BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Kolektor Surya Plat Datar Kolektor suryaplat datar seperti pada gambar 2.1 merupakan kotak tertutup yang bagian atas dipasang kaca atau plastik transparan dengan lempengan konduktor penyerap panas di bagian bawahnya. Kolektor ini biasanya dilapisi dengan lapisan untuk menyerap dan meminimalkan kehilangan panas. Gambar 2.1. Bagian Kolektor Surya Plat Datar [3] Sistem kerja dari kolektor ini yaitu sinar matahari akan melewati kaca transparan pada kolektor dan langsung menuju lempengan konduktor penyerap panas (plat absorber) yang kemudian mengubah energi matahari yang diterima menjadi energi panas. Selanjutnya panas ditransfer ke cairan dalam pipa tembaga yang melekat pada plat absorber yang dicat menggunakan bahan khusus yang menyerap dan mempertahankan panas lebih baik dari cat hitam biasa. Plat absorber terbuat dari logam tembaga atau aluminium, karena logam merupakan konduktor panas yang baik. Tembaga adalah konduktor yang lebih baik tetapi kurang tahan terhadap korosi dibandingkan aluminium dan harganyalebih mahal. Keuntungan utama dari kolektor surya plat datar adalah kolektor ini memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran sehingga tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya 5

2 pembuatan yang murah. Kolektor plat datar juga dapat bertahan selama lebih dari 25 tahun [4]. Kolektor surya plat datar terdiri dari beberapa komponen utama yaitu: 1. Kaca penutup Kaca penutup berfungsi untuk meneruskan radiasi surya berupa gelombang pendek dan mencegah panas yang keluar dari kolektor ke lingkungan pada bagian atas. Berdasarkan fungsi ini maka kaca penutup harus mempunyai sifat-sifat sebagai berikut [5]: a. Transmisivitas tinggi ( ) b. Absorsivitas rendah ( ) c. Refleksivitas rendah ( ) d. Tahan panas e. Ada dipasaran dan kuat Ketebalan dan jarak kaca penutup terhadap plat absorber juga sangat berpengaruh kepada temperatur penyerapan plat absorber didapat bahwa temperatur plat tertinggi dicapai saat kaca yang dipakai jenis kaca bening dengan tebal 3 mm dengan jarak kaca ke plat absorber 20 mm [6]. Jumlah kaca penutup dari kolektor mempengaruhi unjuk kerja dari kolektor.secara umum diperoleh hasil bahwa dengan menggunakan dua buah kaca penutup diperolehefisiensi yang lebih baik dibandingkan hanya menggunakan satu kaca.perbedaan suhu antaraair keluar kolektor dan yang masuk ke kolektor dengan 2 kaca penutup bisa lebih tinggi hinggasekitar 17 C dibandingkan kolektor dengan sebuah kaca penutup [7]. 2. Plat absorber Plat penyerap atau plat absorber berfungsi menyerap radiasi matahari yang diteruskan kaca penutup dan mengkonversikan menjadi energi panas. Energi panas dialirkan melalui fluida kerja udara secara konveksi. Bahan-bahan yang dipakai untuk plat penyerap biasanya yaitu: aluminium, tembaga, kuningan, dan baja. Berdasarkan fungsi plat absorber maka dalam pemilihan bahan plat harus mengacu pada pertimbangan berikut ini [5]: 6

3 a. Absorbsivitas tinggi ( ) b. Emisifitas panas rendah ( ) c. Kapasitas panas kecil (Cp). d. Konduktifitas besar (k) e. Refleksi rendah ( ) f. Tahan panas dan tahan korosi g. Kaku dan mudah dibentuk h. Ada dipasaran Ketebalan plat penyerap dan jarak antar pipa penyalur cairan terhadap performansi kolektor plat datar memiliki hubungan yang cukup signifikan. Performansi kolektor plat datar berbahan tembagatertinggi dihasilkan dengan konfigurasi ketebalan plat1,2 mm dan jarak antar pipa penyalur cairan 73,6 mm[8]. 3. Isolasi Isolasi berfungsi untuk memperkecil panas yang hilang dari kolektor ke lingkungan pada bagian belakang dan samping kolektor.pada isolasi terjadi perpindahan panas secara konduksi sehingga kehilangan panas dipengaruhi oleh sifat-sifat bahan. Isolasi yang digunakan haruslah memenuhi kreteria berikut [5]: a. Konduktivitas termal bahan kecil b. Mudah dibentuk dan praktis c. Harga murah dan ada dipasaran d. Tahan lama 2.2. Klasifikasi Kolektor Surya Kolektor surya dapat didefenisikan sebagai sistem perpindahan panas yang menghasilkan energi panas dengan memanfaatkan radiasi sinar matahari sebagai sumber energi utama. Ketika cahaya matahari menimpa absorber pada kolektor surya, sebagian cahaya akan dipantulkan kembali ke lingkungan, sedangkan sebagian besarnya akan diserap dan dikonversi menjadi energi panas, lalu panas tersebut dipindahkan kepada fluida yang bersirkulasi didalam kolektor surya untuk kemudian dimanfaatkan guna berbagai aplikasi. Kolektor surya yang pada umumnya memiliki komponen-komponen utama, yaitu : [9] 7

4 1. Cover, berfungsi untuk mengurangi rugi panas secara konveksi menuju lingkungan. 2. Absorber, berfungsi untuk menyerap panas dari radiasi cahaya matahari. 3. Kanal, berfungsi sebagai saluran transmisi fluida kerja. 4. Isolator, berfungsi meminimalisasi kehilangan panas secara konduksi dari absorber menuju lingkungan. 5. Frame, berfungsi sebagai struktur pembentuk dan penahan beban kolektor Jenis Kolektor Surya Terdapat tiga jenis kolektor surya yang diklasifikasikan ke dalam solar thermal collector system dan juga memiliki korelasi dengan pengklaisifikasian kolektor surya berdasarkan dimensi dan geometri dari receiver yang dimilikinya. 1. Flat-Plate Collector Kolektor surya merupakan plat datar merupakan alat yang digunakan untuk memanaskan fluida kerja yang mengalir kedalamnya dengan mengkonversikan energi radiasi matahari menjadi panas. Fluida yang dipanaskan berupa cairan minyak, air, oli, dan udara. Kolektor surya plat datar mempunyai temperatur keluaran dibawah 95 o C. Dalam aplikasinya kolektor plat datar digunakan untuk memanaskan udara dan air. Keuntungan utama dari sebuah kolektor surya plat datar adalah dengan memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah. Pada umunya kolektor jenis ini digunakan untuk memanaskan ruangan dalam rumah, pengkondisian udara, dan proses-proses pemanasan dalam industri. Tipe ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur dibawah 100 o C. Spesifikasi tipe ini dapat dilihat dari absorbernya yang berupa plat datar yang terbuat dari material dengan konduktivitas termal tinggi, dan dilapisi dengan cat berwarna hitam. Kolektor plat datar memanfaatkan radiasi matahari langsung dan terpancar. Aplikasi umum kolektor tipe ini antara lain digunakan untuk pemanas air, pemanas gedung, pengkondisian udara, dan proses 8

5 panas industri. Komponen penunjang yang terdapat pada kolektor plat datar antara lain, transparant cover, absorber, insulasi, dan kerangka. [10] Gambar 2.2 Kolektor surya plat datar [11] 2. Concentrating collector Jenis kolektor ini dirancang untuk aplikasi yang membutuhkan energi panas temeperatur antara o C. Kolektor jenis ini mampu memfokuskan energi radiasi cahaya matahari pada suatu receiver, sehingga dapat meningkatkan kuantitas energi panas yang diserap oleh absorber. Spesifikasi jenis ini dapat dikenali dari adanya komponen konsentrator yang terbuat dari material dengan transmisivitas tinggi. Berdasarkan komponen absorbernya jenis ini dikelompokkan menjadi dua jenis yaitu, Line Focus dan Point Focus.[12] Gambar 2.3 Konsentrator Agar cahaya matahari selalu dapat difokuskan terhadap tabung absorber, konsentrator harus dirotasi. Pergerakan ini disebut dengan tracking. Temperatur fluida melebihi 400 o C dapat dicapai pada sistem kolektor ini seperti terlihat pada gambar diatas. 9

6 3. Evacuated Tube Collector Jenis ini dirancang untuk menghasilkan energi panas yang lebih tinggi dibandingkan dengan dua jenis kolektor surya sebelumnya. Keistimewaan terletak pada efisiensi transfer panasnya yang tinggi tetapi faktor kehilangan panasnya yang relatif rendah. Hal ini dikarenakan fluida yang terjebak diantara absorber dan penutupnya dikondisikan dalam keadaan vakum, sehingga mampu meminimalisasi kehilangan panas yang terjadi secara konveksi dari permukaan luar absorber menuju lingkungan. [13] Gambar 2.4 Evacuated Receiver[14] Sistem Pemanas Air Tenaga Surya 1. Sistem Langsung Sistem langsung atau sistem loop terbuka mensirkulasikan air yang dipanaskan langsung melalui kolektor. Sistem ini lebih murah dari pada sistem tidak langsung dan melakukan perpindahan panas yang baik dari kolektor ke tangki penyimpanan, namun memiliki banyak kekurangan seperti : Memberikan perlindungan panas yang kecil atau tidak ada Pada daerah dingin tidak memberikan perlindungan terhadap pembekuan Sistem ini sering tidak dianggap cocok untuk cuaca dingin karena kolektor yang rusak akibat pembekuan air. 10

7 Gambar 2.5 Pemanas air sistem langsung [15] a. Sistem pasif dengan tangki diatas kolektor b. Sistem aktif dengan pompa dan kontroler didukung oleh sebuah pane photovolatic. 2. Sistem Tidak Langsung Sistem tidak langsung atau sistem loop tertutup menggunakan alat penukar panas yang memisahkan air dari fluida penghantar panas (Heat transfer fluid) yang bersirkulasi melalui kolektor. Dua jenis fluida penghantar panas yang paling umum adalah air dan anti beku yaitu campuran air yang biasanya menggunakan glikol propilen yang tidak beracun. Meskipun sedikit lebih mahal, sistem tidak langsung memberikan perlindungan terhadap pembekuan dan biasanya memberikan perlindungan terhadap kehilangan panas. Gambar 2.6 Pemanas air sistem aktif tidak langsung [15] c. Sistem tidak langsung dengan penukar panas dalam tangki. 11

8 d. Sistem tidak langsung dengan reservoir drainback. Dalam skema kontroller dan pompa didorong oleh listrik Posisi Matahari Untuk menghitung radiasi matahari langsung pada sebuah permukaan miring dari radiasi pada sebuah permukaan horizontal, maka posisi matahari harus diketahui setiap saat. Posisi matahari juga digunakan untuk menentukan radiasi surya yang diteruskan melalui kaca, yang transmisivitas absorbsivitasnya berubah-ubah sesuai dengan sudut masuk matahari. - Sudut lintang, adalah sudut lokasi bidang dipermukaan bumi terhadap ekuator bumi dimana untuk arah ke utara diberi tanda positif. Nilai untuk sudut lintang : - 90 ɸ Sudut kemiringan β, adalah sudut antara permukaan bidang yang dimaksud terhadap horizontal : 0 β 180 o. - Sudut deklinasi matahari, merupakan sudut kemiringan bumi terhadap matahari akibat rotasi bumi pada arah sumbu axis bumi-matahari; -23, 45 o 23, 45 o. Sudut deklinasi matahari dinyatakan dengan persamaan : ( ) Dimana n menyatakan nomor urut hari dalam satu tahun yang diawali dengan nomor urut 1 untuk tanggal 1 Januari. Gambar 2.7 Deklinasi Matahari 12

9 - Sudut jam matahari, adalah pergeseran sudut dari matahari ke arah timur barat dari garis bujur lokal akibat rotasi bumi pada sumbunya. Besar pergeseran sudut tersebut 15 o tiap jam. - Sudut ketinggian matahari, adalah sudut antara radiasi langsung dari matahari dengan bidang horisontal yang ditentukan berdasarkan persamaan : [16] sin = cos cos cos + sin ɸ sin Sudut zenith, adalah sudut antara radiasi langsung dari matahari dengan garis normal bidang horisontal yang dinyatakan dengan persamaan : cos = sin Sudut azimut ( cos = Gambar 2.8 Posisi Sudut Matahari [17] 2.4. Perpindahan panas Konduksi Panas mengalir secara konduksi dari daerah yang bertemperatur tinggi ke daerah yang bertemperatur rendah. Kalor dipindahkan melalui benda perantara, namun benda perantaranya tidak ikut berpindah. Proses konduksi terjadi karena elektron-elektron bebas atau foton (paket gelombang akustik) yang berpindah. Jadi, tidak tampak perpindahannya secara makroskopik. Jika atom atau molekul 13

10 suatu zat pada suatu tempat bersuhu lebih tinggi dari pada molekul di tempat lain, maka atom atau molekul tersebut akan bergerak dengan energi lebih besar dari pada bagian lainnya. Melalui proses tumbukan, energi dapat dipindahkan kepada molekul-molekul atau atom lainnya. Laju perpindahan panas konduksi dapat dinyatakan dengan Hukum Fourrier. [19] Gambar 2.9 Perpindahan Panas Konduksi Laju perpindahan panas konduksi dapat dinyatakan dengan Hukum Fourrier ( ) dimana : = Laju perpindahan panas (Watt) k = Konduktivitas Termal (W/m.K) A = Luas penampang yang terletak pada aliran panas (m 2 ) ( ) = Gradien temperatur dalam aliran panas (K/m) Nilai angka konduktifitas termal menunjukkan seberapa cepat kalor mengalir dalam bahan tertentu. Gambar 2.10 Perpindahan Panas Konduksi Pada Kolektor 14

11 Peristiwa perpindahan konduksi pada kolektor surya terjadi pada sisi-sisi kolektor yang diisolasi oleh rockwoll, sterofoam dan kayu. Energi panas hilang (Qloss) berpindah dari ruang dalam (kanal) kolektor menuju temperatur yang lebih dingin (temperatur lingkungan) Konveksi Konveksi merupakan perpindahan kalor yang disertai dengan perpindahan massa medianya, dan media konveksi adalah fluida. Konveksi terjadi karena adanya perbedaan kecepatan fluida bila suhunya berbeda, yang tentunya akan berakibat pada perbedaan berat jenis (berat tiap satuan volume). Fluida yang bersuhu tinggi akan mempunyai berat jenis yang lebih kecil bila dibandingkan dengan fluida sejenisnya yang bersuuhu lebih rendah. Karena itu, maka fluida yang bersuhu tinggi akan naik sambil membawa energi. Hal inilah yang berakibat pada terjadinya perpindahan kalor konveksi. Udara yang mengalir diatas suatu permukaan logam pada sebuah alat pemanas udara surya, dipanasi secara konveksi yaitu konveksi paksa dan konveksi alamiah, apabila aliran udara disebabkan oleh blower maka ini disebut konveksi paksa dan apabila disebabkan oleh gradien massa jenis maka disebut konveksi alamiah. Gambar 2.11 Perpindahan Panas Konveksi Paksa dan Konveksi Natural Perpindahan panas konveksi pada saluran kolektor sangat dipengaruhi oleh bilangan Reynold, apakah laminar maupun turbulent. 15

12 Gambar 2.12 Perpindahan Panas Konveksi Plat Datar[20] Bilangan Reynold pada plat datar dirumuskan sebagai berikut : dimana : Re = bilangan Reynold V = kecepatan rata-rata dari fluida (m/s) L = panjang kolektor (m) = massa jenis (kg/m 3 ) = viskositas dinamik (kg/m.s) Dengan pembagian jenis aliran berdasarkan bilangan Reynold sebagai berikut : Re 5x10 5 untuk aliran Laminar Re 5x10 5 untuk aliran Turbulen Untuk laju perpindahan panas dapat dinyatakan dengan persamaan sebagai berikut : dimana : h = koefisien konveksi (W/m 2.K) A = luas permukaan kolektor surya (m 2 ) T s = temperatur dinding (K) = temperatur udara lingkungan (K) Q h = laju perpindahan panas (Watt) Kolerasi yang sering digunakan dalam menentukan koefisien perpindahan panas konveksi (hc) yaitu : 16

13 dimana : Gr L = Bilangan Grashoff = Massa Jenis (kg/m 3 ) G = Gravitasi (m/s 2 ) = Koefisien udara pada temperatur film (1/K) L = Panjang Kolektor (m) = Viskositas (N.s/m 2 ) Ra L = Bilangan Rayleigh Pr = Bilangan Prandt Nux = Bilangan Nusselt l = Lebar Kolektor (m) hc = Koefisien konveksi (W/m 2.K) k = Konduktivitas termal (W/m.K) Penentuan kondisi aliran pada kasus konveksi natural adalah menggunakan bilangan Gr L yang telah didefenisikan pada persamaan : Menurut bidangnya, konveksi natural dapat dibedakan sebagai berikut : 1. Bidang vertikal Arah aliran fluida akibat konveksi natural pada bidang vertikal mempunyai dua kemungkinan. Pertama temperatur bidang lebih tinggi dari temperatur fluida sehingga mengalir ke atas atau sebaliknya temperatur bidang lebih rendah dari temperatur fluida, sehingga arah aliran ke bawah. Secara kuantitatif persamaan mencari nilai bilangan Nu adalah sama, hanya arahnya saja yang berbeda. Parameter bilangan Rayleigh dihitung dengan menggunakan panjang bidang L dan dinyatakan dengan Ra L untuk kasus ini ada beberapa alternatif yang 17

14 dapat digunakan. Persamaan yang paling sederhana dapat dijumpai pada Mc Adams (1945), Warner dan Arpaci (1968), dan Bayley (1955), yaitu : Nu = 0,5 Ra 0,25 L untuk 10 4 Ra L Nu = 0,1 Ra 1/3 L untuk 10 9 Ra L Bidang miring Bidang vertikal dapat dianggap sebagai bidang miring dengan kemiringan Dengan kata lain bidang miring adalah bidang vertikal yang sudut kemiringannya kurang dari Jika fakta ini dibawa ke kasus konveksi natural, maka semua persamaan pada bidang vertikal dengan satu catatan kemiringannya harus diperhitungkan. Untuk lebih jelasnya sebuah plat yang panas dimiringkan dengan sudut kemiringan < 90 0 terhadap vertikal ditampilkan pada Gambar 2.15 Gambar 2.13 Konveksi Natural dan Tebal Lapisan Batas pada Bidang Miring Radiasi Radiasi adalah proses perpindahan panas melalui gelombang elektromagnetik atau paket-paket energi (photon) yang dapat dibawa sampai pada jarak yang sangat jauh tanpa memerlukan interaksi dengan medium. Disamping itu jumlah energi yang membedakan antara peristiwa perpindahan panas konduksi dan konveksi dengan perpindahan panas radiasi. 18

15 Gambar 2.14 Perpindahan Panas Radiasi Perpindahan panas secara radiasi dirumuskan sebagai berikut dimana : Qr = laju perpindahan panas radiasi (W) = emisivitas panas permukaan (0 1) = konstanta Stefan Boltzman (5,67 x 10-8 W/m 2 K 4 ) A = luas permukaan (m 2 ) Banyaknya kalor yang dipindahkan tiap satuan waktu melalui proses radiasi dinyatakan oleh hukum Stefan Boltzmann sebagai : Tidak seluruh energi yang disebutkan dalam konstanta surya mencapai permukaan bumi, karena terdapat absorpsi yang kuat dari karbondioksida dan uap air di atmosfer. Radiasi surya yang menimpa permukaan bumi juga bergantung dari kadar debu dan zat pencemar lainnya dalam atmosfer. Energi surya yang maksimal akan mencapai permukaan bumi bila berkas sinar itu langsnug menimpa permukaan bumi karena : a. Terdapat bidang pandang yang lebih luas terhadap fluks surya yang datang b. Berkas sinar surya menempuh jarak yang lebih pendek di atmosfer, sehingga mengalami absorpsi lebih sedikit dari pada sudut timpanya miring terhadap normal. 19

16 Frekuensi dari cahaya tidak akan berubah pada saat cahaya tersebut memasuki suatu medium ke medium lain selama energinya tetap. Laju energi yang dipindahkan tergantung kepada beberapa faktor, yaitu : a. Temperatur (permukaan yang mengemisi dan yang menerima radiasi) b. Emisivitas (permukaan yang terradiasi) c. Refleksi, Absorpsi, dan Transmisi d. Faktor pandang (views factor) antara permukaan yang mengemisi dan yang menerima radiasi (sudut pandang antara manusia terhadap sumber radiasi). [21] Gelombang elektormagnetik berjalan melalui suatu medium dan mengenai suatu permukaan atau medium lain maka sebagian gelombang akan dipantulkan sedangkan, gelombang yang tidak dipantulkan akan menembus ke dalam medium atau permukaan yang dikenainya. Pada saat melalui medium, intensitas gelombang secara berkelanjutan akan mengalami pengurangan. Jika pengurangan tersebut berlangsung sampai tidak ada lagi gelombang yang akan menembus permukaan yang dikenainya maka permukaan ini disebut sebagai benda yang bertingkah laku seperti benda hitam. Karakteristik lain dari benda hitam adalah bahwa semua radiasi yang jatuh padanya akan diserap dan bahwa emisi maksimal mungkin terjadi dalam semua panjang gelombang dan semua arah. Jika gelombang melalui suatu medium tanpa mengalami pengurangan hal ini disebut sebagai benda (permukaan) transparan dan jika hanya sebagian dari gelombang yang mengalami pengurangan hal ini disebut sebagai permukaan semi transparan. Apakah suatu medium adalah benda yang bertingkah laku seperti benda hitam, transparan atau semi transparan tergantung kepada ketebalan lapisan materialnya. Benda logam biasanya bersifat seperti benda hitam. Benda nonlogam umumnya memerlukan ketebalan yang lebih besar sebelum benda ini bersifat seperti benda hitam. Permukaan yang bersifat seperti benda hitam tidak akan memantulkan cahaya radiasi yang diterimanya, oleh karena itu disebut sebagai penyerap paling baik atau permukaan hitam. Jadi permukaan yang tidak 20

17 memantulkan radiasi akan terlihat hitam. Permukaan dari benda hitam adalah permukaan yang paling ideal yang mempunyai sifat-sifat : a. Benda hitam menyerap semua radiasi yang disengaja (irradiasi) tanpa melihat panjang gelombang dan arah datangnya sinar (diffuse). b. Pada semua temepratur dan panjang gelombang yang diizinkan, tidak ada permukaan yang dapat menghasilkan energi lebih banyak dari pada benda hitam. c. Walaupun emisi radiasi yang dihasilkan oleh benda hitam adalah fungsi dari panjang gelombang dan temperatur, dan tidak bergantung pada arah datangnya sinar. [21] Karakteristik radiasi dari permukaan yang bertingkah laku seperti benda hitam : 1. Emisivitas Emisivitas adalah rasio energi yang diradiasikan oleh material tertentu dengan yang diradiasikan oleh benda hitam pada temepratur yang sama. Emisivitas merupakan ukuran kemampuan suatu benda untuk meradiasikan energi yang diserapnya. Benda hitam sempurna memiliki emisivitas sama dengan satu ( tetapi objek sesungguhnya memiliki emisivitas kurang dari satu. Umumnya, semakin kasar dan hitam benda tersebut, emisivitas meningkat mendekati 1. Semakin reflektif suatu benda, maka benda tersebut memiliki emisivitas mendekati 0. Emisivitas adalah satuan yang tidak berdimensi. Emisivitas bergantung pada faktor diantaranya temperatur, sudut emisi, dan panjang gelombang radiasi. 2. Absorbsivitas (Penyerapan) Tidak seperti halnya emisivitas, absorpsivitas atau refleksivitas dan transmisivitas bukanlah bagian dari sifat-sifat permukaan karena ketiga hal ini bergantung kepada radiasi yang datang ke permukaan. Absorpsi adalah proses pada saat suatu permukaan tersebut, melainkan ada sebagian yang dipantulkan atau ditransmisikan. Akibat langsung dari proses penyerapan ini adalah terjadinya peningkatan energi dari dalam medium yang terkena panas tersebut. 21

18 3. Transmisivitas Transmisivitas adalah fraksi dari jumlah energi radiasi yang ditransmisikan berjumlah total energi radiasi yang diterima suatu permukaan. Radiasi surya adalah radiasi gelombang pendek yang diserap oleh plat penyerap sebuah kolektor surya dan diubah menjadi panas. Oleh karena itu, plat penyerap harus memiliki harga α yang setinggi-tingginya dalam batas yang masih praktis. Plat penyerap yang menjadi panas memancarkan radiasi termal dalam daerah batas yang masih praktis. Plat penyerap yang menjadi panas memancarkan radiasi termal dalam daerah panjang gelombang yang panjang (infra merah) kerugian radiasi dapat dikurangi sehingga sangat kecil dengan cara menggunakan permukaan khusus yang memiliki harga absorbsivitas yang tinggi (α, tinggi) dalam daerah panjang gelombang pendek (radiasi surya) dan harga emisivitas yang rendah ( rendah) dalam daerah inframerah [22] 2.5. Penukar Kalor (Heat Exchanger) Alat penukar kalor (heat exchanger) merupakan suatu alat yang sangat penting dalam proses pertukaran panas. Alat tersebut berfungsi untuk memindahkan panas antara dua fluida yang berbeda temperatur dan dipisahkan oleh suatu sekat pemisah. Penukar kalor yang digunakan di industri lebih diutamakan untuk menukarkan energi dua fluida (zatnya boleh sama) yang berbeda temperaturnya. Pertukaran energi dapat berlangsung melalui bidang atau permukaan perpindahan panas yang memisahkan kedua fluida atau secara kontak langsung (fluidanya bercampur). Energi yang dipertukarkan akan menyebabkan perubahan temperatur fluida (panas sensibel) atau kadang dipergunakan untuk berubah fasa (panas laten). Laju perpindahan energi dalam penukar kalor dipengaruhi oleh banyak faktor seperti kecepatan aliran fluida, sifat-sifat fisik yang dimiliki oleh kedua fluida yang saling dipertukarkan energinya (viskositas, konduktivitas termal, kapasitas panas spesifik), beda temperatur antara kedua fluida, dan sifat permukaan bidang perpindahan panas yang memisahkan kedua fluida. 22

19 Jenis Penukar Kalor Pada umumnya penukar kalor bekerja pada temperatur dan tekanan yang tinggi serta kadang-kadang menggunakan fluida yang bersifat kurang ramah terhadap kehidupan kita. Sehingga diperlukan beberapa proses perpindahan panas yang tepat untuk mencegah adanya kerusakan dan kegagalan operasi. Berdasarkan proses perpindahan panas yang terjadi, penukar kalor dapat dibedakan menjadi dua golongan, yaitu : a. Tipe kontak langsung, dimana antara dua zat yang diperlukan energinya dicampur atau dikontakkan secara langsung. b. Tipe tidak kontak langsung, maksudnya antara kedua zat yang dipertukarkan energinya dipisahkan oleh permukaan bidang padatan seperti dinding pipa, plat, dan lain sebagainya antara kedua zat tidak tercampur. Berdasarkan berapa kali fluida melalui penukar kalor dibedakan jenis satu kali laluan dengan multi atau banyak laluan. Pada jenis satu laluan masih terbagi dalam tiga tipe berdasarkan arah aliran dari fluida, yaitu : a. Penukar kalor tipe berlawanan, yaitu bila kedua fluida mengalir dengan arah yang saling berlawanan. Pada tipe ini mungkin terjadi bahwa temperatur fluida yang menerima panas saat keluar penukar kalor lebih tinggi dibanding temperatur fluida yang memberikan kalor saat meninggalkan penukar kalor. b. Penukar kalor tipe aliran sejajar, yaitu bila arah aliran dari kedua fluida didalam penukar adalah sejajar. Artinya kedua fluida masuk pada sisi yang satu dan keluar dari sisi yang lain. c. Penukar kalor dengan aliran silang, artinya arah aliran kedua fluida saling bersilangan. Contoh yang sering kita lihat adalah radiator mobil dimana aliran air pendingin mesin yang memberikan energinya ke udara saling bersilangan. 23

20 2.6. Kehilangan Panas pada Bagian Atas Kehilangan energi panas tersebut terjadi dari bagian atas (q a ),bawah (q b ) dan samping (q s ).Indikator perubahan panas ditunjukkan dari perubahan temperatur lingkungan (T L ), kaca penutup 1 (T K1 ), gap udara 1 (T G1 ),kaca penutup 2 (T K2 ), gap udara 2 (T G2 ), plat absorber (T PA ). Gambar 2.15Kehilangan Panas pada Bagian Atas Nilaiq a sebanding denganperkaliankoefisien kehilangan energi panas dari bagian atas (U a )dengan luas sisi kolektor bagian atas (A a ) dan selisih temperatur plat absorber (T PA ) dan lingkungan(t L )dansecara matematis seperti pada persamaan. q a = U a A a (T PA -T L ) Dimana U a dalam satuan W/m 2.Kdapat dihitung dengan persamaan (2.23). U a = h v-k1 merupakan koefisien kehilangan panas secara konveksiakibat angin yang berhembus diatas permukaan kaca penutup 1 dapat dihitung dengan persamaan (2.24) dan (2.25) yang diusulkan oleh McAdams [23]. h v-k1 = 5,7 + 3,8v (v< 5 m/s) h v-k1 = 6,47v 0,78 (v> 5 m/s) Dimana w adalah kecepatan angin diatas permukaan kaca penutup 1. 24

21 h d-k1 atauh d-k2 merupakan koefisien kehilangan energi panas karena konduktivitas termal kaca penutup 1 atau 2 yang dapat ditentukan dengan persamaan [28]. h d-k1 = Dimanak(W/m.K) dan t (m) adalah konduktivitas termal dan ketebalankaca penutup.nilai k dari kaca penutup berbahan glassadalah 1,3 W/m.K [24]. h v-k2 merupakankoefisien kehilangan energi panas akibat konveksi natural pada kaca penutup 2 dipengaruhi oleh bilangan Nusselt (Nu L ), konduktitas termal udara (k) dan ketinggian (t) pada ruang kosong antara kaca penutup 1 dan 2 (gap 1) dansecara umum dapat dihitung dengan persamaan[23]. h v-k2 = Bilangan Nu L untuk konveksi natural pada gap kolektor plat datar bergantung pada bilangan Rayleigh (Ra L ). Untuk Ra L lebih besar dari 10 2 dan lebih kecil dari 10 8 ( 10 2 < Ra < 10 8 ) dapat dihitung dengan persamaan (2.28) yang diajukan oleh Niemann [23]. Nu L = Dimana nilai dari parameter m, K dan n seperti pada tabel 2.4 berdasarkan sudut kemiringan kolektor ( ). Tabel 2.1. Nilai parameter m, K dan n m n K 0 o 0,0700 0,32 x , o 0,0430 0,41 x , o 0,0236 1,01 x ,393 Bilangan Ra L merupakan perkalian bilangan Grashof (Gr L ) dengan bilangan Prandtl (Pr L ) yang dapat ditentukan dengan persamaan[23]. Ra L = Gr L Pr L Bilangan Gr L dihitung dengan persamaan(2.30).dimana adalah koefisien expansi panas volumetrik dalam satuan 1/K, g merupakan percepatan gravitasi 25

22 (9,81 m/s 2 ), t adalah tinggi ruang udara dan v adalah visikositas kinematik udara pada gap 1[23]. Gr L = Dimana koefisien expansi panas volumetrik untuk gas ideal adalahsesuai dengan persamaan (2.31)[23]. = = = Sehingga jika persamaan (2.31) disubsitusikan secara matematis ke persamaan (2.30) menjadiseperti persamaan (2.32)[23]. Gr L = Sedangkan bilangan Pr L diperoleh dari tabel sifat-sifat udara yang didasarkan pada temperatur rata-rata di gap 1 atau dapat dihitung dengan persamaan (2.33)[23]. Pr L = = Dimana a,, c p dan k berturut-turut adalah thermal diffusivity, densitas udara, kapasitas panas spesifik dan konduktivitas thermal udara pada gap 1. h r-pa yang merupakan koefisien kehilangan energi panas akibat radiasi dari plat absorber dapat ditentukan dengan persamaan (2.34) [23]. h r-pa = Dimana merupakan nilai konstanta Stefan Boltzman (5,67 x 10-8 W/m 2.K 4 ). K2dan PA adalah emisivitas kaca penutup 2 dan plat absorber yang nilainya bergantung dari bahan. Emisivitas kaca penutup berbahan glass bernilai 0,88 dan plat absorber dengan pelapisan flat black paintberkisar antara 0,97-0,99 [24,25].T PA dan T K2 merupakan temperatur plat absorber dan kaca penutup 2 dalam satuan K. 26

23 h v-pa juga merupakan koefisien kehilangan energi panas akibat konveksi pada permukaan plat absorber yaitu dapat dihitung menggunakan persamaan (2.26) sampai dengan (2.33) seperti pada perhitungan h v-k Tinjauan Mekanika Fluida Viskositas Viskositas merupakan sifat yang menentukan karakteristik fluida, yaitu ukuran tahanan fluida terhadap tegangan geser. Viskositas dinamik didefenisikan sebagai perbandingan tegangan geser terhadap laju regangan geser. Untuk distribusi kecepatan linier viskositas dinamik adalah : [kg/m.s] Sedang viskositas kinematik v merupakan viskositas dinamik dibagi massa jenis [26] [m 2 /s] Bilangan Reynold Re = Bilangan Reynold merupakan hubungan antara massa jenis, viskositas dinamik, dan kecepatan rata-rata suatu fluida dalam sebuah pipa dengan diameter dalam d i. Bilangan ini tidak memiliki dimensi dan sering dinyatakan dalam laju aliran massa fluida ṁ. Dari persamaan kontinuitas, kecepatan v dapat dituliskan sebagai berikut : v = [m/s] dengan mensubstitusikan v dalam persamaan diatas dapat diperoleh : [27] Re =

24 Persamaan Kontinuitas Fluida yang mengalir melalui suatu penampang akan selalu memenuhi hukum kontinuitas, yaitu laju massa fluida yang masuk akan selalu sama dengan laju massa fluida yang keluar. Persamaan kontinuitas dirumuskan : = konstan Untuk aliran tak mampu mampat, [28] maka persamaan kontinuitas menjadi, [m 3 /s] Gambar 2.16 Penampang saluran pipa Perpindahan Kalor pada Air Sebagian besar zat memuai secara beraturan terhadap penambahan temperatur. Akan tetapi (sepanjang tidak ada perubahan fase yang terjadi), air tidak mengikuti pola yang biasa. Jika pada 0 o C dipanaskan volumenya memuai terhadap bertambahnya temperatur. Air dengan demikian memiliki massa jenis yang paling tinggi 4 o C. Sebuah fenomena yang menarik adalah ketika temperatur air laut yang temperaturnya diatas 4 o C dan mulai mendingin karena kontak langsung dengan udara yang dingin. Air berada diatas permukaan laut akan tenggelam karena massa jenisnya yang lebih besar dan digantikan oleh air yang lebih hangat. Keadaan ini berlanjut hingga air mencapai temperatur tetap (konstan). Tekanan pada fluida dapat dituliskan dalam persamaan : 28

25 [kg/m 2 ] dimana : P = Tekanan (kg/m 2 ) = massa jenis zat cair (kg/m 3 ) g = percepatan gravitasi (m/s 2 ) h = kedalaman permukaan air laut (m) Permukaan laut P 3 h 3 Tengah laut P 2 h 2 Dasar laut P 1 h 1 Maka : > > ; P 1 >P 2 >P 3 dan h 3 >h 2 >h 1 Dari keterangan diatas dapat kita simpulkan bahwa air panas akan selalu berada pada bagian permukaan air. Hal ini dikarenakan massa jenis air panas lebih kecil dari pada massa jenis air dingin, denga sendirinya air panas akan berada pada permukaan. [29] 2.8. Desalinasi Air Laut Desalinasi pada prinsipnya merupakan cara untuk mendapatkan air bersih melalui proses penyulingan air kotor. Secara umum terdapat berbagai cara yang sering digunakan untuk mendapatkan air bersih yaitu: perebusan, penyaringan, desalinasi dan lain-lainnya. Cara perebusan dilakukan hanya untuk mematikan kuman dan bakteri-bakteri yang merugikan, namun kotoran yang berupa padatanpadatan kecil tidak bisa terpisah dengan air. Penyaringan digunakan hanya untuk menyaring kotoran-kotoran yang berupa padatan kecil, namun kuman dan bakteri yang merugikan tidak bisa terpisah dari air. Cara desalinasi merupakan cara yang efektif digunakan untuk menghasilkan air bersih yang bebas dari kuman, bakteri, dan kotoran yang berupa padatan kecil, Proses desalinasi secara umum biasanya yang diambil hanyalah air kondensatnya, sedangkan konsentrat garam dibuang dan ini dapat berakibat buruk bagi kehidupan air laut (Ketut dkk, 2011). Prinsip kerja desalinasi secara umum sebenarnya sangat sederhana. Air laut dipanaskan hingga menguap, dan kemudian uap yang dihasilkan 29

26 dikondensasikan kembali dan ditampung di sebuah wadah. Air kondensat tersebut adalah air bersih. Sedangkan air laut yang tidak mendidih selama pemanasan adalah konsentrat garam. Proses desalinasi yang akan penulis bahas pada penelitian ini adalah desalinasi sistem vakum. Konsep dari sistem ini adalah memanfaatkan ruang vakum yang dibentuk secara alami untuk dapat mengevaporasikan sejumlah air laut pada tekanan rendah sehingga dapat berevaporasi dengan suplai energi panas yang lebih sedikit dibanding dengan teknik konvensional. Suplai energi panas yang sedikit dapat diambil dari kolektor surya plat datar dan atau panas yang dibuang. Keunikan dari sistem ini adalah cara gaya gravitasi dan tekanan atmosfer digunakan dalam pembentukan kondisi vakum. Pembentukan sistem vakum bertujuan untuk menurunkan tekanan ruang evaporator agar pemanasan dapat berlangsung dengan suplai panas yang rendah. Tekanan atmosfer akan sama dengan tekanan hidrostatis yang dibentuk dengan pipa air yang tingginya sekitar 10 meter. Jadi, jika ketinggian pipa lebih dari 10 meter dan ditutup dari bagian atas dengan air, dan air dibiarkan jatuh kebawah akibat gravitasi, air akan jatuh pada ketinggian sekitar 10 meter, dan membentuk ruang vakum diatasnya. Komponen-komponen yang terdapat pada desalinasi sistem vakum adalah evaporator, kondensor, dan alat penukar kalor berupa tube-in-tube. Evaporator berfungsi sebagai ruang pemanasan air laut dengan suplai panas berasal dari kolektor surya plat datar yang pada penelitian ini akan digantikan oleh pemanas listrik berdaya rendah untuk menjaga kestabilan suplai panas. Kondensor berfungsi untuk mengumpulkan uap yang dihasilkan oleh pemanasan air laut di evaporator untuk dikondensasikan kembali sehingga air kondensat dapat ditampung dan didapat air bersih sebagai produk sistem. Sedangkan tube in tube heat exchanger berfungsi sebagai heat recovery (pemulih panas), dimana air laut yang tidak mendidih akibat pemanasan di ruang evaporator akan jatuh melalui pipa luar dari tube in tube untuk memanaskan pipa dalam yang sedang dialiri air laut dari tangki pengumpan. Skema yang digunakan desalinasi seperti gambar 2.19 berikut ini: 30

27 Gambar 2.17 Skema Desalinasi Sistem Vacum Natural 2.9. Energi Panas yang dikumpulkan Kolektor Besarnya energi panas yang dikumpulkan oleh kolektor (q rad ) dalam Watt dapat dihitung menggunakan persamaan sebagai berikut, Q rad = I t x A K x k1 x PA Dimana PA adalah nilai absorsivitas dari plat absorber yang bergantung dari bahan material. Untuk bahan plat alumunium nilai absorvsivitas adalah 0,97. k1 adalah transmisivitas kaca penutup yaitu 0,85. Sedangkan A K adalah luas dari kolektor Efisiensi termal Kolektor Efisiensi termal adalah ukuran tanpa dimensi yang menunjukkan performansi peralatan termal. Efisiensi termal dapat dirumuskan seperti pada kolektor surya plat datar dapat dihitung dengan persamaan, th = Berdasarkan definisi tersebut maka efisiensi termal pada kolektor surya plat datar dapat dihitung dengan persamaan, K =

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolektor Surya Plat Datar Kolektor suryaplat datar seperti pada gambar 2.1 merupakan kotak tertutup yang bagian atas dipasang kaca atau plastik transparan dengan lempengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 24 BAB II TINJAUAN PUSTAKA 2.1. Matahari Matahari merupakan bintang yang dekat dengan bumi dan menyediakan energi yang dibutuhkan oleh kehidupan di bumi secara terus menerus (renewable energy). Sumber

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH CHRIST JULIO BANGUN

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mesin Pendingin Mesin pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas ke suatu tempat yang temperaturnya

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber LAPORAN TUGAS AKHIR Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pascapanen. Unit operasi ini diterapkan untuk mengurangi kadar air produk

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 HE Shell and tube Penukar panas atau dalam industri populer dengan istilah bahasa inggrisnya, heat exchanger (HE), adalah suatu alat yang memungkinkan perpindahan dan bisa berfungsi

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH) TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah II. TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan metode pengawetan alami yang sudah dilakukan dari zaman nenek moyang. Pengeringan tradisional dilakukan dengan memanfaatkan cahaya matahari untuk

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari. Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR... DAFTAR ISI LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR TABEL x DAFTAR GAMBAR...xii BAB I PENDAHULUAN...

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Mesin pendingin BAB II TINJAUAN PUSTAKA Mesin pendingin merupakan mesin yang berfungsi untuk memindahkan panas dari lingkungan bersuhu rendah ke lingkungan bersuhu tinggi. Mesin pendingin dapat dibayangkan

Lebih terperinci

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar JURNA TEKNIK MESIN Vol. 3, No. 2, Oktober 2001: 52 56 Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik

Lebih terperinci

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Perpindahan Panas Konveksi Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Pengantar KONDUKSI PERPINDAHAN PANAS KONVEKSI RADIASI Perpindahan Panas Konveksi Konveksi

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 1 Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup Edo Wirapraja, Bambang

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian 21 III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian Fakultas Pertanian Universitas Lampung pada bulan Desember 2012

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Ketut Astawa1, Nengah Suarnadwipa2, Widya Putra3 1.2,3

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap BAB III METODE PENELETIAN Metode yang digunakan dalam pengujian ini dalah pengujian eksperimental terhadap alat destilasi surya dengan memvariasikan plat penyerap dengan bahan dasar plastik yang bertujuan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 32 BB III METODOLOGI PENELITIN Metode yang digunakan dalam pengujian ini adalah pengujian eksperimental terhadap lat Distilasi Surya dengan menvariasi penyerapnya dengan plastik hitam dan aluminium foil.

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat penyerap adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover kaca sebagian akan langsung dipantulkan,

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENERGI MATAHARI Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan 134 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

BAB I PENDAHULUAN 1.1 Latar Belakang   Jenis Energi Unit Total Exist 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di 22 III. METODELOGI PENELITIAN 3.1. Waktu dan Tempat Pelaksanaan Penelitian dilaksanakan pada Mei hingga Juli 2012, dan 20 22 Maret 2013 di Laboratorium dan Perbengkelan Teknik Pertanian, Fakultas Pertanian,

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. No., Juli 2016 (1 6) Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara I Kadek Danu Wiranugraha, Hendra Wijaksana dan Ketut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Matahari Matahari adalah bintang yang terdapat di jagat raya ini dan berada paling dekat dengan bumi. Matahari menyadiakan energi yang dibutuhkan oleh kehidupan di bumi ini secara

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

Universitas Sumatera Utara BAB 2 TINJAUAN PUSTAKA

Universitas Sumatera Utara BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Umum Adsorpsi Adsorpsi atau juga yang biasa disebut dengan penyerapan, adalah suatu proses yang terjadi ketika fluida (cairan ataupun gas) terikat pada suatu padatan atau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Matahari atau juga disebut Surya adalah bintang terdekat dengan Bumi dengan jarak sekitar 149.680.000 kilometer (93.026.724 mil). Matahari adalah suatu bola gas yang pijar dan ternyata

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Teknologi pemrosesan bahan pangan terus berkembang dari waktu ke waktu. Perkembangan teknologi ini didorong oleh kebutuhan pangan manusia yang terus meningkat yang

Lebih terperinci

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan BAB I Pendahuluan 1.1 Latar Belakang Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan kemajuan teknologi. Hal ini karena semakin banyak diciptakan mesin-mesin yang membutuhkan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan 4 II. TINJAUAN PUSTAKA 2.1. Kebutuhan energi Kebutuhan akan sumber energi di muka bumi ini sangat mempengaruhi aspek kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan kebutuhan pokok makhluk

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Perpindahan kalor meliputu proses pelepasan maupun penyerapan kalor, untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Ada tiga bentuk mekanisme perpindahan panas yang diketahui, yaitu konduksi,

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN :

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN : PERBEDAAN LAJU ALIRAN PANAS YANG DISERAP AIR DALAM PEMANAS AIR BERTENAGA SURYA DITINJAU DARI PERBEDAAN LAJU ALIRAN AIR DALAM PIPA KOLEKTOR PANAS Sumanto Jurusan Teknik Industri Fakultas Teknologi Industri

Lebih terperinci

Suhu dan kalor NAMA: ARIEF NURRAHMAN KELAS X5

Suhu dan kalor NAMA: ARIEF NURRAHMAN KELAS X5 Suhu dan kalor NAMA: ARIEF NURRAHMAN KELAS X5 PENGERTIAN KALOR Kalor adalah suatu bentuk energi yang diterima oleh suatu benda yang menyebabkan benda tersebut berubah suhu atau wujud bentuknya. Kalor berbeda

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya

Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya 1 Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya Dewi Jumineti 1) Sutopo Purwono Fitri 2) Beni Cahyono 3) 1) Mahasiswa Jurusan Teknik Sistem Perkapalan ITS,

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

Pemanasan Bumi. Suhu dan Perpindahan Panas

Pemanasan Bumi. Suhu dan Perpindahan Panas Pemanasan Bumi Meteorologi Suhu dan Perpindahan Panas Suhu merupakan besaran rata- rata energi kine4k yang dimiliki seluruh molekul dan atom- atom di udara. Udara yang dipanaskan akan memiliki energi kine4k

Lebih terperinci

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744 A. Suhu dan Pemuaian B. Kalor dan Perubahan Wujud C. Perpindahan Kalor A. Suhu Kata suhu sering diartikan sebagai suatu besaran yang menyatakan derajat panas atau dinginnya suatu benda. Seperti besaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Panas atau kalor merupakan salah satu bentuk energi. Panas dapat berpindah dari suatu zat ke zat lain. Panas dapat berpndah melalui tiga cara yaitu : 2.1.1

Lebih terperinci