BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Matahari Matahari adalah bintang yang terdapat di jagat raya ini dan berada paling dekat dengan bumi. Matahari menyadiakan energi yang dibutuhkan oleh kehidupan di bumi ini secara terus menerus dan berputar pada porosnya. Sumber energi berjumlah besar dan kontinyu terbesar yang tersedia bagi umat manusia adalah energi surya dan energi elektromagnetik yang dipancarkan oleh matahari. Energi surya sangat aktif karena tidak bersifat polutif dan tidak dapat habis. Akan tetapi arus energi yang rendah mengakibatkan digunakannya sistem kolektor yang permukaannya luas untuk mengumpulkan dan mengkonsentrasikan energi matahari ini ( Sitompul, Darwin dan Kusnul hadi.1994:83.prinsip-prinsip Konversi Energi.Erlangga.Jakarta ) Karakteristik Matahari Matahari bintang terdekat yang memberikan energi untuk mempertahankan kehidupan di bumi. Jika kita memandang matahari ketika terbit dan terbenam atau melalui lapisan awan, maka matahari tampak seperti piringan yang pinggirnya jelas. Piringan matahari yang tampak ini disebut Universitas Mercu Buana

2 8 fotosfer. Dalam suatu kesempatan kita dapat melihat noda-noda (spots) hitam pada fotosfer. Diameter matahari sekitar 14 x 105 Km atau 109 kali diameter bumi. Massa matahari kali massa bumi atau secara pendekatan 1,99 x 1030 Kg. Dengan mengetahui ukuran dan massa matahari maka diperoleh densitas matahari rata-rata 1,41 g/cm3 yang lebih rendah seperempat kali dibandingkan densitas bumi rata-rata Energi Matahari Setiap menit matahari meradiasikan energi sebesar 56 x kalori. Energi matahari persatuan luas pada jarak jauh dari permukaan bola dengan matahari sebagai pusat bulatan dan jari-jari bulatan 150 juta Km (jarak ratarata bumi dengan matahari) adalah: yang disebut konstanta matahari ( Bayong.2006:81.Ilmu Kebumian dan Antariksa.Rosda.Bandung ). Energi matahari yang diterima bumi dengan jari-jari 6370 km adalah: E b =πa 2 S = 3,14 x (637 x 10 6 cm) 2 x 2 kal cm -2 menit -1 = 2,55 x kal.menit -1 = 3,67 x kal/hari ( Bayong.2006:81.Ilmu Kebumian dan Antariksa.Rosda.Bandung ).

3 9 2.2 Jenis Jenis Perpindahan Kalor Perpindahan kalor dapat didefenisikan sebagai berpindahnya energi dari suatu daerah ke daerah lainnya sebagai akibat dari beda suhu antara daerah daerah tersebut. Perpindahan kalor pada umumnya mengenal tiga cara perpindahan panas yang berbeda: radiasi, konduksi ( conduction ; juga dikenal dengan istilah hantaran ), dan konveksi. Kalor mengalir dengan sendirinya dari suatu benda yang temperaturnya lebih tinggi kebenda lain dengan temperatur yang lebih rendah. Bagaimanapun, fluida kalor tidak pernah dideteksi. Kemudian diabad ke 19 ditemukan bahwa berbagai fenomena yang berhubungan dengan kerja dan energi. Pertama kita lihat bahwa suatu satuan yang umum untuk kalor, yang masih digunakan sekarang dinamakan kalori. Satuan ini disebut kalori (kal) dan didefinisikan sebagai kalor yang dibutuhkan untuk menaikan temperatur 1 gram air sebesar 1 derajat celcius ( Giancoli.2001:489.Fisika Jilid 1.Erlangga.Jakarta ). Jika kalor diberikan pada suatu benda maka temperaturnya naik. Pada abad ke 18, orang - orang yang melakukan percobaan telah melihat bahwa besar kalor ( Q ) yang dibutuhkan untuk merubah temperatur zat tertentu sebanding dengan massa ( m ) zat tersebut dan dengan perubahan temperatur T. Keserdehanaan alam yang menakjubkan ini dapat dinyatakan dalam persamaan : Q = mc T Dimana: Q M : kalor : massa zat

4 10 T c : perubahan temperatur : adalah kalor jenis ( Giancoli.2001:492.Fisika Jilid 1.Erlangga.Jakarta ) Radiasi Radiasi adalah proses perpindahan panas melalui gelombang elektromagnetik atau paket-paket energi (photon) yang dapat dibawa sampai pada jarak yang sangat jauh tanpa memerlukan interaksi dengan medium ( ini yang menyebabkan mengapa perpindahan panas radiasi sangat penting pada ruang vakum ), disamping itu jumlah energi yang dipancarkan sebanding dengan temperatur benda tersebut. Kedua hal tersebut yang membedakan antara peristiwa perpindahan panas konduksi dan konveksi dengan perpindahan panas radiasi ( Koestoer, Raldi Artono.2002:183.Perpindahan Kalor.Salemba teknik.jakarta ). Jika suatu benda ditempatkan di dalam sebuah ruangan, dan suhu dinding dinding ruangan lebih rendah dari pada suhu benda maka suhu benda tersebut akan turun sekalipun ruangan tersebut ruang hampa. Proses dengan perpindahan panas dari suatu benda terjadi berdasarkan suhunya tanpa bantuan dari suatu zat antara (medium) disebut radiasi termal. Defenisi lain dari radiasi termal ialah radiasi elektromagnetik yang dipancarkan oleh suatu benda karena suhunya. Ada beberapa jenis radiasi elektromagnetik, radiasi termal hanyalah salah satu diantaranya. Apa pun jenis radiasi itu, ia akan selalu merambat dengan kecepatan cahaya (3x10 10 cm/s). Kecepatan ini sama dengan hasil perkalian panjang gelombang dengan frekuensi radiasi,

5 11 c = λ x V Dimana ; c adalah kecepatan cahaya ( cm/s ), λ adalah panjang gelombang ( µm ), v adalah frekuensi (Hz) ( Koestoer, Raldi Artono.2002:184.Perpindahan Kalor.Salemba teknik.jakarta ). Frekuensi dari cahaya tidak akan berubah pada saat cahaya tersebut memasuki suatu medium ke medium lain selama energinya tetap. Laju energi yang dipindahkan tergantung kepada beberapa faktor yaitu: 1) Temperatur ( permukaan yang mengemisi dan yang menerima radiasi ). 2) Emisivitas ( permukaan yang teradiasi ). 3) Refleksi, Absorpsi, dan Transmisi Faktor pandang (views factor) antara permukaan yang mengemisi dan yang menerima radiasi (sudut pandang antara manusia terhadap sumber radiasi) ( Koestoer, Raldi Artono.2002:184.Perpindahan Kalor.Salemba teknik.jakarta ). Sifat Sifat Radiasi Bila energi radiasi menimpa permukaan suatu bahan, maka sebagian radiasi itu dipantulkan (refleksi), sebagian diserap (absorpsi), dan sebagian lagi diteruskan (transmisi).

6 12 Gambar 2.1 Bagan Menunjukkan Pengaruh Radiasi Datang. Sumber : Holman,J.P.1991:343.Perpindahan Kalor.Erlangga.Jakarta Jika disebut refleksifitas, disebut absorptivitas, disebut transmitivitas, maka hubungan ketiganya adalah: Karena benda padat tidak meneruskan radiasi termal, maka transmisivitas dianggap nol. Sehingga, Gelombang elekromagnetik berjalan melalui suatu medium (vacum) dan mengenai suatu permukaan atau medium lain maka sebagian gelombang akan dipantulkan, sedangkan gelombang yang tidak dipantulkan akan menembus ke dalam medium atau permukaan yang dikenainya. Pada saat melalui medium, intensitas gelombang secara berkelanjutan akan mengalami pengurangan. Jika pengurangan tersebut berlangsung sampai tidak ada lagi gelombang yang akan menembus permukaan yang dikenainya maka permukaan ini disebut sebagai benda yang bertingkah laku seperti benda hitam ( Koestoer, Raldi Artono.2002:185.Perpindahan Kalor.Salemba teknik.jakarta ).

7 13 Permukaan yang bersifat seperti benda hitam tidak akan memantulkan cahaya radiasi yang diterimanya, oleh karena itu kita sebut sebagai penyerap paling baik atau permukaan hitam. Jadi permukaan yang tidak memantulkan radiasi akan terlihat hitam ( Koestoer, Raldi Artono.2002:185.Perpindahan Kalor.Salemba teknik.jakarta ). Permukaan dari benda hitam adalah permukaan yang paling ideal yang mempunyai sifat-sifat: 1) Benda hitam menyerap semua radiasi yang disengaja (irradiasi) tanpa melihat panjang gelombang dan arah datangnya sinar (diffuse). 2) Pada semua temperatur dan panjang gelombang yang diizinkan, tidak ada permukaan yang dapat menghasilakan energi lebih banyak daripada benda hitam. 3) Walaupun emisi radiasi yang dihasilkan oleh benda hitam adalah fungsi dari panjang gelombang dan temperatur, dan tidak bergantung pada arah datangnya sinar ( Koestoer, Raldi Artono.2002:190.Perpindahan Kalor.Salemba teknik.jakarta ). Karakteristik Radiasi dari Benda Permukaan yang Berwarna Hitam a. Emisi Permukaan Sifat dari permukaan radiasi (emisivitas) didefinisikan sebagai perbandingan radiasi yang dihasilkan oleh permukaan benda hitam pada temperatur yang sama. Emisivitas mempunyai nilai yang berbeda

8 14 tergantung kepada panjang gelombang dan arahnya. Nilai emisivitas bervariasi dari 0-1, di mana benda hitam mempunyai nilai emisivitas 1. b. Absorpsivitas ( Penyerapan ) Tidak seperti halnya emisivitas, absorpsivitas atau refleksivitas dan transmisivitas bukanlah bagian dari sifat-sifat permukaan karena ketiga hal ini bergantung kepada radiasi yang datang ke kepermukaan. Absorpsi adalah proses pada saat suatu permukaan menerima radiasi dimana tidak semua energi diserap oleh permukaan tersebut, melainkan ada sebagian yang dipantulkan atau ditransmisikan. Akibat langsung dari proses penyerapan ini adalah terjadinya peningkatan energi dari dalam medium yang terkena panas tersebut ( Koestoer, Raldi Artono.2002: Perpindahan Kalor.Salemba teknik.jakarta ). c. Transmisivitas Transmisivitas adalah fraksi dari jumlah energi radiasi yang ditransmisikan perjumlah total energi radiasi yang diterima suatu permukaan ( Koestoer, Raldi Artono.2002:208.Perpindahan Kalor.Salemba teknik.jakarta ) Konduksi Pada proses konduksi, kalor dipindahkan melalui benda perantara, namun benda perantaranya tidak ikut berpindah. Pada prosesnya panas mengalir dari daerah yang bersuhu lebih tinggi kedaerah yang bersuhu lebih

9 15 rendah didakam suatu medium ( padat, cair atau gas ) atau antara medium medium yang berlainan yang bersinggungan secara langsung. Dalam aliran panas konduksi, perpindahan energi terjadi karena hubungan molekul secara langsung tanpa adanya perpindahan molekul yang cukup besar. Energi yang dimiliki oleh suatu elemen zat yang disebabkan oleh kecepatan dan posisi relatif molekul molekulnya disebut energi dalam. Jadi, semakin cepat molekul molekul bergerak, semakin tinggi suhu maupun energi dalam elemen zat. Bila molekul molekul di satu daerah memperoleh energi kinetik rata rata yang lebih besar dari pada yang dimiliki oleh molekul molekul di suatu daerah yang berdekatan, sebagaimana diujudkan oleh adanya beda suhu, maka molekul molekul yang memiliki energi yang lebih besar itu akan memindahkan sebagian energinya kepada molekul molekul di daerah yang bersuhu lebih rendah. Konduksi adalah satu satunya mekanisme dimana panas dapat mengalir dalam zat padat yang tidak dapat tembus cahaya. Konduksi penting dalam fluida, tetapi di dalam medium yang bukan padat biasanya tergabung dengan konveksi, dan radiasi. Energi berpindah secara konduksi (conduction ) atau hantaran dan bahwa laju perpindahan kalor itu berbanding dengan gradien suhu normal: Jika dimasukkan konstanta proporsionaliltis atau tetapan kesebandingan, maka:

10 16 ( Holman,J.P.1991:2.Perpindahan Kalor.Erlangga.Jakarta ) Dimana: Q = Laju perpindahan kalor ( W ). K = Konduktifitas Termal yang searah dengan perpindahan kalor ( W / m. o C). A = Luas Penampang yang terletak pada aliran panas ( m 2 ). dt/dx = Gradien temperatur dalam arah aliran panas ( o C/m ). Tanda minus diselipkan untuk memenuhi hukum kedua termodinamika, yaitu bahwa kalor mengalir ketempat yang lebih rendah dalam skala suhu. Persamaan diatas disebut hukum Fourier tentang konduksi kalor, yang merupakan persamaan dasar tentang konduktivitas termal. Berdasarkan rumusan itu maka dapat dilaksanakan pengukuran dalam percobaan untuk menentukan konduktivitas berbagai bahan. Nilai konduktivitas berbagai bahan dapat dilihat pada tabel dan grafik dibawah ini Gambar 2.2 Konduktivitas Termal Berbagai Bahan pada 0 o C Sumber : Holman,J.P.1991:7.Perpindahan Kalor.Erlangga.Jakarta

11 Konveksi Konveksi merupakan perpindahan kalor yang disertai dengan perpindahan massa medianya, dan media konveksi adalah fluida. Konveksi terjadi karena adanya perbedaan kecepatan fluida bila suhunya berbeda, yang tentunya akan berakibat pada perbedaan berat jenis (berat tiap satuan volume). Fluida yang bersuhu tinggi akan mempunyai berat jenis yang lebih kecil bila dibandingkan dengan fluida sejenisnya yang bersuhu lebih rendah. Karena itu, maka fluida yang bersuhu tinggi akan naik sambil membawa energi. Hal inilah yang berakibat pada terjadinya perpindahan kalor konveksi. Perpindahan energi dengan cara konveksi dari suatu permukaan yang suhunya diatas suhu fluida sekitarnya berlangsung dalam beberapa tahap. Pertama, panas akan mengalir dengan cara konduksi dari permukaan ke partikel partikel fluida yang berbatasan. Energi yang berpindah dengan cara demikian akan menaikkan suhu dan energi dalam partikel fluida ini. Kemudian partikel fluida tersebut akan bergerak ke daerah yang bersuhu lebih rendah di dalam fluida dimana partikel tersebut akan bercamp\ur dan memindahkan sebaian energinya pada partikel fluida lainnya. Dalam hal ini alirannya adalah aliran fluida maupun energi. Energi disimpan didalam partikel partikel fluida dan diangkut sebagai akibat gerakan massa partikel tersebut. Perpindahan panas konveksi diklasifikasikan dalam konveksi bebas ( free convection ) dan konveksi paksa (forced convection) menurut cara menggerakkan cara alirannya. Bila gerakan mencampur berlangsung sematamata sebagai akibat dari perbedaaan kerapatan yang disebabkan oleh gradient

12 18 suhu, maka proses ini yang disebut dengan konveksi bebas atau alamiah (natural). Bila gerakan mencampur disebabkan oleh suatu alat dari luar, seperti pompa atau kipas, maka prosesnya disebut konveksi paksa. Gambar 2.3 Perpindahan kalor konveksi dari suatu plat Sumber : Holman,J.P.1991:11.Perpindahan Kalor.Erlangga.Jakarta Pada Gambar diatas suhu plat ialah T w dan suhu fluida T. Kecepatan aliran yaitu nol pada permukaan plat sebagai akibat aksi kental viskos ( viscous action ). Oleh karena kecepatan lapisan fluida pada dinding fluida adalah nol maka disini kalor hanya dapat berpindah dengan cara konduksi saja. Jadi, dapat dihitung perpindahan kalornya dengan menggunakan rumus konduksi, dengan menggunakan konduktivitas termal fluida dan gradien suhu pada dinding, gradien suhu bergantung pada laju fluida membawa kalor dari permukaan-dalam plat tersebut. Kecepatan yang tinggi akan menyebabkan gradien suhu yang besar, demikian juga sebaliknya. Gradien suhu pada dinding bergantung dari medan aliran.

13 19 Pengaruh konduksi secara menyeluruh pada fluida disebut dengan perpindahan kalor secara konveksi. Rumus empiris perpindahan kalor konveksi digunakan hukum Newton tentang pendinginan: q konveksi = h A ( T W - T ) ( Koestoer, Raldi Artono.2002.Perpindahan Kalor.Salemba teknik.jakarta ). Dimana: h = Koefisien perpindahan kalor konveksi ( W / m 2 o C ) A = Luas permukaan ( m 2 ) Tw = Temperatur dinding ( o C ) T = Temperatur fluida ( o C ) Q = Laju perpindahan panas konveksi ( Watt ) Disebut pendinginan karena fluida yang dialirkan melalui plat tersebut digunakan untuk mendinginkan plat itu juga. Laju perpindahan kalor dihubungkan dengan beda suhu menyeluruh antara dinding dan fluida, dan luas permukaan A. Perpindahan kalor konveksi bergantung pada viskositas fluida disamping ketergantungannya pada sifat sifat termal fluida ( konduktivitas termal, kalor spesifik, densitas). Hal ini dapat dimengerti karena viskositas mempengaruhi profil kecepatan, dan karena itu mempengaruhi laju perpindahan energi didaerah dinding. 2.3 Sistem Kolektor Surya Dalam kasus plat kolektor surya, perangkap terbaik untuk menangkap radiasi matahari adalah permukaan hitam. Pada permukaan ini radiasi diserap dan konversi dari energi cahaya menjadi energi panas.

14 20 Desain penting yang perlu dipertimbangkan pada kolektor surya adalah meminimalkan kehilangan (kerugian) panas pada kolektor. Untuk keperluan ini biasanya digunakan penutup transparan yang dapat dilalui oleh radiasi matahari dan meminimalkan kehilangan konduksi dan konveksi panas dengan mempertahankan lapisan udara panas diatas plat kolektor dan meminimalkan kehilangan panas radiasi kembali dari plat kolektor kelingkungan. Berkurangnya panas yang hilang dari sebuah plat kolektor surya berarti pula peningkatan efisiensi. Peningkatan efisiensi dari kolektor surya ditentukan oleh penutup transparan. Penutup transparan ideal mempunyai permukaan yang transparan terhadap radiasi matahari yang menimpanya, dan memantulkan radiasi panjang gelombang besar kembali ke kepermukaan kolektor dimana akan diserap kembali. Efisien atau randemen penangkap ( η ) dari sebuah plat kolektor surya didefinisikan sebagai rasio jumlah penggunaan energi yang dikumpulkan dengan radiasi yang diterima ( Ashrae, 2001 ) η = η = = Dimana: = Efisiensi ( % ). = Performa Panel Kolektor ( W ). = Luas Apertur Panel Kolektor ( m ). = Data Irradiasi Total ( W / m 2 ).

15 21 = Laju Aliran Air ( kg / s ). = Kapasitas Panas Air / Panas Spesifik ( KJ / kg-k ) = Temperatur Keluar ( o C ) = Temperatur Masuk ( o C ) = Densitas Air ( kg/m 3 ) Untuk menghitung nilai efisiensi dari rangkaian pada pengujian, maka diperlukan data data awal sebagai berikut : Nilai densitas air pada temperature rata rata air. Nilai panas spesifik air. Nilai debit air selama pengujian. Data temperatur masuk dan keluar dari air. Data temperature ambient ( temperature lingkungan ). Data nilai irradiasi matahari. Data luas dari plat absorber.

16 Jenis Jenis Kolektor Kolektor surya dapat didefinisikan sebagai sistem perpindahan panas yang menghasilkan energi panas dengan memanfaatkan radiasi sinar matahari sebagai sumber energi utama ( Duffie & Beckam, 1982 ). Menurut ASHRAE definisi kolektor surya adalah alat yang didesain untuk menyerap radiasi matahari dan mentransfer energy tersebut ke fluida yang melaluinya ( Ashrae, 2001 ). Ketika cahaya matahari menimpa absorber pada kolektor surya, sebagian cahaya akan dipantulkan kembali ke lingkungan, sedangkan sebagian besarnya akan diserap dan dikonversi menjadi energi panas, lalu panas tersebut dipindahkan kepada fluida yang bersirkulasi di dalam kolektor surya untuk kemudian dimanfaatkan guna berbagai aplikasi. Kolektor surya yang pada umumnya memiliki komponen-komponen utama, yaitu: a. Cover berfungsi untuk mengurangi rugi panas secara konveksi menuju lingkungan. b. Absorber berfungsi untuk menyerap panas dari radiasi cahaya matahari. c. Kanal berfungsi sebagai saluran transmisi fluida kerja. d. Isolator berfungsi meminimalisasi kehilangan panas secara konduksi dari absorber menuju lingkungan. e. Frame berfungsi sebagai struktur pembentuk dan penahan beban kolektor. [ Duffie John A., dan William A. Beckman, 1991 ]

17 Klasifikasi Kolektor Surya Terdapat tiga jenis kolektor surya yang diklasifikasikan ke dalam Solar Thermal Collector System dan juga memiliki korelasi dengan pengklasifikasian kolektor surya berdasarkan dimensi dan geometri dari receiver yang dimilikinya. Kolektor Surya Prismatik Kolektor surya tipe prismatik adalah kolektor surya yang dapat menerima energi radiasi dari segala posisi matahari kolektor jenis ini juga dapat digolongkan dalam kolektor plat datar dengan permukaan kolektor berbentuk prisma yang tersusun dari empat bidang yang berbentuk prisma, dua bidang berbentuk segitiga sama kaki dan dua bidang berbentuk segi empat siku siku.sehingga dapat lebih optimal proses penyerapan tipe kolektor jenis prismatik ini dapat dilihat seperti Gambar ( 2.4 ) berikut. Gambar 2.4 Skema sistim kolektor surya prismatic Sumber :

18 24 Kolektor Surya Plat datar ( Flat-Plate Collectors ) Kolektor surya merupakan sebuah alat yang digunakan untuk memanaskan fluida kerja yang mengalir kedalamnya dengan mengkonversikan energy radiasi matahari menjadi panas. Fluida yang dipanaskan berupa cairan minyak, oli, air, dan udara kolektor surya plat datar mempunyai temperatur keluaran dibawah 95 C, dalam aplikasinya kolektor plat datar digunakan untuk memanaskan udara dan air ( Goswami, 1999 ). Komponen-komponen sebuah kolektor surya plat datar terdiri dari permukaan hitam sebagai penyerap energi radiasi matahari yang kemudian dipindahkan ke fluida. Penutup tembus cahaya (kaca) berfungsi mengurangi efek radiasi dan konveksi yang hilang ke atmosfir. Pipa-pipa aliran fluida berfungsi mengalirkan fluida yang akan dipanaskan serta isolasi untuk mengurangi kerugian konduksi ke lingkungan. Gambar 2.5 Skema Kolektor Surya Plat Datar Sumber :

19 25 Kolektor surya plat datar adalah kolektor surya yang dapat menyerap energi matahari dari sudut kemiringan tertentu sehingga pada proses penggunaannya dapat lebih mudah dan lebih sederhana. Dengan bentuk persegi panjang seperti pada Gambar ( 2.6 ) dibawah ini. Gambar 2.6 Penampang melintang kolektor surya pelat datar sederhana Sumber : Keuntungan utama dari sebuah kolektor surya plat datar adalah bahwa memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah. Pada umumnya kolektor jenis ini digunakan untuk memanaskan ruangan dalam rumah, pengkondisian udara, dan proses-proses pemanasan dalam industry ( Duffie, 1991 ). Tipe ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur di bawah 100 C. Spesifikasi tipe ini dapat dilihat dari absorber-nya yang berupa plat datar yang terbuat dari material dengan konduktivitas termal tinggi, dan dilapisi dengan cat berwarna hitam.

20 26 Kolektor pelat datar memanfaatkan radiasi matahari langsung dan terpencar ( beam dan diffuse ), tidak membutuhkan pelacak matahari, dan hanya membutuhkan sedikit perawatan. Aplikasi umum kolektor tipe ini antara lain digunakan untuk pemanas air, pemanas gedung, pengkondisian udara, dan proses panas industri. Komponen penunjang yang terdapat pada kolektor pelat datar antara lain; transparent cover, absorber, insulasi, dan kerangka. Concentrating Collectors Jenis ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperature antara C. Kolektor surya jenis ini mampu memfokuskan energi radiasi cahaya matahari pada suatu receiver, sehingga dapat meningkatkan kuantitas energi panas yang diserap oleh absorber. Spesifikasi jenis ini dapat dikenali dari adanya komponen konsentrator yang terbuat dari material dengan transmisivitas tinggi. Berdasarkan komponen absorber-nya jenis ini dikelompokan menjadi dua jenis yaitu Line Focus dan Point Focus. Gambar 2.7 Konsentrator atau parabola Sumber :

21 27 Agar cahaya matahari selalu dapat difokuskan terhadap tabung absorber, concentrator harus dirotasi. Pergerakan ini disebut dengan tracking. Temperatur fluida melebihi 400 o C dapat dicapai pada sistem kolektor ini seperti terlihat pada Gambar ( 2.7 ) diatas. Evacuated Tube Collectors Jenis ini dirancang untuk menghasilkan energi panas yang lebih tinggi dibandingkan dengan dua jenis kolektor surya sebelumnya. Keistimewaannya terletak pada efisiensi transfer panasnya yang tinggi tetapi faktor kehilangan panasnya yang relatif rendah. Hal ini dikarenakan fluida yang terjebak diantara absorber dan cover-nya dikondisikan dalam keadaan vakum, sehingga mampu meminimalisasi kehilangan panas yang terjadi secara konveksi dari permukaan luar absorber menuju lingkungan. Gambar 2.8 Evacuated Receiver Sumber : Alat alat Pengukuran yang Dipakai dalam Proses Pengambilan Data Mengukur adalah membandingkan parameter pada obyek yang diukur terhadap besaran yang telah distandarkan, sedangkan pengukuran merupakan

22 28 suatu usaha untuk mendapatkan informasi deskriptif kuantitatif dari variable variable fisika dan kimiasuatu zat atau benda yang diukur, misalnya panjang 1 m atau massa 1kg, dan sebagainya ( Koestore,2003 ) Thermocouple Definisi thermocouple menurut ASHRAE, 2001 adalah sambungan dari dua buah kabel yang berbeda material, tidak harus metal, yang memiliki sifat menghasilkan gaya listrik yang berhubungan dengan temperature sambungan kedua kabel tersebut. Thermocouple bekerja atas dasar prinsip fenomena dari Seebeck ( 1821 ). Yaitu bila suatu rangkaian yang terdiri dari dua buah logam yang tidak sejenis, dan bila temperature pada sambungan sambungan dari dua kawat tersebut tidak sama, maka akan ada gaya listrik ( Koestoer, 2003 ) Jenis yang digunakan adalah tipe CA/K yang berkemampuan pengukuran dari C Sensor Temperatur ( Autonic Digital T4WM / Termokontrol ) Sebagai pasangan dari thermocouple, maka alat ini berfungsi untuk mengonversikan tegangan yang dihasilkan thermocouple karena terpanaskan hingga suhu tertentu menjadi angka, dan dari thermocontrol akan dihubungkan dengan temperature digital, sehingga terlihatlah angka yang menunjukkan temperatur hasil pengukuran.

23 29 Gambar 2.9 Sensor Temperatur ( Autonic Digital T4WM / Termokontrol ) Sumber : Foto Dokumentasi Pyranometer atau Solarymeter Adalah alat untuk menghitung radiasi matahari total ( langsung dan bias ) pada permukaan horizontal ( Duffie, 1982 ). Pyranometer menggunakan dua detector ring perak konsentris, dimana ring luar dilapisi material yang memiliki reflektansi tinggi untuk spectrum radiasi matahari misalnya magnesium oksida, dan ring dalam dilapisi material yang memiliki absorptansi sangat tinggi pada spectrum radiasi matahari misalnya parson s black. Kedua ring memiliki perbedaan temperature, kemudian temperature tersebut dideteksi oleh 50 sambungan thermopile. Dengan prinsip efek seebeck perbedaan temperature antara kedua ring ini maka akan menghasilkan voltase. Dengan kalibrasi tertentu radiasi matahari dapat ditentukan. Gambar 2.10 Alat Penangkap Radiasi ( Pyranometer atau Solarymeter ) Sumber : Foto Dokumentasi

24 Flowmeter Flowmeter merupakan alat untuk mengukur jumlah laju aliran dari suatu fluida yang mengalir dalam pipa atau sambungan terbuka. Alat utama menghasilkan suatu sinyal yang merespon terhadap aliran karena laju aliran tersebut telah terganggu ( terjadi perubahan pada tekanan ). Dalam pemasangan flowmeter, flowmeter harus dipasang terintegrasi di dalam sistem pemipaan agar dapat berfungsi dengan baik. Ada dua pemasangan flowmeter, yaitu: inline dan insertion. Inline adalah pemasangan dengan menggunakan konektor pada pipa upstream dan downstream. Insertion adalah dengan memasukan sensor di dalam pipa. Kebanyakan flowmeter harus dipasang pada pipa, dimana pipa tersebut dalam keadaan lurus ( bagian yang lurus ). Untuk cara pemasangan inline, diameter pipa harus sama dengan diameter konektor dari flowmeter inline. Untuk tipe inline ada dua jenis metode konektor, yaitu: wafer dan flanged. Gambar 2.11 Alat Pengukur Debit Laju Aliran ( Flowmeter ) Sumber : Foto Dokumentasi

25 Multimeter Multimeter adalah alat ukur tegangan, arus, atau tahanan listrik, baik arus bolak balik ( AC ) maupun arus searah ( DC ). Multimeter memiliki dua jenis, analog dan digital. Gambar 2.12 Alat Pengukur Tegangan, arus, & tahanan listrik ( Multimeter ) Sumber : Foto Dokumentasi

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA BAB IV HASIL PENGUJIAN dan PENGOLAHAN DATA Data hasil pengukuran temperatur pada alat pemanas air dengan menggabungkan ke-8 buah kolektor plat datar dengan 2 buah kolektor parabolic dengan judul Analisa

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari. Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENERGI MATAHARI Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit TUGAS AKHIR Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

BAB I PENDAHULUAN 1.1 Latar Belakang   Jenis Energi Unit Total Exist 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber LAPORAN TUGAS AKHIR Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di 1.1 Latar Belakang BAB I PENDAHULUAN Matahari adalah sumber energi tak terbatas dan sangat diharapkan dapat menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di Indonesia masih

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Ketut Astawa1, Nengah Suarnadwipa2, Widya Putra3 1.2,3

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan 4 II. TINJAUAN PUSTAKA 2.1. Kebutuhan energi Kebutuhan akan sumber energi di muka bumi ini sangat mempengaruhi aspek kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan kebutuhan pokok makhluk

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR... DAFTAR ISI LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR TABEL x DAFTAR GAMBAR...xii BAB I PENDAHULUAN...

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses optimasi dari sebuah rancagan benda kerja memerlukan perencanaan yang cermat. Teori-teori yang berhubungan dengan benda kerja ataupun alat yang akan dioptimasi perlu dijadikan

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar JURNA TEKNIK MESIN Vol. 3, No. 2, Oktober 2001: 52 56 Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik

Lebih terperinci

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER Oleh: Zainul Hasan 1, Erika Rani 2 ABSTRAK: Konversi energi adalah proses perubahan energi. Alat konversi energi

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Matahari atau juga disebut Surya adalah bintang terdekat dengan Bumi dengan jarak sekitar 149.680.000 kilometer (93.026.724 mil). Matahari adalah suatu bola gas yang pijar dan ternyata

Lebih terperinci

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Spektra: Jurnal Fisika dan Aplikasinya, Vol. XI No.1 Mei 2011 Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Handjoko Permana a, Hadi Nasbey a a Staf Pengajar

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat penyerap adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover kaca sebagian akan langsung dipantulkan,

Lebih terperinci

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN PERCOBAAN PENENTUAN KONDUKTIVITAS TERMA BERBAGAI OGAM DENGAN METODE GANDENGAN A. Tujuan Percobaan. Memahami konsep konduktivitas termal. 2. Menentukan nilai konduktivitas termal berbagai logam dengan metode

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pengujian dalam penulisan skripsi ini adalah berupa pengambilan data data eksperimen berupa temperature, debit air dan besarnya irradiasi matahari selama proses pengujian

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

Gambar 2. Profil suhu dan radiasi pada percobaan 1

Gambar 2. Profil suhu dan radiasi pada percobaan 1 HASIL DAN PEMBAHASAN A. Pengaruh Penggunaan Kolektor Terhadap Suhu Ruang Pengering Energi surya untuk proses pengeringan didasarkan atas curahan iradisai yang diterima rumah kaca dari matahari. Iradiasi

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini.

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. SNMPTN 2011 FISIKA Kode Soal 999 Doc. Name: SNMPTN2011FIS999 Version: 2012-10 halaman 1 01. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. Percepatan ketika mobil bergerak semakin

Lebih terperinci

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan BAB I PENDAHULUAN 1.1 Latar Belakang Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan kebutuhan energi listrik semakin besar. Namun, energi listrik yang diproduksi masih belum memenuhi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sel Surya Sel surya sebenarnya adalah sebuah sel fotovoltaik yang berfungsi sebagai pengkonversi energi cahaya matahari menjadi energi listrik dalam bentuk arus searah secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pascapanen. Unit operasi ini diterapkan untuk mengurangi kadar air produk

Lebih terperinci

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap BAB III METODE PENELETIAN Metode yang digunakan dalam pengujian ini dalah pengujian eksperimental terhadap alat destilasi surya dengan memvariasikan plat penyerap dengan bahan dasar plastik yang bertujuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolektor Surya Plat Datar Kolektor suryaplat datar seperti pada gambar 2.1 merupakan kotak tertutup yang bagian atas dipasang kaca atau plastik transparan dengan lempengan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744 A. Suhu dan Pemuaian B. Kalor dan Perubahan Wujud C. Perpindahan Kalor A. Suhu Kata suhu sering diartikan sebagai suatu besaran yang menyatakan derajat panas atau dinginnya suatu benda. Seperti besaran

Lebih terperinci

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah II. TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan metode pengawetan alami yang sudah dilakukan dari zaman nenek moyang. Pengeringan tradisional dilakukan dengan memanfaatkan cahaya matahari untuk

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Radiasi Matahari Radiasi Matahari adalah pancaran energi yang berasal dari proses thermonuklir yang terjadi di Matahari. Energi radiasi Matahari berbentuk sinar dan gelombang

Lebih terperinci

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL KELOMPOK II BRIGITA O.Y.W. 125100601111030 SOFYAN K. 125100601111029 RAVENDIE. 125100600111006 JATMIKO E.W. 125100601111006 RIYADHUL B 125100600111004

Lebih terperinci

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA Walfred Tambunan 1), Maksi Ginting 2, Antonius Surbakti 3 Jurusan Fisika FMIPA Universitas Riau Pekanbaru 1) e-mail:walfred_t@yahoo.com

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 19 BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan akan air panas pada saat ini sangat tinggi. Tidak hanya konsumen rumah tangga yang memerlukan air panas ini, melainkan juga rumah sakit, perhotelan, industri,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Hasil Pertanian dan Perkebunan Pengeringan hasil pertanian dan perkebunan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pasca panen.

Lebih terperinci

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Jurnal Ilmiah Teknik Mesin Vol. 5 No.1. April 2011 (98-102) Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Made Sucipta, Ketut

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER Arief Rizki Fadhillah 1, Andi Kurniawan 2, Hendra Kurniawan 3, Nova Risdiyanto Ismail 4 ABSTRAK Pemanas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

Analisa Performansi Kolektor Surya Plat Datar Dengan Penambahan Sirip Berlubang Berdiameter Berbeda Yang Disusun Secara Staggered

Analisa Performansi Kolektor Surya Plat Datar Dengan Penambahan Sirip Berlubang Berdiameter Berbeda Yang Disusun Secara Staggered Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 2, April 2017 (205 210) Analisa Performansi Kolektor Surya Plat Datar Dengan Penambahan Sirip Berlubang Berdiameter Berbeda Yang Disusun Secara Staggered

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA TUGAS ke 5 Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi Oleh : ZUMRODI NPM. : 250120150017 MAGISTER ILMU LINGKUNGAN

Lebih terperinci

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH) TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP

Lebih terperinci

collectors water heater menggunakan

collectors water heater menggunakan Pengaruh Bentuk Kolektor Konsentrator Terhadap Efisiensi Pemanas Air Surya Darwin*, M. Ilham Maulana, Irwandi ZA Jurusan Teknik Mesin Fakultas Teknik Universitas Syiah Kuala Jl. Tgk. Syeh Abdurrauf No.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Pengeringan Pengeringan merupakan salah satu cara dalam teknologi pangan yang dilakukan dengan tujuan pengawetan untuk mengeluarkan kandungan air yang terdapat

Lebih terperinci

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON Caturwati NK, Agung S, Chandra Dwi Jurusan Teknik Mesin Universitas Sultan Ageng Tirtayasa Jl. Jend. Sudirman

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 1 Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup Edo Wirapraja, Bambang

Lebih terperinci

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR Peningkatan Kapasitas Pemanas Air Kolektor Pemanas Air Surya PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR Suharti 1*, Andi Hasniar 1,

Lebih terperinci

SNMPTN 2011 Fisika KODE: 559

SNMPTN 2011 Fisika KODE: 559 SNMPTN 2011 Fisika KODE: 559 SOAL PEMBAHASAN 1. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. 1. Jawaban: DDD Percepatan ketika mobil bergerak semakin cepat adalah. (A) 0,5

Lebih terperinci

DESKRIPSI PEMELAJARAN - FISIKA

DESKRIPSI PEMELAJARAN - FISIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : FISIKA Tujuan : 1. Menggunakan pengetahuan fisika dalam kehidupan sehari-hari 2. Memiliki kemampuan dasar fisika untuk mengembangkan kemampuan dibidang teknologi informasi

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan BAB I Pendahuluan 1.1 Latar Belakang Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan kemajuan teknologi. Hal ini karena semakin banyak diciptakan mesin-mesin yang membutuhkan

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

UN SMA IPA Fisika 2015

UN SMA IPA Fisika 2015 UN SMA IPA Fisika 2015 Latihan Soal - Persiapan UN SMA Doc. Name: UNSMAIPA2015FIS999 Doc. Version : 2015-10 halaman 1 01. Gambar berikut adalah pengukuran waktu dari pemenang lomba balap motor dengan menggunakan

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 24 BAB II TINJAUAN PUSTAKA 2.1. Matahari Matahari merupakan bintang yang dekat dengan bumi dan menyediakan energi yang dibutuhkan oleh kehidupan di bumi secara terus menerus (renewable energy). Sumber

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print)

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print) B-62 Studi Eksperimental Pengaruh Laju Aliran Air terhadap Efisiensi Thermal pada Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa Sandy Pramirtha dan Bambang Arip Dwiyantoro

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Datar Dengan Lima Sirip Berdiameter Sama Yang Disusun Secara Sejajar

Analisa Performansi Kolektor Surya Pelat Datar Dengan Lima Sirip Berdiameter Sama Yang Disusun Secara Sejajar /Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol.6 No.1, Analisa Performansi Kolektor Surya Pelat Datar Dengan Lima Sirip Berdiameter Sama Yang Disusun Secara Sejajar I Wayan Sudiantara, Ketut Astawa, I Gusti

Lebih terperinci

KAJIAN JURNAL : PENGUKURAN KONDUKTIVITAS TERMAL BATA MERAH PEJAL

KAJIAN JURNAL : PENGUKURAN KONDUKTIVITAS TERMAL BATA MERAH PEJAL KAJIAN JURNAL : PENGUKURAN KONDUKTIVITAS TERMAL BATA MERAH PEJAL Disusun Oleh : Brigita Octovianty Yohana W 125100601111030 Jatmiko Eko Witoyo 125100601111006 Ravendi Ellyazar 125100600111006 Riyadhul

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 32 BB III METODOLOGI PENELITIN Metode yang digunakan dalam pengujian ini adalah pengujian eksperimental terhadap lat Distilasi Surya dengan menvariasi penyerapnya dengan plastik hitam dan aluminium foil.

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1. Perbedaan Suhu dan Panas Panas umumnya diukur dalam satuan joule (J) atau dalam satuan

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci