BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari. Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga gerak. Kegunaan yang lain dari energi matahari adalah menghasilkan listrik dari melalui penggunaan sel photovolyalic. Kata photovoltaic berasal dari bahasa Yunani photos yang berarti cahaya dan volta yang merupakan nama ahli fisika dari Italia yang menemukan tegangan listrik. Secara sederhana dapat diartikan sebagai listrik dari cahaya. Photovoltaic merupakan sebuah proses untuk mengubah energi cahaya menjadi energi listrik. Efek photovoltaic pertama kali berhasil diidentifikasi oleh seorang ahli Fisika berkebangsaan Prancis Alexandre Edmond Becquerel pada tahun Baru pada tahun 1876, William Grylls Adams bersama muridnya, Richard Evans Day menemukan bahwa material padat selenium dapat menghasilkan listrik ketika terkena paparan sinar. Meskipun selenium gagal mengkonversi cukup listrik dari cahaya untuk menjalankan suatu peralatan, mereka berhasil membuktikan bahwa material padat dapat menghasilkan listrik tanpa panas ataupun bagian yang bergerak. Pada perkembangan berikutnya seorang peneliti bernama Russel Ohl berhasil mengembangkan teknologi sel surya dan dikenal sebagai orang pertama yang membuat paten peranti solar cell modern. Pada tengah hari yang cerah radiasi sinar matahari mampu mencapai 1000 watt permeter persegi. Jika sebuah piranti semikonduktor seluas satu meter persegi memiliki efisiensi 10 persen, maka modul sel surya ini mampu memberikan tenaga listrik sebesar 100 watt. Saat ini modul sel surya komersial memiliki efisiensi berkisar antara 5 hingga 15 persen tergantung material penyusunnya. Tipe silikon kristal merupakan jenis piranti sel surya yang memiliki efisiensi tinggi meskipun biaya pembuatannya relatif lebih mahal dibandingkan jenis sel surya lainnya.

2 Masalah yang paling penting untuk merealisasikan sel surya sebagai sumber energi alternatif adalah efisiensi peranti sel surya dan harga pembuatannya. Efisiensi didefinisikan sebagai perbandingan antara tenaga listrik yang dihasilkan oleh peranti sel surya dibandingkan dengan jumlah energi cahaya yang diterima dari pancaran sinar matahari. 2.2 Jenis-jenis kolektor Kolektor surya dapat didefinisikan sebagai sistem perpindahan panas yang menghasilkan energi panas dengan memanfaatkan radiasi sinar matahari sebagai sumber energi utama. Ketika cahaya matahari menimpa absorber pada kolektor surya, sebagian cahaya akan dipantulkan kembali ke lingkungan, sedangkan sebagian besarnya akan diserap dan dikonversi menjadi energi panas, lalu panas tersebut dipindahkan kepada fluida yang bersirkulasi di dalam kolektor surya untuk kemudian dimanfaatkan guna berbagai aplikasi. Kolektor surya yang pada umumnya memiliki komponen-komponen utama, yaitu: 1. Cover berfungsi untuk mengurangi rugi panas secara konveksi menuju lingkungan. 2. Absorber berfungsi untuk menyerap panas dari radiasi cahaya matahari. 3. Kanal berfungsi sebagai saluran transmisi fluida kerja. 4. Isolator berfungsi meminimalisasi kehilangan panas secara konduksi dari absorber menuju lingkungan. 5. Frame berfungsi sebagai struktur pembentuk dan penahan beban kolektor Kolektor Surya Prismatik Kolektor surya tipe prismatik adalah kolektor surya yang dapat menerima energi radiasi dari segala posisi matahari kolektor jenis ini juga dapat digolongkan dalam kolektor plat datar dengan permukaan kolektor berbentuk prisma yang tersusun dari empat bidang yang berbentuk prisma, dua bidang berbentuk segitiga sama kaki dan dua bidang berbentuk segi empat siku siku.sehingga dapat lebih

3 optimal proses penyerapan tipe kolektor jenis prismatik ini dapat dilihat seperti Gambar (2-1) berikut. Gambar 2-1. Skema sistim kolektor surya prismatic Sumber : lit Kolektor Surya plat Datar Kolektor surya type plat datar adalah type kolektor surya yang dapat menyerap energi matahari dari sudut kemiringan tertentu sehingga pada proses penggunaannya dapat lebih mudah dan lebih sederhana. Dengan bentuk persegi panjang seperti pada Gambar (2-2) dibawah ini.

4 Gambar 2-2. kolektor surya plat datar Sumber : lit 8 Kolektor surya merupakan sebuah alat yang digunakan untuk memanaskan fluida kerja yang mengalir kedalamnya dengan mengkonversikan energi radiasi matahari menjadi panas. Fluida yang dipanaskan berupa cairan minyak, oli, dan udara kolektor surya plat datar mempunyai temperatur keluaran dibawah 95 C. dalam aplikasinya kolektor plat datar digunakan untuk memanaskan udara dan air. Keuntungan utama dari sebuah kolektor surya plat datar adalah bahwa memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah.

5 Gambar 2-3. Penampang melintang kolektor surya pelat datar sederhana Sumber: lit 12 Tipe ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur di bawah 100 C. Spesifikasi tipe ini dapat dilihat dari absorber-nya yang berupa plat datar yang terbuat dari material dengan konduktivitas termal tinggi, dan dilapisi dengan cat berwarna hitam. Kolektor pelat datar memanfaatkan radiasi matahari langsung dan terpencar ( beam dan diffuse ), tidak membutuhkan pelacak matahari, dan hanya membutuhkan sedikit perawatan Concentrating Collectors Jenis ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperature antara C. Kolektor surya jenis ini mampu memfokuskan energi radiasi cahaya matahari pada suatu receiver, sehingga dapat meningkatkan kuantitas energi panas yang diserap oleh absorber. Spesifikasi jenis ini dapat dikenali dari adanya komponen konsentrator yang terbuat dari material dengan transmisivitas tinggi. Berdasarkan komponen absorber-nya jenis ini dikelompokan menjadi dua jenis yaitu Line Focus dan Point Focus.

6 Gambar 2-4. Konsentrator Sumber: Lit 12 Agar cahaya matahari selalu dapat difokuskan terhadap tabung absorber, concentrator harus dirotasi. Pergerakan ini disebut dengan tracking. Temperatur fluida melebihi 4000C dapat dicapai pada sistem kolektor ini seperti terlihat pada Gambar (2-4) diatas Evacuated Tube Collectors Jenis ini dirancang untuk menghasilkan energi panas yang lebih tinggi dibandingkan dengan dua jenis kolektor surya sebelumnya. Keistimewaannya terletak pada efisiensi transfer panasnya yang tinggi tetapi faktor kehilangan panasnya yang relatif rendah. Hal ini dikarenakan fluida yang terjebak diantara absorber dan cover-nya dikondisikan dalam keadaan vakum, sehingga mampu meminimalisasi kehilangan panas yang terjadi secara konveksi dari permukaan luar absorber menuju lingkungan.

7 Gambar 2-5. Evacuated Receiver Sumber: lit Aplikasi Energi Matahari Ada bermacam-macam aplikasi teknologi yang telah dikembangkan untuk mengambil manfaat energi surya. Teknologi tersebut dapat dibaca lebih jauh berikut ini Pemanasan Air Penyediaan air panas sangat diperlukan oleh masyarakat, baik untuk mandi maupun untuk alat antiseptik pada rumah sakit dan klinik kesehatan. Penyediaan air panas ini memerlukan biaya yang besar karena harus tersedia sewaktu-waktu dan biasanya untuk memanaskan digunakan energi fosil ataupun energi listrik. Namun dengan menggunakan pemanas air tenaga surya maka hal ini bukan merupakan masalah karena pemanasan air dilakukan dengan menyerap panas matahari dengan menggunakan kolektor sehingga tidak memerlukan biaya bahan bakar.

8 Gambar 2-6. Sistem Pemanas Air Sumber : lit 11 Prinsip kerjanya adalah panas dari matahari diterima oleh kolektor yang terdapat di dalam terdapat pipa-pipa berisi air. Panas yang diterima kolektor akan diserap oleh air yang berada di dalam pipa sehingga suhu air meningkat. Air dingin dialirkan dari bawah sedangkan air panasnya dialirkan lewat atas karena massa jenis air panas lebih kecil daripada massa jenis air dingin (prinsip thermosipon). Air ini lalu masuk ke dalam penyimpan panas. Pada penyimpan panas, panas dari air ini dipindahkan ke pipa berisi air yang lain yang merupakan persediaan air untuk mandi/antiseptik. Sedangkan air yang berasal dari kolektor akan diputar kembali ke kolektor dengan menggunakan pompa atau hanya menggunakan prinsip thermosipon. Persediaan air panas akan disimpan di dalam tangki penyimpanan yang terbuat dari bahan isolator thermal. Pada sistem ini terdapat pengontrol suhu jika suhu air panas yang dihasilkan kurang dari yang diinginkan maka air akan dimasukkan kembali ke tangki penyimpan panas untuk dipanaskan kembali. Kolektor yang digunakan pada pemanas air tenaga panas matahari ini adalah kolektor surya plat datar yang bagian atasnya terbuat dari kaca yang berwarna hitam redup sedangkan bagian bawahnya terbuat dari bahan isolator yang baik sehingga panas yang terserap kolektor tidak terlepas ke lingkungan. Air

9 panas di dalam kolektor bisa mencapai 82 C sedangkan air panas yang dihasilkan tergantung keinginan karena sistem dilengkapi pengontrol suhu Distilasi Air Salah satu manfaat dari sinar matahari adalah menguapkan air (distilasi). Skema sistem distilasi dapat dilihat pada Gambar (2-7) dibawah ini. Gambar 2-7. Sistem Distilasi Air Sumber : lit 10 Cara kerjanya adalah sebuah kolam yang dangkal, dengan kedalaman 25mm hingga 50 mm, ditututup oleh kaca. Air yang dipanaskan oleh radiasi matahari, sebagian menguap, sebagian uap itu mengembun pada bagian bawah dari permukaan kaca yang lebih dingin. Kaca tersebut dimiringkan sedikit 10 derajat untuk memungkinkan embunan mengalir karena gaya berat menuju ke saluran penampungan yang selanjutnya dialirkan ke tangki penyimpanan Penerangan Ruangan Adalah teknik pemanfaatan energi matahari yang banyak dipakai saat ini. Dengan teknik ini pada siang hari lampu pada bangunan tidak perlu dinyalakan sehingga menghemat penggunaan listrik untuk penerangan. Teknik ini dilaksanakan dengan mendesain bangunan yang memungkinkan cahaya matahari bisa masuk dan menerangi ruangan dalam bangunan Kompor Matahari Prinsip kerja dari kompor matahari adalah dengan memfokuskan panas yang diterima dari matahari pada suatu titik menggunakan sebuah cermin cekung

10 besar sehingga didapatkan panas yang besar yang dapat digunakan untuk menggantikan panas dari kompor minyak atau kayu bakar. Gambar 2-8. Kompor Matahari Sumber : lit 13 Untuk diameter cermin sebesar1,3 meter kompor ini memberikan daya thermal sebesar 800 watt pada panci. Dengan menggunakan kompor ini maka kebutuhan akan energi fosil dan energi listrik untuk memasak dapat dikurangi Pengeringan Hasil Pertanian Hal ini biasanya dilakukan petani di desa-desa daerah tropis dengan menjemur hasil panennya dibawah terik sinar matahari. Cara ini sangat menguntungkan bagi para petani karena mereka tidak perlu mengeluarkan biaya untuk mengeringkan hasil panennya. Berbeda dengan petani di negara-negara empat musim yang harus mengeluarkan biaya untuk mengeringkan hasil panennya dengan menggunakan oven yang menggunakan bahan bakar fosil maupun menggunakan listrik.

11 2.3.6 Sistem Fotovoltaik Sel surya bekerja dengan mengubah secara langsung sinar matahari menjadi listrik. Elektron-elektron di dalam bahan semikonduktor, bahan yang digunakan untuk menangkap sinar matahari, akan bergerak ketika energi matahari dalam bentuk foton menabraknya. Energi matahari yang memaksa elektron berpindah, terjadi secara terus menerus, dan akibatnya terjadi pula produksi listrik yang kontinyu. Proses tersebut, yang mengubah sinar matahari (foton) menjadi listrik (tegangan), disebut dengan efek fotovoltaik Sel Surya Film Tipis Sel surya film tipis menggunakan beberapa lapis bahan semikonduktor dengan ketebalan dalam skala mikrometer. Teknologi tersebut memungkinkan untuk membuat sel surya yang diintegrasikan dengan atap rumah hingga skylight. Bahkan sel surya untuk aplikasi tersebut didesain mempunyai kekuatan yang sama dengan atap rumah sebenarnya. Gambar 2-9. Sel surya film tipis Sumber: lit 14

12 2.3.8 Sel Surya Terkonsentrasi Beberapa sel surya juga didesain untuk bekerja dengan sinar matahari yang difokuskan (concentrated sunlight). Sel-sel surya tersebut diintegrasikan ke dalam kolektor sinar matahari yang biasanya menggunakan lensa untuk memfokuskannya ke atas sel surya. Ada beberapa keuntungan dan kerugian dengan menggunakan teknik ini jika dibandingkan dengan panel surya pelat datar. Tujuan utamanya adalah menggunakan sesedikit mungkin bahan semikonduktor yang mahal sembari meningkatkan efisiensinya dengan lebih banyak melipatgandakan energi matahari yang mengenai permukaan sel. Tetapi karena lensa harus diarahkan ke matahari, penggunaan kolektor menjadi dibatasi oleh lokasi atau wilayah yang paling banyak mendapatkan sinar matahari. Hampir sama dengan panel surya pelat datar, teknologi ini juga bisa dipasang di atas perangkat penjejak matahari yang sederhana, tetapi sebagian besar menggunakan perangkat yang canggih. Akibatnya, pemakaian teknologi sel surya ini masih terbatas pada perusahaan listrik, industri dan bangunan-bangunan besar Pembangkit Listrik Tenaga Matahari Sebagian besar pembangkit listrik yang ada saat ini menggunakan bahan bakar fosil sebagai sumber panas untuk mendidihkan air. Uap air yang dihasilkan kemudian memutar turbin, yang pada akhirnya menggerakkan generator untuk menghasilkan listrik. Tetapi kini mulai banyak pembangkit listrik yang menggunakan sistem konsentrator surya, menggunakan matahari sebagai sumber panas. Ada tiga tipe utama sistem konsentrator surya, yaitu : parabolic, dish/engine, menara pembangkit Sistem parabolik memusatkan energi sinar matahari dengan menggunakan cermin panjang berbentuk U. Cermin-cermin tersebut diatur mengarah sinar matahari dan memusatkan sinar matahari ke sebuah pipa berisi minyak yang memanjang di tengah-tengah titik pusat parabolik tersebut. Minyak panas tersebut digunakan untuk mendidihkan air di generator uap konvensional dan menghasilkan listrik.

13 Gambar Kolektor surya parabolik Sumber: lit 14 Sistem dish/engine menggunakan piringan cermin untuk mengumpulkan sinar matahari pada sebuah penerima yang berfungsi untuk menerima sinar matahari dan memindahkan panasnya ke cairan yang berada di dalam mesin. Panas yang terjadi mengakibatkan cairan di dalam mengembang dan menekan piston atau turbin dan menghasilkan energi mekanis. Energi mekanis tersebut kemudian digunakan untuk memutar generator ataupun alternator untuk menghasilkan listrik. Sementara itu, menara pembangkit menggunakan cermin dalam jumlah yang besar dan ditempatkan di suatu lokasi yang luas untuk mengumpulkan sinar mataharidan memusatkannya ke bagian atas sebuah menara dimana sebuah penerima ditempatkan. Panas yang dihasilkan mencairkan garam yang kemudian mengalir untuk memanaskan air. Uap yang dihasilkan dari air panas digunakan untuk memutar generator uap konvensional. Garam cair bisa menyimpan panas

14 dalam waktu yang lama. Artinya listrik bisa dihasilkan pada saat matahari telah terbenam atau pada saat langit sangat berawan Jenis-Jenis Perpindahan Panas Perpindahan panas dapat didefenisikan sebagai berpindahnya energi dari suatu daerah ke daerah lainnya sebagai akibat dari beda suhu antara daerah daerah tersebut. Kepustakaan perpindahan panas pada umumnya mengenal tiga cara perpindahan panas yang berbeda: radiasi (radiation), konduksi (conduction ; juga dikenal dengan istilah hantaran), dan konveksi (convection; juga dikenal dengan istilah ilian) Radiasi Jika suatu benda ditempatkan di dalam sebuah ruangan, dan suhu dinding dinding ruangan lebih rendah dari pada suhu benda maka suhu benda tersebut akan turun sekalipun ruangan tersebut ruang hampa. Proses dengan perpindahan panas dari suatu benda terjadi berdasarkan suhunya tanpa bantuan dari suatu zat antara (medium) disebut radiasi termal. Defenisi lain dari radiasi termal ialah radiasi elektromagnetik yang dipancarkan oleh suatu benda karena suhunya. Ada beberapa jenis radiasi elektromagnetik, radiasi termal hanyalah salah satu diantaranya. Apa pun jenis radiasi itu, ia akan selalu merambat dengan kecepatan cahaya, cm/s. Kecepatan ini sama dengan hasil perkalian panjang gelombang dengan frekuensi radiasi, (lit 3 hal 341) Dimana: c = kecepatan cahaya (cm/s) = panjang gelombang (cm) = frekuensi (Hz) Satuan boleh centimeter, angstrom ( cm), atau mikrometer (1µm =. Radiasi termal terletak dalam rentang antara 0,1 100 µm, sedangkan bahagian cahaya tampak dalam spektrum itu sangat sempit, yaitu terletak antara kira kira 0,35 0,75 µm.

15 Sifat Sifat Radiasi Bila energi radiasi menimpa permukaan suatu bahan, maka sebagian radiasi itu dipantulkan (refleksi), sebagian diserap (absorpsi), dan sebagian lagi diteruskan (transmisi). Radisi datang Refleksi Absorpsi Transmisi Gambar Bagan menunjukkan pengaruh radiasi datang. Jika disebut refleksifitas, disebut absorptivitas, disebut transmitivitas, maka hubungan ketiganya adalah Karena benda padat tidak meneruskan radiasi termal, maka transmisivitas dianggap nol. Sehingga, Ada dua fenomena refleksi yang dapat diamati bila radiasi menimpa suatu permukaan. Jika sudut jatuhnya sama dengan sudut refleksi, maka dapat dikatakan refleksi itu spekular (specular). Di lain pihak, apabila berkas yang jatuh itu tersebar merata ke segala arah sesudah refleksi maka refleksi itu disebut baur (diffuse). (a)

16 (b) Gambar Refleksi cahaya (a) Spekular, (b) Baur Releksi spekular memberikan bayangan cermin dari sumber itu kepada pengamat. Tetapi tidak ada permukaan yang sebenarnya yang hanya spekular atau baur. Sebuah cermin biasa tentu bersifat spekular untuk cahaya tampak tetapi belum tentu bersifat spekular untuk keseluruhan rentang panjang gelombang radisi termal. Biasanya, permukaan kasar lebih menunjukkan sifat baur dari pada permukaan yang mengkilap Daya Emisi dan Emisivitas Benda Daya emisi (emissive power) E suatu benda ialah energi yang dipancarkan benda itu persatuan luas per satuan waktu. Dalam suatu ruangan tertutup terbuat dari benda hitam sempurna yaitu yang menyerap seluruh radisi yang menimpanya, ruang itu juga akan memancarkan radiasi. Besarnya fluks radiasi yang diterima ruangan itu ialah W/m 2. Jika suatu benda ditempatkan di ruangan tersebut dan dibiarkan mencapai kesetimbangan, maka energi yang diserap benda itu mesti sama dengan energi yang dipancarkan; sebab, jika tidak, tentu ada energi yang mengalir masuk atau keluar benda itu dan menyebabkan suhunya naik atau turun atau yang disebut dengan hukum kesetimbangan energi. Pada kesetimbangan dapat ditulis (lit 3 hal 344) Dimana: E = Daya emisi (W/m 2 ) A = Luas permukaan (m 2 )

17 = Fluks radiasi (W/m 2 ) = Emisivitas Jika dalam ruangan itu diganti dengan benda hitam sempurna yang bentuk dan ukurannya sama, dan benda hitam itu di biarkan mencapai kesetimbangan dengan ruang itu pada suhu yang sama, maka (lit 3 hal 344) Dimana: = Daya emisi benda hitam (W/m 2 ) Jika persamaan (2-2) dibagi dengan persamaan (2-3), diperoleh Perbandingan daya emisi suatu benda dengan benda hitam pada suhu yang sama ialah sama dengan absorptivitas benda itu. Perbandingan ini yang disebut dengan emisivitas benda. Maka, (lit 3 hal 345) Sehingga: (lit 3 hal 345) Dimana: = Emisivitas benda Stefan-Boltzmann Law Bilangan Stefan-Boltzmann diperoleh dari pengembangan hukum Planck, dimana daya emisi total yang diberikan benda hitam merupakan integrasi dari emisi monokromatik benda hitam pada perubahan panjang gelombang (lit 8 hal 530) Dimana: = Panjang gelombang (µm) C 1 = 3,743 x 10 8 (W µm 4 /m 2 )` C 2 = 1,4387 x 10 4 (µm.k)

18 = daya emisi monokromatik (W/m 2 ) = daya emisi monokromatik benda hitam (W/m 2 ) Jika, maka, atau saat saat =, maka = 0, maka dx Karena maka

19 Daya emisi benda hitam per satuan luas: Dimana: = konstanta stefan-boltzmann (W/m 2 K 4 ) W/m 2 K 4 Benda hitam (black body) memancarkan energi dengan laju yang sebanding dengan pangkat empat suhu absolut benda itu dan berbanding lurus dengan luas permukaan (lit 3 hal 13) Pertukaran radiasi dalam ruang kurung antara dua permukaan dengan luas A dan emisivitas benda berbanding lurus dengan perbedaan suhu absolut pangkat empat (lit 3 hal 14) Radiasi surya Radiasi surya (solar radiation) merupakan suatu bentuk radiasi thermal yang mempunyai distribusi panjang gelombang khusus. Intensitasnya sangat bergantung dari kondisi atmosfer, saat dalam tahun, dan sudut timpa (angle of incidence) sinar matahari dipermukaan bumi. Pada batas luar atmosfer, iradiasi surya total ialah 1395 W/m 2 bilamana bumi berada pada jarak rata-ratanya dari matahari. Angka ini disebut konstanta surya (solar constant). Tidak seluruh energi yang disebutkan dalam konstanta surya mencapai permukaan bumi, karena terdapat absorpsi yang kuat dari karbondioksida dan uap air di atmosfer. Radiasi surya yang menimpa permukaan bumi juga bergantung

20 dari kadar debu dan zat pencemar lainnya dalam atmosfer. Energi surya yang maksimum akan mencapai permukaan bumi bilamana berkas sinar itu langsung menimpa permukaan bumi, karena terdapat bidang pandang yang lebih luas terhadap fluks surya yang datang dan berkas sinar surya menempuh jarak yang lebih pendek di atmosfer, sehingga mengalami absorpsi lebih sedikit daripada jika sudut timpanya miring terhadap normal. Matahari mempunyai diameter kira kira 1,39 x 10 9 m dan massa 2 x kg dan, berjarak 1,5 x dari bumi. Untuk menghitung suhu matahari maka dapat di gunakan Persamaan 2-9 dibawah ini (lit 8 hal 571) Dimana: L = jarak antara matahari dan bumi G s r = konstanta surya = jari jari matahari sehingga: Konduksi Konduksi adalah proses dengan panas mengalir dari daerah yang bersuhu lebih tinggi kedaerah yang bersuhu lebih rendah didakam suatu medium (padat, cair atau gas) atau antara medium medium yang berlainan yang bersinggungan secara langsung. Dalam aliran panas konduksi, perpindahan energi terjadi karena hubungan molekul secara langsung tanpa adanya perpindahan molekul yang cukup besar. Energi yang dimiliki oleh suatu elemen zat yang disebabkan oleh kecepatandan posisi relatif molekul molekulnya disebut energi dalam. Jadi, semakin cepat molekul molekul bergerak, semakin tinggi suhu meupun energi dalam elemen zat. Bila molekul molekul di satu daerah memperoleh energi kinetik rata rata yang lebih besar dari pada yang dimiliki oleh molekul

21 molekul di suatu daerah yang berdekatan, sebagaimana diujudkan oleh adanya beda suhu, maka molekul molekul yang memiliki energi yang lebih besar itu akan memindahkan sebagian energinya kepada molekul molekul di daerah yang bersuhu lebih rendah. Konduksi adalah satu satunya mekanisme dimana panas dapat mengalir dalam zat padat yang tidak dapat tembus cahaya. Konduksi penting dalam fluida, tetapi di dalam medium yang bukan padat biasanya tergabung dengan konveksi, dan radiasi. Energi berpindah secara konduksi (conduction ) atau hantaran dan bahwa laju perpindahan kalor itu berbanding dengan gradien suhu normal: maka Jika dimasukkan konstanta proporsionaliltis atau tetapan kesebandingan, (lit 3 hal 2) Dimana: q = Laju perpindahan panas ( W ) k = Konduktifitas Termal yang searah dengan perpindahan kalor ( W / m. o C) A = Luas Penampang yang terletak pada aliran panas (m 2 ) dt/dx = Gradien temperatur dalam arah aliran panas ( o C/m ) Tanda minus diselipkan untuk memenuhi hukum kesua termodinamika, yaitu bahwa kalor mengalir ketempat yang lebih rendah dalam skala suhu. Persamaan 2-10 disebut hukum Fourier tentang konduksi kalor. Persamaan (2-10) merupakan persamaan dasar tentang konduktivitas termal. Berdasarkan rumusan itu maka dapat dilaksanakan pengukuran dalam percobaan untuk menentukan konduktivitas berbagai bahan. Nilai konduktivitas berbagai bahan dapat dilihat pada tabel dan grafik dibawah ini.

22 Daftar 2-1. Konduktivitas termal berbagai bahan pada 0 o C Sumber: lit 3 hal 7

23 Gambar Konduktivitas termal beberapa gas (1 W/m. o C = 0,5779 Btu/h.ft o F) Sumber: lit 3 hal 8 Gambar Konduktivitas termal beberapa zat zair Sumber: lit 3 hal 9

24 Gambar Konduktivitas termal beberapa zat padat Sumber: lit 3 hal Konveksi Konveksi adalah proses transver energi dengan kerja gabungan dari konduksi panas, penyimpanan energi dan gerakan mencampur. Konveksi sangat penting sebagai mekanisme perpindahan energi antara permukaan benda padat dan cairan atau gas. Perpindahan energi dengan cara konveksi dari suatu permukaan yang suhunya diatas suhu fluida sekitarnya berlangsung dalam beberapa tahap. Pertama, panas akan mengalir dengan cara konduksi dari permukaan ke partikel partikel fluida yang berbatasan. Energi yang berpindah dengan cara demikian akan menaikkan suhu dan energi dalam partikel fluida ini. Kemudian partikel fluida tersebut akan bergerak ke daerah yang bersuhu lebih rendah di dalam fluida dimana partikel tersebut akan bercamp\ur dan memindahkan sebaian energinya pada partikel fluida lainnya. Dalam hal ini alirannya adalah aliran fluida maupun energi. Energi disimpan didalam partikel partikel fluida dan diangkut sebagai akibat gerakan massa partikel tersebut.

25 Perpindahan panas konveksi diklasifikasikan dalam konveksi bebas ( free convection)dan konveksi paksa (forced convection) menurut cara menggerakkan cara alirannya. Bila gerakan mencampur berlangsung semata-mata sebagai akibat dari perbedaaan kerapatan yang disebabkan oleh gradient suhu, maka proses ini yang disebut dengan konveksi bebas atau alamiah (natural). Bila gerakan mencampur disebabkan oleh suatu alat dari luar, seperti pompa atau kipas, maka prosesnya disebut konveksi paksa. Aliran Arus bebas T u q T w dinding Gambar Perpindahan kalor konveksi dari suatu plat Pada Gambar (2-16) suhu plat ialah T w dan suhu fluida T. Kecepatan aliran seperti Gambar (2-16) yaitu nol pada permukaan plat sebagai akibat aksi kental viskos (viscous action). Oleh karena kecepatan lapisan fluida pada dinding fluida adalah nol maka disini kalor hanya dapat berpindah dengan cara konduksi saja. Jadi, dapat dihitung perpindahan kalornya dengan menggunakan rumus konduksi Persamaan (2-10),dengan menggunakan konduktivitas termal fluida dan gradien suhu pada dinding. Gradien suhu bergantung pada laju fluida membawa kalor dari permukaan-dalam plat tersebut. Kecepatan yang tinggi akan menyebabkan gradien suhu yang besar, demikian juga sebaliknya. Gradien suhu pada dinding bergantung dari medan aliran. Pengaruh konduksi secara menyeluruh pada fluida disebut dengan perpindahan kalor secara konveksi. Rumus empiris perpindahan kalor konveksi digunakan hukum Newton tentang pendinginan:

26 (lit 3 hal 11) Dimana: h = Koefisien perpindahan kalor konveksi ( W / m 2 o C) A = Luas permukaan (m 2 ) T w = Temperatur dinding ( o C ) T = Temperatur fluida ( o C ) Q = Laju perpindahan panas konveksi ( Watt ) Disebut pendinginan karena fluida yang dialirkan melalui plat tersebut digunakan untuk mendinginkan plat itu juga. Laju perpindahan kalor dihubungkan dengan beda suhu menyeluruh antara dinding dan fluida, dan luas permukaan A. Perpindahan kalor konveksi bergantung pada viskositas fluida disamping ketergantungannya pada sifat sifat termal fluida ( kondukt ivitas termal, kalor spesifik, densitas). Hal ini dapat dimengerti karena viskositas mempengaruhi profil kecepatan, dan karena itu mempengaruhi laju perpindahan energi didaerah dinding. 2.5 Perpindahan kalor di sepanjang pipa Uraian perhitungan perpindahan kalor disepanjang pipa seperti Gambar (2-17) adalah sebagai berikut. Gambar Volume kendali untuk analisis energi dalam tabung Suhu dinding ialah T w, jari jari tabung r o, dan kecepatan pada pusat tabung u o. Distribusi kecepatan diturunkan dengan memperhatikan unsur unsur fluida seperti Gambar 2-18 dibawah ini.

27 Gambar 2-18 Neraca gaya pada unsur fluida dalam aliran tabung Gaya tekan : Gaya geser viskos : Gaya tekanan diimbangi oleh gaya geser viskos, sehingga Atau dan Dengan kondisi batas Kecepatan pada pusat tabung Sehingga distribusi kecepatan dapat ditulis sebagai

28 Dimana: = kecepatan aliran fluida pada jari jari tabung = r = kecepatan aliran aliran fluida di pusat tabung,r = 0 Fluks kalor pada dinding tabung konstan Aliran kalor yang dikonduksikan kedalam unsure anulus adalah Dan kalor yang dihantar keluar Kalor yang dikonveksi keluar unsur Neraca energi adalah energi neto yang dikonveksi keluar = kalor neto yang dikonduksi kedalam atau dengan mengabaikan diferensial orde kedua, maka Yang dapat ditulis kembali sebagai

29 Karena fluks kalor tetap sehingga suhu fluida rata rata bertambah secara linear dengan x, sehingga Hal ini berarti bahwa profil suhu pada berbagai posisi x sepanjang tabung itu akan serupa. Kondisi batas untuk Persamaan 2-15 adalah = 0 pada r = 0 Dengan menganggap bahwa sifat sifat fluida dalam aliran tetap maka Persamaan 2-14 disubstitusikan kedalam Persamaan 2-15 Integrasi menghasilkan Dan integrasi kedua memberikan Dengan menerapkan kondisi batas (r = 0), maka diperoleh temperatur pada pusat tabung ( ):

30 Distribusi temperatur (T) saat laju aliran fluida di r adalah Dalam aliran tabung koefisien perpindahan kalor konveksi didefenisikan: ) Dimana: T w = Suhu dinding ( o C) T b = Suhu limbak ( o C) Suhu limbak (bulk temperature) adalah suhu fluida yang dirata ratakan energinya diseluruh penampang tabung yang dapat dihitung dari: Jika diketahui temperatur fluida masuk (T b1 ) dan temperatur fluida keluar pipa maka suhu limbak menjadi, Suhu limbak digunakan dalam merumuskan koefisien perpindahan kalor dalam aliran tabung. Dalam aliran tabung tidak dapat kondisi aliran bebas. Pada setiap posisi x, suhu yang menunjukkan energi total yang mengalir ialah suhu rata rata massa-energi yang terintegrasi keseluruh bidang aliran. Pembilang pada Persamaan(2-17) menunjukkan energi total yang mengalir melalui tabung. Penyebut adalah hasil perkalian aliran massa dan kalor spesifik, yang diintegrasikan di seluruh bidang aliran. Jadi suhu limbak menunjukkan keseluruhan energi yang mengalir pada suatu lokasi tertentu. Suhu limbak sering disebut suhu mangkuk pencampur ( mixing cup temperature) karena suhu itu yang akan dicapai fluida kalau ditempatkan di dalam ruang pencampur dan

31 dibiarkan mencapai kesetimbangan. Suhu limbak merupakan fungsi linear x karena flux kalor pada dinding tabung itu konstan. Dari Persamaan (2-17) diperoleh Suhu limbak: Suhu dinding: (lit 3 hal 231) Kalor yang diterima oleh fluida secara konveksi sama dengan kalor yang dilepas pipa secara konduksi saat laju aliran fluida nol (r = r o ) sehingga hubungan perpindahan kalor konveksi dan konduksi adalah: gradien suhu diberikan oleh

32 Dengan mensubstitusikan Persamaan (2-19),(2-20), (2-22) kedalam Persamaan (2-21) maka diperoleh atau dengan menggunakan bilangan nusselt, maka: Bilangan Nusselt untuk perpindahan kalor aliran laminar dalam tabung: Persamaan (2-24) berlaku jika: Dimana: = Bilangan Nusslet = Bilangan Reynolds = Bilangan Prandtl = Viskositas dinamik suhu fluida(kg/m.s) = Viskositas dinamik pada suhu dinding pipa (kg/m.s) = Massa jenis fluida (kg/m 3 ) = diameter pipa (m) = Panjang pipa (m)

33 Bilangan Nusselt untuk perpindahan kalor aliran turbulen dalam tabung: Nilai eksponen n adalah: n = 0,4 untuk pemanasan n = 0,3 untuk pendinginan Persamaan (2-25) berlaku untuk aliran turbulen dengan angka Prandtl-nya berkisar antara 0,6 sampai Efisiensi Termal Jika ditinjau dari laju aliran massa fluida, banyaknya kalor yang dibutuhkan untuk menaikkan temperatur fluida adalah Jika ditinjau dari perpindahan kalor secara konveksi, banyaknya kalor yang dibutuhkan untuk menaikkan temperatur fluida adalah Karena nilai temperatur fluida masuk (T b1 ) dan temperatur fluida keluar (T b2 ) pipa yang diperoleh dari penelitian ini maka, formula perpindahan kalor dari pipa ke fluida menggunakan Persamaan (2-26), Jika ditinjau sumber kalor pipa (berasal dari intensitas cahaya) maka Fluks kalor pada dinding pipa adalah Dimana: I = Intensitas cahaya (W/m 2 ) A = luas penampang (m 2 ) Dengan memperhitungkan faktor faktor atau penyebab hilangnya kalor, dimana nilainya dimasukkan dalam suatu konstanta efisiensi ( ) maka hubungan fluks kalor dengan perubahan temperatur fluida di dalam pipa adalah:

34 Sehingga efisiensi termal, Fluks kalor berpindah secara konduksi di sepanjang penampang pipa maka, Jika Persamaan(2-32) disubstitusikan ke Persamaan (2-30) diperoleh, Dimana k, A, c p merupakan konstanta sehingga, Dari Persamaan (2-33) dapat dilihat bahwa efisiensi termal dan perubahan temperatur disepanjang pipa ekuivalen dengan laju aliran massa dan perubahan temperatur fluida. Karena fluks kalor konstan maka, Apabila laju aliran massa fluida dinaikkan di ikuti dengan meningkatnya nilai efisiensi termal dan perubahan temperatur fluida maka, dapat disimpulkan bahwa kemampuan fluida untuk menyerap kalor dari dinding pipa juga semakin besar sehingga dapat mengurangi kalor yang hilang.

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan 4 II. TINJAUAN PUSTAKA 2.1. Kebutuhan energi Kebutuhan akan sumber energi di muka bumi ini sangat mempengaruhi aspek kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan kebutuhan pokok makhluk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENERGI MATAHARI Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Matahari atau juga disebut Surya adalah bintang terdekat dengan Bumi dengan jarak sekitar 149.680.000 kilometer (93.026.724 mil). Matahari adalah suatu bola gas yang pijar dan ternyata

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Matahari Matahari adalah bintang yang terdapat di jagat raya ini dan berada paling dekat dengan bumi. Matahari menyadiakan energi yang dibutuhkan oleh kehidupan di bumi ini secara

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA TUGAS ke 5 Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi Oleh : ZUMRODI NPM. : 250120150017 MAGISTER ILMU LINGKUNGAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses optimasi dari sebuah rancagan benda kerja memerlukan perencanaan yang cermat. Teori-teori yang berhubungan dengan benda kerja ataupun alat yang akan dioptimasi perlu dijadikan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

Gambar 2. Profil suhu dan radiasi pada percobaan 1

Gambar 2. Profil suhu dan radiasi pada percobaan 1 HASIL DAN PEMBAHASAN A. Pengaruh Penggunaan Kolektor Terhadap Suhu Ruang Pengering Energi surya untuk proses pengeringan didasarkan atas curahan iradisai yang diterima rumah kaca dari matahari. Iradiasi

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Ketut Astawa1, Nengah Suarnadwipa2, Widya Putra3 1.2,3

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR... DAFTAR ISI LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR TABEL x DAFTAR GAMBAR...xii BAB I PENDAHULUAN...

Lebih terperinci

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber LAPORAN TUGAS AKHIR Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH) TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di 1.1 Latar Belakang BAB I PENDAHULUAN Matahari adalah sumber energi tak terbatas dan sangat diharapkan dapat menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di Indonesia masih

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

BAB I PENDAHULUAN 1.1 Latar Belakang   Jenis Energi Unit Total Exist 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA BAB IV HASIL PENGUJIAN dan PENGOLAHAN DATA Data hasil pengukuran temperatur pada alat pemanas air dengan menggabungkan ke-8 buah kolektor plat datar dengan 2 buah kolektor parabolic dengan judul Analisa

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1. Perbedaan Suhu dan Panas Panas umumnya diukur dalam satuan joule (J) atau dalam satuan

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan BAB I Pendahuluan 1.1 Latar Belakang Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan kemajuan teknologi. Hal ini karena semakin banyak diciptakan mesin-mesin yang membutuhkan

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN Fatmawati, Maksi Ginting, Walfred Tambunan Mahasiswa Program S1 Fisika Bidang Fisika Energi Jurusan Fisika Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat penyerap adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover kaca sebagian akan langsung dipantulkan,

Lebih terperinci

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 i KONDUKTIVITAS TERMAL LAPORAN Oleh: LESTARI ANDALURI 100308066 I LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 ii KONDUKTIVITAS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA SOAL-SOAL KONSEP: 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! Temperatur adalah ukuran gerakan molekuler. Panas/kalor adalah

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah II. TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan metode pengawetan alami yang sudah dilakukan dari zaman nenek moyang. Pengeringan tradisional dilakukan dengan memanfaatkan cahaya matahari untuk

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Sistem merupakan sekumpulan obyek yang saling berinteraksi dan memiliki keterkaitan antara satu obyek dengan obyek lainnya. Dalam proses perkembangan ilmu pengetahuan,

Lebih terperinci

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur.

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur. KALOR Tujuan Pembelajaran: 1. Menjelaskan wujud-wujud zat 2. Menjelaskan susunan partikel pada masing-masing wujud zat 3. Menjelaskan sifat fisika dan sifat kimia zat 4. Mengklasifikasikan benda-benda

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 19 BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan akan air panas pada saat ini sangat tinggi. Tidak hanya konsumen rumah tangga yang memerlukan air panas ini, melainkan juga rumah sakit, perhotelan, industri,

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini.

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. Dari gambar dapat disimpulkan bahwa tebal keping adalah... A. 4,30 mm B. 4,50 mm C. 4,70

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci

II. TINJAUAN PUSTAKA. umum dan sering dilakukan adalah pengeringan. Menurut Pramono (1993),

II. TINJAUAN PUSTAKA. umum dan sering dilakukan adalah pengeringan. Menurut Pramono (1993), 4 II. TINJAUAN PUSTAKA 2.1. Prinsip Pengeringan Salah satu bentuk aplikasi teknologi dalam mengolah bahan pangan yang paling umum dan sering dilakukan adalah pengeringan. Menurut Pramono (1993), pengeringan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pascapanen. Unit operasi ini diterapkan untuk mengurangi kadar air produk

Lebih terperinci

PEMBUATAN KOLEKTOR PARABOLIK DENGAN DUA LALUAN UNTUK PEMANAS AIR DENGAN TEMPERATUR KELUARAN 80 LAPORAN TUGAS AKHIR

PEMBUATAN KOLEKTOR PARABOLIK DENGAN DUA LALUAN UNTUK PEMANAS AIR DENGAN TEMPERATUR KELUARAN 80 LAPORAN TUGAS AKHIR PEMBUATAN KOLEKTOR PARABOLIK DENGAN DUA LALUAN UNTUK PEMANAS AIR DENGAN TEMPERATUR KELUARAN 80 LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolektor Surya Plat Datar Kolektor suryaplat datar seperti pada gambar 2.1 merupakan kotak tertutup yang bagian atas dipasang kaca atau plastik transparan dengan lempengan

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar!

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! Soal Suhu dan Kalor Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! 1.1 termometer air panas Sebuah gelas yang berisi air panas kemudian dimasukkan ke dalam bejana yang berisi air dingin. Pada

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sel Surya Sel surya sebenarnya adalah sebuah sel fotovoltaik yang berfungsi sebagai pengkonversi energi cahaya matahari menjadi energi listrik dalam bentuk arus searah secara

Lebih terperinci

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. No., Juli 2016 (1 6) Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara I Kadek Danu Wiranugraha, Hendra Wijaksana dan Ketut

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit TUGAS AKHIR Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun

Lebih terperinci

KALOR SEBAGAI ENERGI B A B B A B

KALOR SEBAGAI ENERGI B A B B A B Kalor sebagai Energi 143 B A B B A B 7 KALOR SEBAGAI ENERGI Sumber : penerbit cv adi perkasa Perhatikan gambar di atas. Seseorang sedang memasak air dengan menggunakan kompor listrik. Kompor listrik itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

PLTS. Pembangkit listrik yang memanfaatkan sinar matahari sebagai sumber penghasil listrik. (Sumber : Buku Paket Kelas XI, Yudhistira)

PLTS. Pembangkit listrik yang memanfaatkan sinar matahari sebagai sumber penghasil listrik. (Sumber : Buku Paket Kelas XI, Yudhistira) REKAYASA KELAS XI PLTS Prakata PLTS Pembangkit listrik yang memanfaatkan sinar matahari sebagai sumber penghasil listrik. (Sumber : Buku Paket Kelas XI, Yudhistira) Pembangkit listrik yang mengkonversikan

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA Firmansyah Burlian, M. Indaka Khoirullah Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan Nama : Ahmad Sulaiman NIM : 5202414055 Rombel :2 PERPINDAHAN KALOR J.P. HOLMAN BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan energi yang berpindah antar

Lebih terperinci

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL KELOMPOK II BRIGITA O.Y.W. 125100601111030 SOFYAN K. 125100601111029 RAVENDIE. 125100600111006 JATMIKO E.W. 125100601111006 RIYADHUL B 125100600111004

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Hasil Pertanian dan Perkebunan Pengeringan hasil pertanian dan perkebunan merupakan salah satu unit operasi energi paling intensif dalam pengolahan pasca panen.

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

KALOR. system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitatif pertukaran kalor.

KALOR. system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitatif pertukaran kalor. 59 60 system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitati pertukaran kalor. KALOR. Energi termal, atau energi dalam, U, mengacu pada energi total semua molekul pada

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

SIMAK UI Fisika

SIMAK UI Fisika SIMAK UI 2016 - Fisika Soal Halaman 1 01. Fluida masuk melalui pipa berdiameter 20 mm yang memiliki cabang dua pipa berdiameter 10 mm dan 15 mm. Pipa 15 mm memiliki cabang lagi dua pipa berdiameter 8 mm.

Lebih terperinci

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap BAB III METODE PENELETIAN Metode yang digunakan dalam pengujian ini dalah pengujian eksperimental terhadap alat destilasi surya dengan memvariasikan plat penyerap dengan bahan dasar plastik yang bertujuan

Lebih terperinci

ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL

ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL Oleh Dosen Pembimbing : I Gusti Ngurah Agung Aryadinata : Dr. Eng. Made Sucipta, S.T, M.T : Ketut Astawa,

Lebih terperinci

BAB 7 SUHU DAN KALOR

BAB 7 SUHU DAN KALOR BB 7 SUHU DN OR 65 66 Peta onsep 67 7. PENGUURN TEMPERTUR Temperatur biasanya dinyatakan sebagai fungsi salah satu koordinat termodinamika lainnya. oordinat ini disebut sebagai sifat termodinamikannya.

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA. Idawati Supu, Baso Usman, Selviani Basri, Sunarmi

PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA. Idawati Supu, Baso Usman, Selviani Basri, Sunarmi Jurnal Dinamika, April 2016, halaman 62-73 ISSN 2087-7889 Vol. 07. No. 1 PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA Idawati Supu, Baso Usman, Selviani Basri, Sunarmi Pogram Studi

Lebih terperinci