BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Superkonduktor Suatu bahan superkonduktor merupakan material yang dapat menghantarkan arus listrik tanpa adanya hambatan, sehingga dapat mengalirkan arus listrik tanpa kehilangan daya sedikitpun (Suprihatin, 2008). Superkonduktor adalah unsur atau alloy metal yang didinginkan sampai mendekati suhu nol mutlak (0 K), menjadi hilang tahanannya. Fenomena turunnya hambatan listrik suatu zat padat menjadi nol jika temperaturnya diturunkan hingga temperatur tertentu dikenal sebagai superkonduktivitas (Hidayat, 1991). Unsur, paduan dan senyawa yang menunukkan sifat superkonduktivitas ini disebut material superkonduktor. 2.2 Sejarah dan Perkembangan Superkonduktor Superkonduktor pertama kali ditemukan oleh seorang Fisikawan Belanda, Heike Kamerlingh Onnes, dari Universitas Leiden pada tahun Pada tanggal 10 Juli 1908, Onnes berhasil mencairkan helium dengan cara mendinginkan hingga 4,2 K atau C. Kemudian, Onnes mulai mempelajari sifat-sifat listrik dari logam pada suhu yang sangat dingin. Pada waktu itu telah diketahui bahwa hambatan suatu logam akan turun jika didinginkan dibawah suhu ruang, akan tetapi belum ada yang dapat mengetahui batas bawah hambatan yang dicapai ketika suhu logam mendekati 0 K atau nol mutlak (Widodo, 2010). Beberapa ilmuwan seperti William Kelvin memperkirakan bahwa elektron yang mengalir dalam konduktor akan berhenti ketika mencapai suhu nol mutlak. Namun, Onnes memperkirakan hambatan akan mengilang pada suhu tersebut. Untuk mengetahui apa yang terjadi, Onnes melakukan percobaan dengan mengalirkan arus pada kawat merkuri yang sangat murni kemudian mengukur hambatannya sambil menurunkan suhunya. Pada suhu 4,2 K hambatan pada kawat tersebut tiba-tiba menghilang dan arus mengalir secara terus-menerus. Percobaan Onnes yang lain dilakukan dengan mengalirkan arus pada suatu kumparan

2 superkonduktor dalam rangkaian tertutup, kemudian mencabut arusnya. Setahun kemudian, Onnes masih mengukur arusnya dan arusnya masih tetap mengalir. Fenomena ini kemudian diberi nama superkonduktivitas. Dan atas penemuannya, Onnes dianugerahi nobel Fisika tahun 1913 (Yuliati, 2010). Penemuan selanjutnya terjadi pada tahun 1933, Walter Meissner dan Robert Ochsenfeld menemukan bahwa suatu superkonduktor akan menolak medan magnet. Dalam superkonduktor arus yang dihasilkan berlawanan dengan medan tersebut sehingga medan tidak dapat menembus material superkonduktor. Fenomena ini disebut efek Meissner. 2.3 Karakteristik Superkonduktor Material superkonduktor memiliki beberapa karakteristik, diantaranya memiliki sifat magnet dan sifat listrik yang berbeda dengan material konduktor dan memiliki temperatur kritis Sifat Magnet Superkonduktor Suatu material dikatakan superkonduktor apabila material tersebut sangat sulit dipengaruhi oleh medan magnet luar, resultan medan atomiknya membentuk arah yang berlawanan dengan medan magnet luar. Gambar 2.1 Efek Meissner Gambar 2.1 menujukkan gejala efek Meissner. Suatu material superkonduktor diletakkan pada medan magnet, maka tidak ada medan magnet pada material tersebut. Hal ini terjadi karena superkonduktor menghasilkan medan magnet yang berlawanan arah dengan medan magnet luar yang diberikan. Pada temperatur

3 kritis (T<Tc) medan magnet yang diberikan dari luar pada material superkonduktor akan ditolak, ini dinamakan dengan efek Meissner. Bila suatu medan magnet cukup kuat diberikan pada material superkonduktor, maka material tersebut akan menjadi normal (Omar, 1975). Gejala efek Meissner pada superkonduktor dinyatakan oleh Persamaan (2.1) Dengan, : induksi magnet (Weber/ampere) : medan magnet luar (Ampere/meter) : magnetisasi bahan (Ampere/meter) : permeabilitas ruang hampa (4π x 10-7 Weber/ampere.meter) Pada bahan anisotropik linier besarnya magnetisasi adalah :... (2.2) dengan, : suseptibilitas magnetik bahan superkonduktor ( = -1) dinamakan keadaan diamagnetisme sempurna. Substitusi Persamaan (2.1) ke Persamaan (2.2), maka didapat : (2.3) Hubungan antara induksi magnetik (B) pada suatu material dengan medan magnetik yang menimbulkannya (H) ditunjukkan oleh kurva histerisis. Kurva histerisis diperoleh dengan cara memberikan medan magnetik yang besar pada suatu arah kemudian diperkecil hingga menuju nol dan selanjutnya dibalikkan pada arah yang berlawanan. Bentuk umum kurva induksi magnet (B) sebagai

4 fungsi medan magnet yang menimbulkannya (H) terlihat pada Gambar 2.2. B Bs (a) Bs (b) B (c) s (a) (b) (c) H Gambar 2.2 Kurva Induksi Normal Pada gambar 2.2 tampak bahwa kurva tidak berbentuk garis lurus sehingga dapat dikatakan bahwa hubungan antara B dan H tidak linier. Dengan kenaikan harga H, mula-mula B turut naik dengan lancar, tetapi mulai dari satu titik tertentu harga H hanya menghasilkan sedikit kenaikan B dan makin lama B hampir konstan. Keadaan ini disebut dengan kedaan saturasi, yaitu keadaan di mana medan magnet B tidak banyak berubah. Harga medan magnet untuk keadaan saturasi disebut dengan Bs atau medan magnet saturasi. Bila sudah mencapai saturasi intensitas magnet (H) diperkecil ternyata harga B tidak terletak pada kurva semula. Pada harga H = 0, induksi magnet atau rapat fluks B mempunyai harga B 0. Harga Br ini disebut dengan induksi remanen atau remanensi bahan. Gambar 2.3 Kurva Histerisis Magnet Bila setelah mencapai nol harga intensitas magnet H dibuat negatif (dengan membalik arus pada lilitan), kurva B-vs-H akan memotong sumbu H pada harga - Hc. Intensitas Hc inilah yang diperlukan untuk membuat rapat fluks B=0 atau

5 menghilangkan fluks dalam bahan. Intensitas magnet Hc ini disebut koersivitas bahan. Bila selanjutnya harga diperbesar pada harga negatif sampai mencapai saturasi dan dikembalikan melalui nol berbalik arah dan terus diperbesar pada harga H positif hingga saturasi kembali, kurva B-vs-H akan membentuk satu lintasan tertutup yang disebut kurva histeresis. Bahan magnet dengan koersivitas tinggi berarti tidak mudah hilang kemagnetannya. Untuk menghilangkan kemagnetannya diperlukan intensitas magnet H yang besar. Bahan magnet seperti ini baik untuk membuat magnet permanen. Bahan magnet lunak dengan Hc rendah dan B tinggi mempunyai permeabilitas maksimum yang tinggi.bahan magnet ini terutama digunakan untuk memperbesar fluks Sifat Listrik Superkonduktor Pada bahan superkonduktor interaksi antar atom terjadi namun elektron dapat melewati inti tanpa mengalami hambatan, ini dijelaskan pada teori BCS (Berdeen, Cooper, and Schrieffer). Gambar 2.4 Pergerakan elektron saat keadaan superkonduktor Gambar 2.4 menunjukkan pergerakan elektron saat keadaan superkonduktor. Saat elektron melewati kisi, inti atom yang bermuatan positif akan menarik elektron yang bermuatan negatif sehingga mengakibatkan elektron tersebut bergetar. Jika dua buah elektron melewati kisi, elektron kedua akan mendekati elektron pertama akibat adanya gaya tarik-menarik antar inti atom yang nilainya lebih besar dibandingkan gaya tolak-menolak antar elektron sehingga kedua elektron bergerak berpasangan. Pasangan ini disebut dengan cooper pairs. Ketika elektron pertama pada cooper pairs melewati inti atom kisi. Elektron yang mendekati inti atom kisi akan bergetar dan memancarkan fonon sedangkan elektron lainnya

6 menyerap fonon diakibatkan oleh gaya tarik menarik antar elektron. Pasangan elektron ini akan melalu kisi tanpa hambatan Temperatur Kritis (T c ) Perubahan keadaan bahan dari keadaan normal ke keadaan superkonduktor dapat dianalogikan seperti pada perubahan fasa air dari keadaan cair ke keadaan padat. Perubahan keadaan ini sama-sama memiliki suhu transisi, pada keadaan superkonduktor suhu ini disebut suhu kritis (Tc). Gambar 2.5 Grafik resistivitas tehadap temperatur kritis Gambar 2.5 menunjukkan kurva resistivitas terhadap temperatur kritis. Kurva ini menunjukkan ketika temperatur turun pada titik Tc onset maka material mengalami penurunan resistivitas secara drastis hingga mencapai suhu Tc 0 yang menunjukkan resistivitas nol. 2.4 Tipe-Tipe Superkonduktor Superkonduktor dibagi berdasarkan medan magnet dan temperatur kritis. Berdasarkan medan magnet, superkonduktor dibagi menjadi 2 jenis, yaitu superkonduktor tipe I dan superkonduktor tipe II, sedangkan berdasarkan temperatur kritis, superkonduktor dibagi menjadi 2 jenis, yaitu superkonduktor suhu rendah dan superkonduktor suhu tinggi Superkonduktor Tipe I Superkonduktor tipe I berhubungan baik dengan teori BCS melalui mekanisme pasangan elektron yang disebabkan getaran kisi. Tipe I ini disebut superkoduktor

7 lemah umumnya berupa unsur tunggal. Superkonduktor ini karakteristik resistivitas bernilai nol, dan material menjadi diamagnetik sempurna ketika di bawah medan kritisnya (H<Hc) dan sifat superkonduktivitas hilang ketika di atas medan kritisnya (H>Hc) Superkonduktor Tipe II Superkonduktor tipe II disebut sebagai superkonduktor kuat, memiliki dua medan magnet kritis yaitu H c1 dan H c2. Pada medan lemah (H<H c1 ), material bersifat diamagnetik sempurna atau menyerupai superkonduktor tipe I. Pada medan H c1 < H < H c2, fluks magnet mulai menembus material diberbagai titik yang disebut vorteks. Jika medan eksternal yang diberikan semakin mendekati H c2, jumlah vorteks semakin bertambah hingga sifat superkonduktivitas hilang ketika medan melebihi H c2. Besarnya fluks pada vorteks adalah satu kuanta fluks yakni Φ = h/2e atau setara 2.067x10-15 Weber Superkonduktor Suhu Rendah Superkonduktor temperatur rendah merupakan superkonduktor yang memiliki temperatur kritis dibawah temperatur nitrogen cair (77 K), sehingga untuk memunculkan superkonduktvitasnya maka material tersebut menggunakan helium cair sebagai pendingin (Windartun, 2008). Adapun contoh dari superkonduktor temperatur rendah adalah Hg (4,2 K), Pb (7,2 K) Superkonduktor Suhu Tinggi Superkonduktor temperatur tinggi merupakan superkonduktor yang memiliki temperatur kritis diatas temperatur nitrogen cair (77 K), sehingga untuk memunculkan superkonduktvitasnya maka material tersebut menggunakan nitrogen cair sebagai pendingin (Windartun, 2008). Adapun contoh dari superkonduktor temperatur tinggi adalah Y-Ba-Cu-O (92 K).

8 2.5 Magnesium Deboride (MgB 2 ) Magnesium deboride merupakan material superkonduktor dengan temperatur kritis ~39 K dengan rapat arus kritis tinggi sebesar A/cm 2 dan medan magnet pada temperatur rendah Sejarah Penemuan MgB 2 Pada tahun 1953, Jones et al. dan Russell et al. melaporkan pembentukan fasa MgB 2 dengan interaksi antara Mg dan amorf B pada atmosfer hidrogen atau argon.atom Boron memiliki ukuran yang cocok dan struktur elektonik untuk membentuk ikatan B-B langsung yang dapat membentuk berbagai macam ikatan boron lainnya. Ada lebih dari 50 senyawa diboride dengan struktur yang berbeda (Buzea, 2001). Pada Januari 2001, Prof.J.Akimitsu dari Aoyama-Gakuin University, Tokyo, Jepang) mengumumkan penemuan superkonduktivitas material MgB 2 dengan Tc relatif tinggi yaitu 39 K (Nagamatsu, 2001). Penemuan ini merangsang cukup banyak penelitian dan pengembangan tentang MgB 2, tidak hanya dikarenakan sifat fundamental MgB 2 yang menarik tetapi karena sifat potensial untuk aplikasi Struktur Kristal dan Sifat Superkonduktivitas MgB 2 MgB 2 memiliki struktur kristal heksagonal dengan space group p6/m m m yang umum diantara diboride (Buzea, 2001). Struktur kristal ditunjukkan pada Gambar 2.6. Gambar 2.6 Struktur kristal MgB 2 (Qingyang, 2012) Bila dibandingkan dengan superkonduktor suhu rendah (LTS) dan superkonduktor oksida tembaga suhu tinggi (HTS), karakteristik MgB 2 memiliki temperatur kritis

9 lebih tinggi daripada LTS. Atom boron membentuk grafit seperti sarang lebah dan atom Mg terletak pada poros segienam (Eltsev,2002; Masui, 2003). Penelitian tentang pemberian dopan pada MgB 2 untuk melihat kenaikan Tc, sejauh ini memberikan hasil yang mengecewakan. Penambahan sebagian besar dopan pada MgB 2 mengakibatkan Tc menurun. Dopan seperti Al, Li, Si, Zn, Cu, Nb, Mn, Co, Ni, Ag, Sc, Zr, Sn, Ca, Ti, Pb, Au, dan lain-lain masih dalam tahap uji coba pada substitusi Mg maupun B, hanya substitusi Al ke Mg dan subtitusi C ke B yang dinyatakan sukses Sintesis MgB 2 In Situ Powder In Tube (PIT) Beberapa prosedur sintesis dilaporkan untuk proses in situ MgB 2 dengan temperatur yang relatif rendah dan dalam jangka waktu pemanasan yang singkat (Yamada et al., 2004). Material awal adalah serbuk Mg dan amorf/kristal B, kemudian dicampurkan, diutamakan serbuk Mg dan B memiliki ukuran partikel yang kecil (biasanya < 50 μm). MgB 2 dapat disintesis dengan reaksi Mg dan B umumnya pada suhu > C yang merupakan titik leleh dari Mg. Pembentukan MgB 2 dibawah titik leleh Mg merupakan reaksi padatan Mg dan B (Yamamoto, 2005). Hal ini jelas membuktikan bahwa pembentukan MgB 2 hanya muncul dengan mencairnya Mg. Pada temperatur C dengan tekanan 135 Pa, penguapan pada temperatur ini sangat kurang. Reaksi cairan-padatan antara Mg dan B akan meningkatkan kerapatan MgB 2. Untuk menghasilkan MgB 2 dengan cara yang praktis dan biaya efektif dilakukan sintesis MgB 2 dengan memasukkan sampel yang telah ditimbang sesuai stoikiometri ke dalam tabung yang terbuat dari Fe, Ni, Cu, Ag, Nb, Ta, dan beberapa alloy (Grassoet al., 2001) Penambahan Dopan pada Material MgB 2 Penambahan dopan pada material MgB 2 terdiri dari dopan berupa unsur logam, unsur non-logam dan senyawa. a. Dopan Unsur Logam Efek substitusi parsial dari penambahan dopan pada Mg untuk material MgB 2,beberapa unsur logam diantaranya Al, Ti, Zr, Zn, Sn, Fe, La, Li, dan lain-

10 lain. Diantara banyak logam, ditemukan Al, Ti dan Zr efektif dalam meningkatkan kuat arus kritis namun menurunkan Tc MgB 2 (Xiang et al., 2003; Jinyuan et al., 2010). b. Dopan Unsur Non-Logam Efek substitusi Si, C, O dan Be yang semuanya dapat menurunkan Tc, namun efek substitusi C semakin gencar diteliti untuk mengetahui mekanisme superkonduktivitas dan peningkatan rapat arus kritis (Jc). Perlu diingat bahwa substitusi atom C, O atau Si pada atom B efektif untuk meningkatkan rapat arus kritis hanya dibawah medan magnetik tinggi dan Jc pada medan yang rendah biasanya lebih rendah daripada MgB 2 tanpa dopan (Qingyang, 2012). c. Dopan Senyawa Senyawa SiC, B 4 C, hidrokarbon, karbohidrat, dan sebagainya dapat meningkatkan rapat arus kritis pada material MgB 2. Dopan paling efektif untuk meningkatkan Jc adalah senyawa SiC. Keuntungan lain dari penambahan dopan senyawa ini memiliki reaktivitas tinggi pada temperatur rendah, pada temperatur C merupakan kondisi yang diinginkan untuk peningkatan Jc (Qingyang, 2012). 2.6 Carbon Nanotube (CNT) Carbon Nano Tube (CNT) merupakan komposisi senyawa karbon yang berbentuk tabung berukuran nano. Dikarenakan ukuran diameter yang berskala nano ini, maka CNT dapat digolongkan sebagai struktur elektronik satu dimensi sehingga elektron dapat berjalan sepanjang CNT tanpa hambatan sedikitpun. Berapa pun arus yang diberikan dalam CNT akan dapat dialirkan tanpa sedikitpun menimbulkan panas. (Yuliarto, 2013) Sejarah Carbon Nanotube Tahun 1991 di Jepang, Sumio Iijima dari NEC menggunakan TEM (Transmission Electron Microscopy) untuk menganalisa sebuah sampel pelapisan karbon yang diterima dari Yoshinori Ando dari Meijo University. Sampel tersebut diambil dari sebuah lengkungan karbon, biasanya digunakan untuk membuat C 60

11 (Iijima, 1991). Diperkuat dengan beberapa studi teoritis yang mengungkapkan nanotube akan menjadi logam yang baik atau sebuah semikonduktor, tidak hanya bergantung pada diameternya tetapi juga pada ikatan karbon yang membentuk spiral disekitar tabung (Hamada et al. 1992) Struktur Carbon Nanotube Carbon nanotube memiliki beberapa struktur yaitu Single Walled Nanotubes (SWNT) dan Multi Walled Nanotubes (MWNT). a. Single Walled Nanotubes (SWNT) SWNT terbentuk dari sebuah lembaran grafit yang dilengkungkan dan terdiri dari dua bagian yang mempunyai sifat fisis dan kimia yang berbeda, bagian pertama merupakan bagian sisi dinding silinder dan bagian lain adalah ujung-ujung silinder. Nanotube dapat mempunyai sifat seperti metal atau seperti semikonduktor. Bila arah pembentukan grafitnya adalah zigzag maka dapat dihasilkan nanotube yang bersifat semikonduktor, sedangkan yang chiral dan amchair memiliki sifat elektrik seperti metal. SWNT memiliki beberapa bentuk struktur yang berbeda yang dapat dilihat bila struktur tube dibuka ditunjukkan dengan Gambar 2.7. Gambar 2.7 Beberapa bentuk struktur SWNT (a) Struktur armchair (b) Struktur zigzag (c) Struktur chiral(saito et al. 1998) SWNT memiliki sifat keelektrikan yang memungkinkan pengembangan struktur SWNT menjadi nanowire karena SWNT dapat menjadi konduktor yang baik. b. Multi Walled Nanotube (MWNT) MWNT adalah nanotube yang tersusun oleh beberapa SWNT dengan berbeda diameter. MWNT memiliki tahanan kimiawi yang lebih baik daripada SWNT

12 karena pada SWNT hanya memiliki satu lapis dinding sehingga bila terdapat ikatan C=C yang rusak maka akan menghasilkan lubang di SWNT dan hal ini akan mengubah sifat mekanik dan elektrik dari ikatan SWNT tersebut. Struktur MWNT dapat ditunjukkan dalam Gambar 2.8. Gambar 2.8 Struktur Multi Walled Nanotube (Paul et al., 2003) Aplikasi nanotube banyak mempertimbangkan MWNT untuk digunakan karena dapat di produksi dalam jumlah yang besar dengan harga yang terjangkau dan tersedia dalam jumlah yang banyak dalam waktu yang lama dibandingkan dengan SWNT (Paul et al., 2003). 2.7 X-ray Diffraction (XRD) Sinar-X merupakan gelombang elektromagnetik dengan panjang gelombang 0,5-2,5 Å, didalam spektrum elektromagnetik terletak diantara sinar tampak dan sinar ultraviolet. Oleh karena memiliki panjang gelombang yang hampir sama dengan jarak antar atom pada padatan kristalin, maka sinar-x dapat digunakan untuk menentukan parameter kisi dan struktur kristal (Cullity, 1978; Smallman,1985). Difraktometer Sinar-X adalah alat yang dapat memberikan data-data difraksi dan kuantitas intensitas difraksi pada sudut-sudut difraksi dari suatu bahan. Tujuan dilakukannya pengujian analisis struktur kristal adalah untuk mengetahui perubahan fasa struktur bahan dan mengetahui fasa-fasa apa saja yang terbentuk selama proses pembuatan sampel uji. Tahap pertama yang dilakukan dalam analisa sinar-x adalah melakukan analisa pemeriksaan terhadap sampel x yang belum diketahui strukturnya. Sampel ditempatkan pada titik fokus hamburan sinar- X yaitu tepat ditengah-tengah plate yang digunakan sebagai tempat

13 yaitu sebuah plat tipis yang berlubang ditengah berukuran sesuai dengan sampel dengan perekat pada sisi baliknya (Sholihah & Zainuri, 2012). Gambar 2.9 Komponen XRD (Batan) Bila sinar-x jatuh pada kisi kristal, maka sinar akan dihamburkan. Pada sinar yang dihamburkan ini adayang saling menguatkan karena fasanya sama dan ada yang saling meniadakan karena fasanya berbeda. Berkas sinar yang saling menguatkan ini disebut sebagai berkas difraksi. Suatu berkas sinar dikatakan sebagai berkas difraksi maka harus memenuhi hukum Bragg: (2.4) dengan: = jarak antar bidang (meter) n = orde pembiasan (1,2,3,..) λ = panjang gelombang sinar-x (Å) θ = sudut difraksi ( 0 ) Prinsip dasar dari XRD adalah bila seberkas sinar dijatuhkan pada sampel kristal maka bidang kristal akan membiaskan sinar-x yang memiliki panjang gelombang dengan jarak antar kisi didalam kristal selanjutnya sinar yang dibiaskan akan ditangkap oleh detektor kemudian diterjemahkan sebagai puncak difraksi. Metode serbuk adalah metode yang paling banyak digunakan, bila dilakukan dengan benar akan memberikan informasi yang tepat mengenai material yang diuji. Metode serbuk dapat dilakukan dengan menggunakan difraktometer dan hasil difraksi akan direkam pada kertas grafik. Didalam difraktometer benda uji dipasang pada meja yang berputar lalu sinar-x ditembakkan pada bahan uji yang akan didifaksikan. Berkas difraksi setelah difokuskan pada suatu kisi akan masuk kedalam detektor (Triaminingsih, 1998).

14 2.8 Scanning Electron Microscope (SEM) Scanning Electron Microscope (SEM) adalah mikroskop yang menggunakan hamburan elektron dalam membentuk bayangan elektron. Elektron memiliki resolusi yang lebih tinggi daripada cahaya. Cahaya hanya mampu mencapai 200 nm sedangkan elektron bisa mencapai resolusi sampai 0,1 0,2 nm (Indriani, 2013). Analisis SEM bermanfaat untuk mengetahui mikrostruktur (termasuk porositas dan bentuk retakan) benda padat. Berkas sinar elektron dihasilkan dari filamen yang dipanaskan, disebut electron gun (Gunawan dan Azhari,2010). SEM dapat menghasilkan karakteristik bentuk 3 dimensi yang berguna untuk memahami struktur permukaan dari suatu sampel. Prinsip kerja dari SEM adalah sebagai berikut: Sebuah tabung sinar elektron memproduksi sinar elektron dan dipercepat dengan anoda. Kemudian lensa magnetik memfokuskan elektron menuju ke sampel. Selanjutnya sinar elektron yang terfokus memindai (scan) keseluruhan sampel dengan diarahkan oleh koil pemindai. Ketika elektron mengenai sampel, maka sampel akan mengeluarkan elektron baru yang akan diterima oleh detektor dan dikirim ke monitor. Preparasi sampel pada SEM harus dilakukan dengan hati-hati karena memanfaatkan kondisi vakum serta menggunakan elektron berenergi tinggi. Sampel yang digunakan harus dalam keadaan kering dan bersifat konduktif (menghantarkan elektron). Bila tidak, sampel harus dibuat konduktif terlebih dahulu oleh pelapisan dengan karbon, emas, atau platina (Marlina,2007). Gambar 2.10 Komponen SEM (P2MM, LIPI)

15 2.9 Cryogenic Magnet Uji cryogenic ini bertujuan untuk analisa resistivitas listrik pada sampel superkonduktor.berdasarkan data keluaran didapatkan grafik hubungan antara hambat jenis listrikterhadap perubahan temperatur, dimana dari grafik tersebut dapat diketahui nilai suhu kritisnya (Tc). Alat yang digunakan pada uji ini adalah cryogenic magnet Cryotron FR buatan Oxford. Cryogenic ini memakai sistem pulse tube cryocooler untuk mendinginkan gas Helium. Sistem pendinginan ini tidak memerlukan penanganan cairan Helium yang dipersiapkan untuk pendinginan. Namun hanya memerlukan gas Helium gas Helium yang akan diekspansi/dimampatkan oleh kompresor sehingga suhu gas Helium akan turun. Peralatan dari cryogenic magnet dapat dilihat pada Gambar 2.11 (Imaduddin, 2014). Gambar 2.11 Komponen cryogenic (P2MM, LIPI)

SUPERKONDUKTOR 1. Sejarah Superkonduktor 2. Teori Superkonduktor 2.1. Pengertian Superkonduktor

SUPERKONDUKTOR 1. Sejarah Superkonduktor 2. Teori Superkonduktor 2.1. Pengertian Superkonduktor SUPERKONDUKTOR 1. Sejarah Superkonduktor Superkonduktor pertama kali ditemukan oleh seorang fisikawan Belanda, Heike Kamerlingh Onnes, dari Universitas Leiden pada tahun 1911. Pada tanggal 10 Juli 1908,

Lebih terperinci

I. PENDAHULUAN. oleh H.K Onnes pada tahun 1911 dengan mendinginkan merkuri (Hg) menggunakan helium cair pada temperatur 4,2 K (Darminto dkk, 1999).

I. PENDAHULUAN. oleh H.K Onnes pada tahun 1911 dengan mendinginkan merkuri (Hg) menggunakan helium cair pada temperatur 4,2 K (Darminto dkk, 1999). 1 I. PENDAHULUAN A. Latar Belakang Superkonduktor merupakan material yang dapat mengalirkan arus listrik tanpa adanya hambatan atau resistansi (ρ = 0), sehingga dapat menghantarkan arus listrik tanpa kehilangan

Lebih terperinci

I. PENDAHULUAN. Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena

I. PENDAHULUAN. Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena I. PENDAHULUAN A. Latar Belakang Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena sifat resistivitas nol yang dimilikinya dan dapat melayang dalam medan magnet. Kedua sifat

Lebih terperinci

Bahan Listrik. Bahan Superkonduktor

Bahan Listrik. Bahan Superkonduktor Bahan Listrik Bahan Superkonduktor Superkonduktor Konsep superkonduktor : Suatu bahan yang dapat mengalirkan arus listrik tanpa tahanan listrik sedikitpun. Apakah ini mungkin didapatkan? Superkonduktor

Lebih terperinci

II. TINJAUAN PUSTAKA. Kamerlingh Onnes, dari Universitas Leiden pada tahun Sebelumnya, pada

II. TINJAUAN PUSTAKA. Kamerlingh Onnes, dari Universitas Leiden pada tahun Sebelumnya, pada 5 II. TINJAUAN PUSTAKA A. Penemuan Superkonduktor Superkonduktor pertama kali ditemukan oleh seorang fisikawan Belanda, Heike Kamerlingh Onnes, dari Universitas Leiden pada tahun 1911. Sebelumnya, pada

Lebih terperinci

BAB IX SUPERKONDUKTOR

BAB IX SUPERKONDUKTOR BAB IX SUPERKONDUKTOR MATERI SUPERKONDUKTIVITAS 9.1. Superkonduktor suhu kritis rendah. 9.1.1.klasifikasi logam ( isolator, semikonduktor, konduktor,konduktor bagus,superkonduktor) 9.1.2.efek Meissner,suhu

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Aplikasi Superkoduktor yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Aplikasi Superkoduktor yang mencakup: PENDAHULUAN Di dalam modul ini Anda akan mempelajari Aplikasi Superkoduktor yang mencakup: Teknologi Superkomputer dan Teknologi Transmisi Daya Listrik serta Teknologi Kereta Api Berkecepatan Tinggi. Oleh

Lebih terperinci

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1] BAB II TINJAUAN PUSTAKA 2.1. Momen Magnet Sifat magnetik makroskopik dari material adalah akibat dari momen momen magnet yang berkaitan dengan elektron-elektron individual. Setiap elektron dalam atom mempunyai

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1 Superkonduktor Superkonduktor merupakan suatu material dengan temperatur tertentu yang sangat rendah (critical temperature) dan nilai hambatan listriknya (electrical resistivity)

Lebih terperinci

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2 Y(NO 3 ) 2 Pelarutan Pengendapan Evaporasi 350 0 C 1 jam 900 0 C 10 jam 940 0 C 20 jam Ba(NO 3 ) Pelarutan Pengendapan Evaporasi Pencampuran Pirolisis Kalsinasi Peletisasi Sintering Pelet YBCO Cu(NO 3

Lebih terperinci

II. TINJAUAN PUSTAKA. Sifat superkonduktivitas bahan ditemukan pertama kali oleh Heike Kammerlingh

II. TINJAUAN PUSTAKA. Sifat superkonduktivitas bahan ditemukan pertama kali oleh Heike Kammerlingh 6 II. TINJAUAN PUSTAKA A. Superkonduktor Sifat superkonduktivitas bahan ditemukan pertama kali oleh Heike Kammerlingh Onnes pada tahun 1911. Pada saat itu, dia sedang mencoba mengamati hambatan jenis (resistivity)

Lebih terperinci

II. TINJAUAN PUSTAKA. hingga suhu 4 K atau -269ºC. Kemudian Onnes pada tahun 1911 mulai

II. TINJAUAN PUSTAKA. hingga suhu 4 K atau -269ºC. Kemudian Onnes pada tahun 1911 mulai II. TINJAUAN PUSTAKA A. Sejarah Superkonduktor Bahan superkonduktor pertama kali ditemukan pada tahun 1911 oleh seorang fisikawan Belanda dari Universitas Leiden yaitu Heike Kamerlingh Onnes. Pada tanggal

Lebih terperinci

Spektroskopi Difraksi Sinar-X (X-ray difraction/xrd)

Spektroskopi Difraksi Sinar-X (X-ray difraction/xrd) Spektroskopi Difraksi Sinar-X (X-ray difraction/xrd) Spektroskopi difraksi sinar-x (X-ray difraction/xrd) merupakan salah satu metoda karakterisasi material yang paling tua dan paling sering digunakan

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF

SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF YUNI SUPRIYATI M 0204066 Jurusan Fisika Fakultas MIPA

Lebih terperinci

Karakterisasi XRD. Pengukuran

Karakterisasi XRD. Pengukuran 11 Karakterisasi XRD Pengukuran XRD menggunakan alat XRD7000, kemudian dihubungkan dengan program dikomputer. Puncakpuncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMA / MA 2011 Program IPA Mata Ujian : Fisika Jumlah Soal : 20 1. Gas helium (A r = gram/mol) sebanyak 20 gram dan bersuhu 27 C berada dalam wadah yang volumenya 1,25 liter. Jika tetapan

Lebih terperinci

ANALISIS FASA KARBON PADA PROSES PEMANASAN TEMPURUNG KELAPA

ANALISIS FASA KARBON PADA PROSES PEMANASAN TEMPURUNG KELAPA ANALISIS FASA KARBON PADA PROSES PEMANASAN TEMPURUNG KELAPA Oleh : Frischa Marcheliana W (1109100002) Pembimbing:Prof. Dr. Darminto, MSc Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

METODE SOL-GEL RISDIYANI CHASANAH M

METODE SOL-GEL RISDIYANI CHASANAH M SINTESIS SUPERKONDUKTOR Bi-Sr-Ca-Cu-O/Ag DENGAN METODE SOL-GEL RISDIYANI CHASANAH M0204046 (Bi-Sr-Ca-Cu-O/Ag Superconductor Synthesis with Sol-Gel Method) INTISARI Telah dibuat superkonduktor sistem BSCCO

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BAB III METODOLOGI PENELITIAN Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BATAN Bandung meliputi beberapa tahap yaitu tahap preparasi serbuk, tahap sintesis dan tahap analisis. Meakanisme

Lebih terperinci

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) BIDANG KIMIA SUB KIMIA FISIK 16 Mei 2017 Waktu : 120menit Petunjuk Pengerjaan H 1. Tes ini terdiri atas

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di Laboratorium Fisika Material FMIPA Unila, Laboratorium Kimia Instrumentasi

Lebih terperinci

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER)

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) Oleh: Kusnanto Mukti / M0209031 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 2012 I. Pendahuluan

Lebih terperinci

C20 FISIKA SMA/MA IPA. 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut.

C20 FISIKA SMA/MA IPA. 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Rentang hasil pengkuran diameter di atas yang memungkinkan adalah. A. 5,3 cm sampai dengan 5,35 cm

Lebih terperinci

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA)

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA) 10 1. Disiapkan sampel yang sudah dikeringkan ± 3 gram. 2. Sampel ditaburkan ke dalam holder yang berasal dari kaca preparat dibagi dua, sampel ditaburkan pada bagian holder berukuran 2 x 2 cm 2, diratakan

Lebih terperinci

Deskripsi METODE UNTUK PENUMBUHAN MATERIAL CARBON NANOTUBES (CNT)

Deskripsi METODE UNTUK PENUMBUHAN MATERIAL CARBON NANOTUBES (CNT) 1 Deskripsi METODE UNTUK PENUMBUHAN MATERIAL CARBON NANOTUBES (CNT) Bidang Teknik Invensi Invensi ini berhubungan dengan metode untuk penumbuhan material carbon nanotubes (CNT) di atas substrat silikon

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 200 Mata Pelajaran : Fisika Kelas : XII IPA Alokasi Waktu : 20 menit

Lebih terperinci

Mata Pelajaran : FISIKA

Mata Pelajaran : FISIKA Mata Pelajaran : FISIKA Kelas/ Program : XII IPA Waktu : 90 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! 1. Hasil pengukuran tebal meja menggunakan

Lebih terperinci

KB 2. Teknologi Kereta Api Yang Berkecepatan Tinggi. Aplikasi superkonduktor dalam teknologi kereta Api supercepat adalah memanfaatkan

KB 2. Teknologi Kereta Api Yang Berkecepatan Tinggi. Aplikasi superkonduktor dalam teknologi kereta Api supercepat adalah memanfaatkan KB 2. Teknologi Kereta Api Yang Berkecepatan Tinggi Aplikasi superkonduktor dalam teknologi kereta Api supercepat adalah memanfaatkan salah satu sifat dari superkonduktor yang paling menarik, yaitu sifat

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN Untuk menampilkan bentuk struktur mikro sampel, cuplikan yang terdapat pada sample holder dietsa dengan larutan HCL yang telah diencerkan dengan aquades. Pengenceran dilakukan dengan mencampurkan HCL pekat

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

UN SMA IPA 2009 Fisika

UN SMA IPA 2009 Fisika UN SMA IPA 009 isika Kode Soal P88 Doc. Version : 0-06 halaman 0. itria melakukan perjalanan napak tilas dimulai dari titik A ke titik B : 600 m arah utara; ke titik C 400 m arah barat; ke titik D 00 m

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Kelompok besaran berikut yang merupakan besaran

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini peran nanoteknologi begitu penting dalam pengembangan ilmu pengetahuan dan teknologi untuk kesejahteraan kehidupan manusia. Nanoteknologi merupakan bidang

Lebih terperinci

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 UJI COBA MATA PELAJARAN KELAS/PROGRAM ISIKA SMA www.rizky-catatanku.blogspot.com PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 : FISIKA : XII (Dua belas )/IPA HARI/TANGGAL :.2012

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi 19 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang dilakukan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi serbuk. 3.2

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

PASI NA R SI NO L SI IK LI A KA

PASI NA R SI NO L SI IK LI A KA NANOSILIKA PASIR Anggriz Bani Rizka (1110 100 014) Dosen Pembimbing : Dr.rer.nat Triwikantoro M.Si JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Magnet permanen adalah salah satu jenis material maju dengan aplikasi yang sangat luas dan strategis yang perlu dikembangkan di Indonesia. Efisiensi energi yang tinggi

Lebih terperinci

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N 1. Sebuah lempeng besi tipis, tebalnya diukur dengan menggunakan mikrometer skrup. Skala bacaan hasil pengukurannya ditunjukkan pada gambar berikut. Hasilnya adalah... A. 3,11 mm B. 3,15 mm C. 3,61 mm

Lebih terperinci

BAB V DIAGRAM FASE ISTILAH-ISTILAH

BAB V DIAGRAM FASE ISTILAH-ISTILAH BAB V DIAGRAM FASE ISTILAH-ISTILAH Komponen : adalah logam murni atau senyawa yang menyusun suatu logam paduan. Contoh : Cu - Zn (perunggu), komponennya adalah Cu dan Zn Solid solution (larutan padat)

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

UN SMA IPA Fisika 2015

UN SMA IPA Fisika 2015 UN SMA IPA Fisika 2015 Latihan Soal - Persiapan UN SMA Doc. Name: UNSMAIPA2015FIS999 Doc. Version : 2015-10 halaman 1 01. Gambar berikut adalah pengukuran waktu dari pemenang lomba balap motor dengan menggunakan

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Serbuk Awal Membran Keramik Material utama dalam penelitian ini adalah serbuk zirkonium silikat (ZrSiO 4 ) yang sudah ditapis dengan ayakan 400 mesh sehingga diharapkan

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan 4.1 Sintesis Padatan TiO 2 Amorf Proses sintesis padatan TiO 2 amorf ini dimulai dengan melarutkan titanium isopropoksida (TTIP) ke dalam pelarut etanol. Pelarut etanol yang digunakan

Lebih terperinci

METODE X-RAY. Manfaat dari penyusunan makalah ini adalah sebagai berikut :

METODE X-RAY. Manfaat dari penyusunan makalah ini adalah sebagai berikut : METODE X-RAY Kristalografi X-ray adalah metode untuk menentukan susunan atom-atom dalam kristal, di mana seberkas sinar-x menyerang kristal dan diffracts ke arah tertentu. Dari sudut dan intensitas difraksi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bahan magnetik adalah suatu bahan yang memiliki sifat kemagnetan dalam komponen pembentuknya. Menurut sifatnya terhadap pengaruh kemagnetan, bahan dapat diklasifikasikan

Lebih terperinci

D. 2 N E. 1 N. D. (1), (2) dan (3) E. semuanya benar

D. 2 N E. 1 N. D. (1), (2) dan (3) E. semuanya benar 1. Pada gambar di atas Fy = komponen gaya P pada sumbu Y. Jika Fy = 2 N, maka komponen gaya pada sumbu x adalah... A. 4 N B. 2 N C. 2 N Kunci : B Diket : Fy = 2 N Ditanya : Fx Jawab : Fy = F sin 30 2 =

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian Penelitian ini dilaksanakan di Laboratorium Penelitian Kimia Analitik, Program Studi Kimia FMIPA ITB sejak September 2007 sampai Juni 2008. III.1 Alat dan Bahan Peralatan

Lebih terperinci

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut.

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut. 1 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut. Panjang Lebar (menggunakan mistar) (menggunakan jangka sorong) Luas plat logam di atas

Lebih terperinci

Gambar 3.1 Diagram alir penelitian

Gambar 3.1 Diagram alir penelitian BAB 3 METODE PENELITIAN 3.1 Bahan dan Peralatan Penelitian Bahan-bahan utama yang digunakan dalam penelitian ini antara lain bubuk magnesium oksida dari Merck, bubuk hidromagnesit hasil sintesis penelitian

Lebih terperinci

Superfluid si cairan ajaib

Superfluid si cairan ajaib Superfluid si cairan ajaib Fenomena ajaib yang dikenal sebagai Superfluiditas telah berhasil menghantarkan sebuah Nobel Fisika bagi Anthony J. Leggett di tahun 2003 ini. Pria Inggris yang mendapatkan gelar

Lebih terperinci

Uji Kekerasan Material dengan Metode Rockwell

Uji Kekerasan Material dengan Metode Rockwell Uji Kekerasan Material dengan Metode Rockwell 1 Ika Wahyuni, 2 Ahmad Barkati Rojul, 3 Erlin Nasocha, 4 Nindia Fauzia Rosyi, 5 Nurul Khusnia, 6 Oktaviana Retna Ningsih Jurusan Fisika, Fakultas Sains dan

Lebih terperinci

KB 1. Usaha Magnetik Dan Pendinginan Magnetik

KB 1. Usaha Magnetik Dan Pendinginan Magnetik KB 1. Usaha Magnetik Dan Pendinginan Magnetik 1.1 Usaha Magnetik. Interaksi magnetik merupakan hal yang menarik dalam bidang Fisika. Interaksi magnetik ini merupakan hal yang sangat penting dalam mempelajari

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Bahan magnetik digunakan pada peralatan tradisional dan modern. Magnet permanen telah digunakan manusia selama lebih dari 5000 tahun seperti medium perekam pada komputer

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

UJIAN I - KIMIA DASAR I A (KI1111)

UJIAN I - KIMIA DASAR I A (KI1111) KIMIA TAHAP PERSIAPAN BERSAMA Departemen Kimia, Fakultas MIPA Institut Teknologi Bandung E-mail: first-year@chem.itb.ac.id UJIAN I - KIMIA DASAR I A (KI1111) http://courses.chem.itb.ac.id/ki1111/ 22 Oktober

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

SIMAK UI 2013 Fisika. Kode Soal 01.

SIMAK UI 2013 Fisika. Kode Soal 01. SIMAK UI 203 Fisika Kode Soal Doc. Name: SIMAKUI203FIS999 Version: 205- halaman 0. Pada gambar di atas, massa m dan m 2 berturut-turut adalah 6 kg dan 4 kg. Tidak ada gesekan yang bekerja dan massa katrol

Lebih terperinci

PENDAHULUAN. 1.1 Latar Belakang

PENDAHULUAN. 1.1 Latar Belakang PENDAHULUAN 1.1 Latar Belakang Pada tahun 1911 fisikawan Belanda H.Kamerlingh-Onnes menemukan fenomena alam baru yang dinamakan Superkonduktivitas. Pada saat itu Onnes ingin mengukur resistansi listrik

Lebih terperinci

D. 6,25 x 10 5 J E. 4,00 x 10 6 J

D. 6,25 x 10 5 J E. 4,00 x 10 6 J 1. Besarnya usaha untuk menggerakkan mobil (massa mobil dan isinya adalah 1000 kg) dari keadaan diam hingga mencapai kecepatan 72 km/jam adalah... (gesekan diabaikan) A. 1,25 x 10 4 J B. 2,50 x 10 4 J

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Superkonduktor Superkonduktor merupakan material yang memiliki hambatan listrik bernilai nol (ρ=0) pada temperatur yang sangat rendah. Temperatur dimana hambatan listrik

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

pendinginan). Material Teknik Universitas Darma Persada - Jakarta

pendinginan). Material Teknik Universitas Darma Persada - Jakarta BAB V DIAGRAM FASE Komponen : adalah logam murni atau senyawa yang menyusun suatu logam paduan. Contoh : Cu - Zn (perunggu) komponennya adalah Cu dan Zn Solid solution (larutan padat) : terdiri dari beberapa

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan penelitian dan pengembangan teknologi pada level atom, molekul dan makromolekul, dengan rentang skala 1-100 nm. Nanoteknologi dikembangkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian ini menggunakan metode eksperimen yang dilakukan melalui tiga tahap yaitu tahap pembuatan magnet barium ferit, tahap karakterisasi magnet

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

DASAR TEKNOLOGI PENGELASAN

DASAR TEKNOLOGI PENGELASAN DASAR TEKNOLOGI PENGELASAN Pengelasan adalah suatu proses dimana bahan dengan jenis sama digabungkan menjadi satu sehingga terbentuk suatu sambungan melalui ikatan kimia yang dihasilkan dari pemakaian

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Nanomaterial memiliki sifat unik yang sangat cocok untuk diaplikasikan dalam bidang industri. Sebuah material dapat dikatakan sebagai nanomaterial jika salah satu

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan teknologi yang semakin maju dalam beberapa dekade ini

BAB I PENDAHULUAN. Perkembangan teknologi yang semakin maju dalam beberapa dekade ini BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang semakin maju dalam beberapa dekade ini mengalami peralihan dari teknologi mikro (microtechnology) ke generasi yang lebih kecil yang dikenal

Lebih terperinci

Bab IV. Hasil dan Pembahasan

Bab IV. Hasil dan Pembahasan Bab IV. Hasil dan Pembahasan Bab ini memaparkan hasil sintesis, karakterisasi konduktivitas listrik dan struktur kirstal dari senyawa perovskit La 1-x Sr x FeO 3-δ (LSFO) dengan x = 0,2 ; 0,4 ; 0,5 ; 0,6

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah Saat ini penggunaan material berbasis karbon sangat luas aplikasinya dalam kehidupan sehari-hari.

BAB I PENDAHULUAN A. Latar Belakang Masalah Saat ini penggunaan material berbasis karbon sangat luas aplikasinya dalam kehidupan sehari-hari. BAB I PENDAHULUAN A. Latar Belakang Masalah Saat ini penggunaan material berbasis karbon sangat luas aplikasinya dalam kehidupan sehari-hari. Sebagai contoh beberapa aplikasi dalam bidang lingkungan antara

Lebih terperinci

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan 6 didalamnya dilakukan karakterisasi XRD. 3.3.3 Sintesis Kalsium Fosfat Sintesis kalsium fosfat dalam penelitian ini menggunakan metode sol gel. Senyawa kalsium fosfat diperoleh dengan mencampurkan serbuk

Lebih terperinci

SOAL BABAK PEREMPAT FINAL OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG

SOAL BABAK PEREMPAT FINAL OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG SOAL BABAK PEREMPAT FINAL OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG Tingkat Waktu : SMP/SEDERAJAT : 100 menit 1. Jika cepat rambat gelombang longitudinal dalam zat padat adalah = y/ dengan y modulus

Lebih terperinci

ANALISA HAMBAT JENIS LISTRIK PADA KAWAT SUPERKONDUKTOR DENGAN MEMAKAI ALAT CRYOGENIC

ANALISA HAMBAT JENIS LISTRIK PADA KAWAT SUPERKONDUKTOR DENGAN MEMAKAI ALAT CRYOGENIC ANALISA HAMBAT JENIS LISTRIK PADA KAWAT SUPERKONDUKTOR DENGAN MEMAKAI ALAT CRYOGENIC Agung Imaduddin*, Bintoro Siswayanti, Andika Widya Pramono, Pius Sebleku, Anton Suryantoro, Sigit Dwi Yudanto, Hendrik

Lebih terperinci

II. TINJAUAN PUSTAKA. walaupun tanpa adanya sumber tegangan (Rusdi, 2010). Suatu superkonduktor

II. TINJAUAN PUSTAKA. walaupun tanpa adanya sumber tegangan (Rusdi, 2010). Suatu superkonduktor II. TINJAUAN PUSTAKA A. Superkonduktor 1. Definisi dan Sejarah Superkonduktor Superkonduktor adalah suatu material yang tidak memiliki hambatan di bawah suatu nilai suhu tertentu. Sehingga superkonduktor

Lebih terperinci

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini.

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. Dari gambar dapat disimpulkan bahwa tebal keping adalah... A. 4,30 mm B. 4,50 mm C. 4,70

Lebih terperinci

KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI JURUSAN FISIKA

KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI JURUSAN FISIKA KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI 140310110018 JURUSAN FISIKA OUTLINES : Sinar X Difraksi sinar X pada suatu material Karakteristik Sinar-X Prinsip

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian 28 Bab III Metodologi Penelitian III.1 Tahap Penelitian Penelitian ini terbagi dalam empat tahapan kerja, yaitu : Tahapan kerja pertama adalah persiapan bahan dasar pembuatan film tipis ZnO yang terdiri

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini telah dilakukan di Laboratorium Biomassa Terpadu Universitas

III. METODELOGI PENELITIAN. Penelitian ini telah dilakukan di Laboratorium Biomassa Terpadu Universitas 29 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan di Laboratorium Biomassa Terpadu Universitas Lampung. Analisis difraksi sinar-x dan analisis morfologi permukaan

Lebih terperinci

No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 Hal 1 dari 8 Semester I BAB I Prodi PT Boga BAB I MATERI

No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 Hal 1 dari 8 Semester I BAB I Prodi PT Boga BAB I MATERI No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 Hal 1 dari 8 BAB I MATERI Materi adalah sesuatu yang menempati ruang dan mempunyai massa. Materi dapat berupa benda padat, cair, maupun gas. A. Penggolongan

Lebih terperinci

UN SMA IPA 2008 Fisika

UN SMA IPA 2008 Fisika UN SMA IPA 008 Fisika Kode Soal P67 Doc. Version : 0-06 halaman 0. Tebal pelat logam diukur dengan mikrometer skrup seperti gambar Tebal pelat logam adalah... (A) 4,8 mm (B) 4,90 mm (C) 4,96 mm (D) 4,98

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. XRD Uji XRD menggunakan difraktometer type Phylips PW3710 BASED dilengkapi dengan perangkat software APD (Automatic Powder Difraction) yang ada di Laboratorium UI Salemba

Lebih terperinci

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Diameter minimum benda sebesar. A. 9,775 cm B. 9,778 cm C. 9,782 cm D. 9,785 cm E. 9,788 cm 2. Sebuah

Lebih terperinci

BAB 4 DATA DAN ANALISIS

BAB 4 DATA DAN ANALISIS BAB 4 DATA DAN ANALISIS 4.1. Kondisi Sampel TiO 2 Sampel TiO 2 disintesa dengan memvariasikan jenis pelarut, block copolymer, temperatur kalsinasi, dan kelembaban relatif saat proses aging. Kondisi sintesisnya

Lebih terperinci

SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984

SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984 SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Besarnya usaha untuk menggerakkan mobil

Lebih terperinci

STUDI PEMAKAIAN SUPERKONDUKTOR PADA GENERATOR ARUS BOLAK- BALIK

STUDI PEMAKAIAN SUPERKONDUKTOR PADA GENERATOR ARUS BOLAK- BALIK STUDI PEMAKAIAN SUPERKONDUKTOR PADA GENERATOR ARUS BOLAK- BALIK Tantri Wahyuni Fakultas Teknik Universitas Majalengka Tantri_wahyuni80@yahoo.co.id Abstrak Pada suhu kritis tertentu, nilai resistansi dari

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS Doc. Name: K13AR12FIS01UAS Version: 2015-11 halaman 1 01. Seorang pendengar A berada di antara suatu sumber bunyi S yang menghasilkan bunyi berfrekuensi f dan tembok

Lebih terperinci

BAB III EKSPERIMEN & KARAKTERISASI

BAB III EKSPERIMEN & KARAKTERISASI BAB III EKSPERIMEN & KARAKTERISASI Pada bab ini dibahas penumbuhan AlGaN tanpa doping menggunakan reaktor PA- MOCVD. Lapisan AlGaN ditumbuhkan dengan variasi laju alir gas reaktan, hasil penumbuhan dikarakterisasi

Lebih terperinci

Pengaruh Penambahan Aluminium (Al) Terhadap Sifat Hidrogenasi/Dehidrogenasi Paduan Mg 2-x Al x Ni Hasil Sintesa Reactive Ball Mill

Pengaruh Penambahan Aluminium (Al) Terhadap Sifat Hidrogenasi/Dehidrogenasi Paduan Mg 2-x Al x Ni Hasil Sintesa Reactive Ball Mill Pengaruh Penambahan Aluminium (Al) Terhadap Sifat Hidrogenasi/Dehidrogenasi Paduan Mg 2-x Al x Ni Hasil Sintesa Reactive Ball Mill I Wayan Yuda Semaradipta 2710100018 Dosen Pembimbing Hariyati Purwaningsih,

Lebih terperinci