipengaruhi oleh bilangan Reynold, apakah laminar maupun turbulent.bilangan Reynold pada plat datar dirumuskan sebagai berikut. 26

22 Gambar 2.14 Perpindahan panas konveksi pada plat datar. Bilangan Reynold dirumuskan dengan, VL R e (2.15) Dimana : Re = bilangan Reynold V = kecepatan rata-rata dari fluida (m/s) L = panjang kolektor( m ) ρ = massa jenis ( kg/m 3 ) μ = viskositas dinamik (kg/m.s) Dengan pembagian jenis aliran berdasarkan bilangan Reynold sebagai berikut: Re < 5x10 5 Re > 5x10 5 Laminar Turbulen berikut : Untuk laju perpindahan panas dapat dinyatakan dengan persamaan sebagai. Q h. ha( T T ) s (2.16) Dimana, h = koefisien konveksi ( W / m 2. K ) A = luas permukaan kolektor surya (m 2 ) T s = temperatur dinding ( K ) 27

23 T = temperatur udara lingkungan( K ). Q = laju perpindahan panas ( Watt ) Perpindahan Panas Radiasi Perpindahan panas secara radiasi adalah proses perpindahan panas melalui gelombang elektromagnetik atau paket-paket energi (photon) yang dapat dibawa sampai pada jarak yang sangat jauh tanpa memerlukan interaksi dengan medium. Berbeda dengan mekanisme konduksi dan konveksi, radiasi tidak membutuhkan medium perpindahan panas. Sampainya sinar matahari kepermukaan bumi adalah adalah contoh yang paling jelas dari perpindahan panas radiasi. Perpindahan panas radiasi pada alat ini terjadi padakolektor surya. Gambar 2.15 Perpindahan panas radiasi. Perpindahan panas secara radiasi dirumuskan sebagai, Q r. 4.. Es. Ts (2.17) Dimana: Q r = laju perpindahan panas radiasi (W) = emisivitas panas permukaan ( 0 1) = konstanta Stefan Boltzmann (5,67 x 10-8 W/m 2 K 4 ) A = luas permukaan (m 2 ) 28

24 2.5.4 Perpindahan Massa Koefisien perpindahan massa (mass transfer coefficient) mempunyai analogi dengan koefisien perpindahan panas, sehingga dapat didefinisikan seperti halnya perpindahan panas. m A = D A A C A1 C A2.(2.18) Difusivitas yang terjadi pada keadaan steady yang melintasi ketebalan lapisan batas setebal Δy, adalah : m A = D AB C A 1 C A 2 y = DA A C A1 C A2.(2.19) Berdasarkan hukum-hukum fenomena dalam persamaan yang mengatur perpindahan massa, momentum dan energi mempunyai keserupaan, sehingga profil suhu, kecepatan dan konsentrasi mempunyai bentuk yang sama dalam fenomena lapisan batas. Karena fenomena yang terjadi dalam lapisan batas mempunyai analogi terhadap hubungan antara profil kecepatan, profil konsentrasi massa dan profil suhu sehingga dalam persoalan perpindahan panas, hubungan fungsional koefisien pindah panas dapat dituliskan dalam bentuk : x x k = f Re, Pr...(2.20) sedangkan dalam hal perpindahan massa, hubungan fungsional koefisien pindah massa dapat dinyatakan dalam bentuk : D A x D AB = f Re, Sc.....(2.21) Bilangan Schmidt (S C =v/d AB ) menyatakan perbandingan antara profil kecepatan dan konsentrasi, sedangkan untuk profil suhu dan konsentrasi dinyatakan dalam bentuk bilangan Lewis (Le =α/d AB ). Keserupaan antara persamaan-persamaan yang mengatur perpindahan massa, momentum dan energi dalam lapisan batas memberi petunjuk bahwa korelasi empirik untuk koefisien 29

25 perpindahan massa mempunyai analogi dengan koefisien perpindahan panas. Hubungan empirik untuk koefisien perpindahan massa ini dinyatakan oleh Gilliland (1934) dalam Holman (1981) dalam bentuk persamaan : D A x D AB = u x 0.83 v D AB 0.44.(2.22) Analogi Reynold untuk perpindahan panas dengan koefisien gesek pada lapisan batas dapat pula digunakan untuk menentukan koefisien perpindahan massa dengan koefisien gesek pada lapisan batas, pada aliran laminar, Holman, J.P, (1981) memberikan bentuk persamaan seperti berikut : untuk perpindahan panas : x P 2 3 u C p r = f (2.23) 8 untuk perpindahan massa : D A S 2 3 u C p c = f.....(2.24) 8 30

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Hasil Pertanian dan Perkebunan Pengeringan hasil pertanian dan perkebunan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pasca panen.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Pengeringan Hasil Pertanian dan Perkebunan

BAB II TINJAUAN PUSTAKA. 2.1 Pengeringan Hasil Pertanian dan Perkebunan BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Hasil Pertanian dan Perkebunan Pengeringan hasil pertanian dan perkebunan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pasca panen.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pascapanen. Unit operasi ini diterapkan untuk mengurangi kadar air produk

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

PENGUJIAN PERFORMANSI MESIN PENGERING PRODUK PERTANIAN SISTEM TENAGA SURYA TIPE KOLEKTOR BERSIRIP

PENGUJIAN PERFORMANSI MESIN PENGERING PRODUK PERTANIAN SISTEM TENAGA SURYA TIPE KOLEKTOR BERSIRIP PENGUJIAN PERFORMANSI MESIN PENGERING PRODUK PERTANIAN SISTEM TENAGA SURYA TIPE KOLEKTOR BERSIRIP Muhardityah 1, Mulfi Hazwi 2 1,2 Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara Jl.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas 2.1.1. Perpindahan Panas Konduksi Perpindahan panas konduksi adalah perpindahan panas dari partikel yang memiliki energi lebih besar ke substansi dengan energi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mesin Pendingin Mesin pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas ke suatu tempat yang temperaturnya

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH

BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH 4.1. Perhitungan Akibat Gerakan Semu Harian Matahari 4.1.1 Perhitungan Sudut Deklinasi Untuk mengetahui sudut deklinasi (δ) menggunakan persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Teknologi pemrosesan bahan pangan terus berkembang dari waktu ke waktu. Perkembangan teknologi ini didorong oleh kebutuhan pangan manusia yang terus meningkat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat penyerap adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover kaca sebagian akan langsung dipantulkan,

Lebih terperinci

PENDEKATAN TEORITIS. Gambar 2 Sudut datang radiasi matahari pada permukaan horizontal (Lunde, 1980)

PENDEKATAN TEORITIS. Gambar 2 Sudut datang radiasi matahari pada permukaan horizontal (Lunde, 1980) PENDEKATAN TEORITIS Radiasi Matahari pada Bidang Horisontal Matahari merupakan sumber energi terbesar. Radiasi matahari yang sampai permukaan bumi ada yang diserap dan dipantulkan kembali. Dua komponen

Lebih terperinci

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber LAPORAN TUGAS AKHIR Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari. Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolektor Surya Plat Datar Kolektor suryaplat datar seperti pada gambar 2.1 merupakan kotak tertutup yang bagian atas dipasang kaca atau plastik transparan dengan lempengan

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Proses perpindahan panas secara konduksi Sumber : (maslatip.com)

BAB II DASAR TEORI. Gambar 2.1 Proses perpindahan panas secara konduksi Sumber : (maslatip.com) 5 BAB II DASAR TEORI 2.1 Perpindahan Panas Perpindahan panas (heat transfer) adalah proses berpindahnya energi kalor atau panas (heat) karena adanya perbedaan temperatur. Dimana, energi kalor akan berpindah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan proses pengurangan kadar air bahan sampai mencapai kadar air tertentu sehingga menghambat laju kerusakan bahan akibat aktivitas biologis

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA)

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA) HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1.PANCARAN RADIASI SURYA Meskipun hanya sebagian kecil dari radiasi yang dipancarkan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Matahari Matahari adalah bintang yang terdapat di jagat raya ini dan berada paling dekat dengan bumi. Matahari menyadiakan energi yang dibutuhkan oleh kehidupan di bumi ini secara

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Ketut Astawa1, Nengah Suarnadwipa2, Widya Putra3 1.2,3

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Pengeringan

TINJAUAN PUSTAKA. 2.1 Pengeringan TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pasca panen. Unit operasi ini diterapkan untuk mengurangi kadar air produk seperti

Lebih terperinci

Perancangan Solar Thermal Collector tipe Parabolic Trough

Perancangan Solar Thermal Collector tipe Parabolic Trough LAPORAN TUGAS AKHIR Perancangan Solar Thermal Collector tipe Parabolic Trough Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh : Nama :

Lebih terperinci

Universitas Sumatera Utara

Universitas Sumatera Utara BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Rangkaian proses pengeringan secara garis besar merupakan metoda penguapan yang dapat dilakukan untuk melepas air dalam fasa uapnya dari dalam objek yang dikeringkan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Matahari atau juga disebut Surya adalah bintang terdekat dengan Bumi dengan jarak sekitar 149.680.000 kilometer (93.026.724 mil). Matahari adalah suatu bola gas yang pijar dan ternyata

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON Caturwati NK, Agung S, Chandra Dwi Jurusan Teknik Mesin Universitas Sultan Ageng Tirtayasa Jl. Jend. Sudirman

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan 134 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

Gambar 2. Profil suhu dan radiasi pada percobaan 1

Gambar 2. Profil suhu dan radiasi pada percobaan 1 HASIL DAN PEMBAHASAN A. Pengaruh Penggunaan Kolektor Terhadap Suhu Ruang Pengering Energi surya untuk proses pengeringan didasarkan atas curahan iradisai yang diterima rumah kaca dari matahari. Iradiasi

Lebih terperinci

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah II. TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan metode pengawetan alami yang sudah dilakukan dari zaman nenek moyang. Pengeringan tradisional dilakukan dengan memanfaatkan cahaya matahari untuk

Lebih terperinci

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK 112 MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK Dalam bidang pertanian dan perkebunan selain persiapan lahan dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat datar adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover (kaca bening) sebagian akan langsung dipantulkan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 24 BAB II TINJAUAN PUSTAKA 2.1. Matahari Matahari merupakan bintang yang dekat dengan bumi dan menyediakan energi yang dibutuhkan oleh kehidupan di bumi secara terus menerus (renewable energy). Sumber

Lebih terperinci

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA Tekad Sitepu Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara ABSTRAK Pengembangan mesin-mesin pengering tenaga surya dapat membantu untuk

Lebih terperinci

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan MEKANISME By : Dewi Maya Maharani Pengeringan Prinsip Dasar Pengeringan Proses pemakaian panas dan pemindahan air dari bahan yang dikeringkan yang berlangsung secara serentak bersamaan Konduksi media Steam

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 KENTANG (SOLANUM TUBEROSUM L.) Tumbuhan kentang (Solanum tuberosum L.) merupakan komoditas sayuran yang dapat dikembangkan dan bahkan dipasarkan di dalam negeri maupun di luar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

PENGUKURAN KONDUKTIVITAS TERMAL

PENGUKURAN KONDUKTIVITAS TERMAL PENGUKURAN KONDUKTIVITAS TERMAL A. TUJUAN 1. Mengukur konduktivitas termal pada isolator plastisin B. ALAT DAN BAHAN Peralatan yang digunakan dalam kegiatan pengukuran dapat diperhatikan pada gambar 1.

Lebih terperinci

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR... DAFTAR ISI LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR TABEL x DAFTAR GAMBAR...xii BAB I PENDAHULUAN...

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENERGI MATAHARI Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Panas hanya akan berpindah jika ada perbedaan temperatur, yaitu dari sistem yang bertemperatur tinggi ke sistem bertemperatur rendah. Perbedaan temperatur

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

P I N D A H P A N A S PENDAHULUAN

P I N D A H P A N A S PENDAHULUAN P I N D A H P A N A S PENDAHULUAN RINI YULIANINGSIH APA ITU PINDAH PANAS? Pindah panas adalah ilmu yang mempelajari transfer energi diantara benda yang disebabkan karena perbedaan suhu Termodinamika digunakan

Lebih terperinci

BAB IV PERHITUNGAN OPTIMASI SOLAR COLECTOR TYPE PARABOLIC TROUGH Perhitungan Akibat Gerakan Semu Harian Matahari

BAB IV PERHITUNGAN OPTIMASI SOLAR COLECTOR TYPE PARABOLIC TROUGH Perhitungan Akibat Gerakan Semu Harian Matahari BAB IV PERHITUNGAN OPTIMASI SOLAR COLECTOR TYPE PARABOLIC TROUGH Dalam melakukan optimasi pada penulisan tugas akhir ini maka langkah pertama adalah melakukan perhitungan terhadap variabel yang telah ditentukan

Lebih terperinci

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Jurnal Ilmiah Teknik Mesin Vol. 5 No.1. April 2011 (98-102) Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Made Sucipta, Ketut

Lebih terperinci

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan 4 II. TINJAUAN PUSTAKA 2.1. Kebutuhan energi Kebutuhan akan sumber energi di muka bumi ini sangat mempengaruhi aspek kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan kebutuhan pokok makhluk

Lebih terperinci

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR Galuh Renggani Wilis ST.,MT. ABSTRAK Energi fosil di bumi sangat terbatas jumlahnya. Sedangkan pertumbuhan penduduk dan

Lebih terperinci

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN :

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN : PERBEDAAN LAJU ALIRAN PANAS YANG DISERAP AIR DALAM PEMANAS AIR BERTENAGA SURYA DITINJAU DARI PERBEDAAN LAJU ALIRAN AIR DALAM PIPA KOLEKTOR PANAS Sumanto Jurusan Teknik Industri Fakultas Teknologi Industri

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sel Surya Sel surya sebenarnya adalah sebuah sel fotovoltaik yang berfungsi sebagai pengkonversi energi cahaya matahari menjadi energi listrik dalam bentuk arus searah secara

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

BAB I PENDAHULUAN 1.1 Latar Belakang   Jenis Energi Unit Total Exist 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Karakteristik Termal Kayu Meranti (Shorea Leprosula Miq.) Karakteristik termal menunjukkan pengaruh perlakuan suhu pada bahan (Welty,1950). Dengan mengetahui karakteristik termal

Lebih terperinci

PENGARUH VARIASI FLOW DAN TEMPERATUR TERHADAP LAJU PENGUAPAN TETESAN PADA LARUTAN AGAR-AGAR SKRIPSI

PENGARUH VARIASI FLOW DAN TEMPERATUR TERHADAP LAJU PENGUAPAN TETESAN PADA LARUTAN AGAR-AGAR SKRIPSI PENGARUH VARIASI FLOW DAN TEMPERATUR TERHADAP LAJU PENGUAPAN TETESAN PADA LARUTAN AGAR-AGAR SKRIPSI Oleh ILHAM AL FIKRI M 04 04 02 037 1 PROGRAM STUDI TEKNIK MESIN DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

REKAYASA KOLEKTOR PEMANAS AIR TENAGA SURYA MODEL PLAT DATAR ROSYID KUS RAHMADI

REKAYASA KOLEKTOR PEMANAS AIR TENAGA SURYA MODEL PLAT DATAR ROSYID KUS RAHMADI digilib.uns.ac.id REKAYASA KOLEKTOR PEMANAS AIR TENAGA SURYA MODEL PLAT DATAR Disusun Oleh: ROSYID KUS RAHMADI M0206060 SKRIPSI Diajukan Untuk Memenuhi Sebagian Persyaratan Mendapat Gelar Sarjana Sains

Lebih terperinci

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. No., Juli 2016 (1 6) Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara I Kadek Danu Wiranugraha, Hendra Wijaksana dan Ketut

Lebih terperinci

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Philip Kristanto Dosen Fakultas Teknik, Jurusan Teknik Mesin - Universitas Kristen Petra Yoe Kiem San Alumnus Fakultas

Lebih terperinci

KAJIAN EXPERIMENTAL KOLEKTOR SURYA PRISMATIK DENGAN VARIASI JARAK KACA TERHADAP PLAT ABSORBER MENGGUNAKAN SISTEM TERTUTUP UNTUK PEMANAS AIR

KAJIAN EXPERIMENTAL KOLEKTOR SURYA PRISMATIK DENGAN VARIASI JARAK KACA TERHADAP PLAT ABSORBER MENGGUNAKAN SISTEM TERTUTUP UNTUK PEMANAS AIR 1 KAJIAN EXPERIMENTAL KOLEKTOR SURYA PRISMATIK DENGAN VARIASI JARAK KACA TERHADAP PLAT ABSORBER MENGGUNAKAN SISTEM TERTUTUP UNTUK PEMANAS AIR SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Radiasi Matahari Radiasi Matahari adalah pancaran energi yang berasal dari proses thermonuklir yang terjadi di Matahari. Energi radiasi Matahari berbentuk sinar dan gelombang

Lebih terperinci

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING Bambang Setyoko, Seno Darmanto, Rahmat Program Studi Diploma III Teknik Mesin Fakultas Teknik UNDIP Jl. Prof H. Sudharto, SH, Tembalang,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengeringan Gabah Proses gabah menjadi beras melalui tahapan dimulai dari kegiatan pemanenan, perontokan, pengeringan dan penggilingan. Setiap tahap kegiatan memerlukan penanganan

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses optimasi dari sebuah rancagan benda kerja memerlukan perencanaan yang cermat. Teori-teori yang berhubungan dengan benda kerja ataupun alat yang akan dioptimasi perlu dijadikan

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan Nama : Ahmad Sulaiman NIM : 5202414055 Rombel :2 PERPINDAHAN KALOR J.P. HOLMAN BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan energi yang berpindah antar

Lebih terperinci

METODE PENELITIAN. A. Waktu dan Tempat

METODE PENELITIAN. A. Waktu dan Tempat III. MEODE PENELIIAN A. Waktu dan empat Penelitian dilakukan di Laboratorium Energi Surya Leuwikopo, serta Laboratorium Energi dan Elektrifikasi Pertanian, Departemen eknik Pertanian, Fakultas eknologi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 19 BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan akan air panas pada saat ini sangat tinggi. Tidak hanya konsumen rumah tangga yang memerlukan air panas ini, melainkan juga rumah sakit, perhotelan, industri,

Lebih terperinci

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER Oleh: Zainul Hasan 1, Erika Rani 2 ABSTRAK: Konversi energi adalah proses perubahan energi. Alat konversi energi

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci