Universitas Sumatera Utara BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "Universitas Sumatera Utara BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Teori Umum Adsorpsi Adsorpsi atau juga yang biasa disebut dengan penyerapan, adalah suatu proses yang terjadi ketika fluida (cairan ataupun gas) terikat pada suatu padatan atau cairan (zat penyerap, absorbat) pada permukaannya. Sedangkan absorpsi adalah penyerapan fluida oleh fluida lainnya dengan membentuk suatu larutan. Definisi lain menyatakan adsorpsi sebagai suatu peristiwa penyerapan pada lapisan permukaan atau antar fasa dimana molekul dari suatu materi terkumpul pada bahan pengadsorpsi atau adsorben. Adsorpsi dibedakan menjadi dua jenis, yaitu adsorpsi fisika (disebabkan oleh gaya Van Der Waals (penyebab terjadinya kondensasi gas untuk membentuk cairan) yang ada pada permukaan adsorben) dan adsorpsi kimia (terjadi antara zat yang diserap dengan adsorben, banyaknya zat yang teradsorbsi tergantung pada sifat khas zat padatnya yang merupakan fungsi tekanan dan suhu). Elemen utama dari mesin ini terdiri dari kolektor panas (adsorbent bed), kondensor, dan evaporator. Adsorber mempunyai peran yang sama seperti kompresor di sistem pendingin tradisional. Prinsip kerja dari sistem adsorpsi diilustrasikan dengan diagram Clayperon pada gambar 2.1. [1] 4

2 Gambar 2.1 Diagram Clayperon pada Sistem Pendingin Siklus Adsorpsi [1] Adapun proses yang terjadi pada gambar 2.1 adalah sebagai berikut: 1. Proses Pemanasan (Pemberian Tekanan) Proses pemanasan dimulai dari titik A dimana adsorben berada pada temperatur rendah TA dan tekanan rendah Pe (tekanan evaporator). Pada proses ini adsorbat masih berbentuk uap adsorpsi. 2. Proses Desorpsi Proses desorpsi berlangsung pada waktu panas diberikan dari titik B ke C sehingga adsorber mengalami peningkatan temperatur yang menyebabkan timbulnya uap desorpsi. Sehingga, adsorbat yang berada pada adsorben dalam bentuk gas mengalir ke kondensor untuk mengalami proses kondensasi menjadi cair dan mengalir ke kondensor. 3. Proses Pendinginan (Penurunan Tekanan) Proses pendinginan berlangsung dari titik C ke D, adsorber melepaskan panas dengan cara didinginkan sehingga suhu di adsorber turun dan diikuti oleh penurunan tekanan dari tekanan kondensasi ke tekanan evaporasi. 4. Proses Adsorpsi Proses adsorpsi berlangsung dari titik D ke A, Adsorber terus melepaskan panas sehingga adsorber mengalami penurunan temperatur dan tekanan yang menyebabkan timbulnya uap adsorpsi. Adsorbat dalam bentuk uap dihasilkan dari proses penyerapan kalor oleh adsorbat dari air yang ada disekitar evaporator sebesar kalor laten penguapan adsorbat tersebut. 2.2 Komponen Komponen Mesin Pendingin Tenaga Surya Kolektor Surya 5

3 Kolektor surya dapat didefinisikan sebagai sistem perpindahan panas yang menghasilkan energi panas dengan memanfaatkan radiasi sinar matahari sebagai sumber energi utama. Ketika cahaya matahari menimpa absorber pada kolektor surya, sebagian cahaya akan dipantulkan kembali ke lingkungan, sedangkan sebagian besarnya akan diserap dan dikonversi menjadi energi panas, lalu panas tersebut dipindahkan kepada fluida yang bersirkulasi di dalam kolektor surya untuk kemudian dimanfaatkan guna berbagai aplikasi. [2] Kolektor surya pada umumnya mempunyai komponen yang terdiri dari: 1. Cover Berfungsi untuk mengurangi rugi panas secara konveksi ke lingkungan. 2. Absorber Berfungsi untuk menyerap panas dari radiasi cahaya matahari. 3. Kanal Berfungsi sebagai saluran transmisi fluida kerja. 4. Isolator Berfungsi meminimalisir kehilangan panas secara konduksi dari absorber menuju lingkungan. 5. Frame Berfungsi sebagai struktur pembentuk dan penahan beban kolektor. Terdapat tiga jenis kolektor surya yang diklasifikasikan ke dalam Solar Thermal Collector System dan juga memiliki korelasi dengan pengklasifikasian kolektor surya berdasarkan dimensi dan geometri dari receiver yang dimilikinya. [2] 1. Flat Plate Collectors (Kolektor Plat Datar) Kolektor surya merupakan sebuah alat yang digunakan untuk memanaskan fluida kerja yang mengalir kedalamnya dengan mengkonversikan energy radiasi matahari menjadi panas. Fluida yang 6

4 dipanaskan berupa cairan minyak, oli, dan udara kolektor surya plat datar mempunyai temperatur keluaran dibawah 95 C. dalam aplikasinya kolektor plat datar digunakan untuk memanaskan udara dan air. Keuntungan utama dari sebuah kolektor surya plat datar adalah bahwa memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah. Pada umumnya kolektor jenis ini digunakan untuk memanaskan ruangan dalam rumah, pengkondisian udara, dan proses-proses pemanasan dalam industri. [2] Struktur kolektor plat datar: 1. Glazing Untuk melindungi komponen di dalam kolektor dari dampak lingkungan. Penutup ini harus dibuat dari kaca yang dikeraskan dan memiliki co-efisien transmisi tinggi. 2. Absorber Plate Pelat absorber menyerap energi matahari dan mengubahnya menjadi energi panas. Absorber terbuat dari bahan konduktivitas tinggi seperti tembaga dengan lapisan selektif di atasnya untuk penyerapan maksimum radiasi matahari dan emisi radiasi inframerah minimal. 3. Flow Tubes Cairan yang mengalir melalui kolektor mengumpulkan panas dari pelat absorber. Perpindahan panas akan terjadi terutama melalui proses konduksi dan konveksi. Oleh karena itu, tabung harus terbuat dari bahan konduktivitas tinggi seperti tembaga. 4. Insulation 7

5 Isolasi termal mengurangi hilangnya panas yang tidak diinginkan dari bagian belakang dan samping kolektor. Isolasi juga harus mampu menahan suhu maksimum pelat absorber. 5. Header Header merupakan jalan utama fluida untuk didistribusikan ke flow tubes. Gambar Flat Plate Collector (Kolektor Plat Datar) dapat dilihat pada gambar 2.2. Gambar 2.2 Flat Plate Collector [3] 2. Concentrating Collector Jenis ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperature antara 100 C 400 C. Kolektor surya jenis ini mampu memfokuskan energi radiasi cahaya matahari pada suatu receiver, sehingga dapat meningkatkan kuantitas energi panas yang diserap oleh absorber. Spesifikasi jenis ini dapat dikenali dari adanya komponen konsentrator yang terbuat dari material dengan transmisivitas tinggi. Berdasarkan komponen absorber-nya jenis ini dikelompokan menjadi dua jenis yaitu Line Focus dan Point Focus. 8

6 Agar cahaya matahari selalu dapat difokuskan terhadap tabung absorber, concentrator harus dirotasi. Pergerakan ini disebut dengan tracking. Temperatur fluida melebihi 400 C dapat dicapai pada sistem kolektor ini. [2] 2.3: Struktur dari concentrating collector dapat dilihat pada gambar 1. Receiver Berfungsi untuk menangkap panas dari radiasi cahaya matahari. Kadang receiver juga diselimuti dengan kaca tabung transparan untuk mengurangi heat loss. 2. Concentrate reflective surface Berfungsi untuk mengkonsentrasikan panas radiasi cahaya matahari ke insulated tube yang berisi refrigeran yang menghantarkan panas dari kolektor ke boiler. 3. Tracking mechanism Berfungsi untuk merotasi tabung absorber agar fokus terhadap cahaya matahari. Gambar 2.3 Concentrating Collector [4] 9

7 3. Evacuated Tube Collector Jenis ini dirancang untuk menghasilkan energi panas yang lebih tinggi dibandingkan dengan dua jenis kolektor surya sebelumnya. Keistimewaannya terletak pada efisiensi transfer panasnya yang tinggi tetapi faktor kehilangan panasnya yang relatif rendah. Hal ini dikarenakan fluida yang terjebak diantara absorber dan covernya dikondisikan dalam keadaan vakum, sehingga mampu meminimalisasi kehilangan panas yang terjadi secara konveksi dari permukaan luar absorber menuju lingkungan. [5] Kolektor evacuated-tube memiliki sub kategori yang berbeda berdasarkan bahan yang digunakan dan kebutuhan aplikasi. Masa pakai evacuated tube bervariasi dari 5 hingga 15 tahun. Karakteristik utama dari kolektor evacuated tube harus: 1. Mampu bertahan dalam berbagai kondisi lingkungan, seperti hujan debu dan lain lain. 2. Mampu mempertahankan variasi suhu yang lebar. 3. Resistensi terhadap kebocoran pada setiap bagian dari sistem. 4. Stabil dan tahan lama. 5. Mudah diinstal. 6. Efisiensi dalam konversi energi. Gambar evacuated tube collector dapat dilihat pada gambar

8 Gambar 2.4 Evacuated Tube Collector [6] Koefisien Kerugian ( ) Panas hilang dari bagian atas pelat penyerap karena konveksi ala dan karena radiasi ke permukaan dalam dari pelat penutup kaca. Sebagian dari radiasi itu akan benar-benar melalui penutup kaca, tetapi dalam analisis ini hal itu akan diabaikan. Panas ini akan dikonduksikan oleh pelat kaca ke permukaan luarnya. Kemudian dipindahkan ke atmosfer luar secara konveksi dan radiasi. [1] 11

9 dengan: [8] Gambar 2.5 Perpindahan Panas Kolektor Surya Plat Datar [7] Kerugian panas ini dinamai kerugian atas (top loss), dinyatakan = U (T T )... (2.10) dimana: U = koefisien kerugian atas, W (m. K) T = temperatur plat (K) T = temperatur lingkungan(k) Kebalikan dari U, 1/U adalah jumlah tahanan terhadap perpindahan panas dari pelat ke lingkungan yang dinyatakan dengan sirkuit seri-pararel sederhana dalam gambar

10 Gambar 2.6 Sirkuit ekivalen untuk tahanan perpindahan panas Dalam sirkuit ini, melalui bagian atas kolektor, I U [8] a) h = koefisien konveksi (alam) dalam b) h = koefisen radiasi (ekivalen) dalam c) R = harga R dari kaca tebal / konduktivitas termal d) h = koefisien konveksi luar e) h = koefisien radiasi (ekivalen) luar Dimana satuan - satuan untuk koefisien konveksi dan koefisien radiasi adalah W/(m 2.K). Karena dalam suatu sirkuit pararel konduktansikonduktansi dijumlahkan, dan dalam suatu sirkuitseri tahanannya dijumlahkan, maka tahanan total dapat ditulis: [8] = (2.11) 13

11 a) koefisien konveksi alam Koefisien konveksi alam hi antara pelat-pelat miring yang dipanasi dari bawah telah dikorelasikan oleh Hollands dkk. untuk sudut miring lain antara 0 o dan 70 yang dinyatakan dalam bilangan Rayleigh (perbandingan gaya apung terhadap gaya viskos) dan sudut miring β. Koefisien tersebut dapat dengan mudah dinyatakan dari sela z, antara pelat penyerap dan penutup kaca, dengan sudut miring sebagai parameter. [8] Dan temperatur rata-rata (T m ): T =... (2.12) b) koefisien radiasi dalam (ekivalen) h ri Penukaran panas radiasi antara penyerap dan penutup adalah: q =... (2.13) yang dapat ditulis sebagai fungsi koefisien radiasi ekuivalen h ri sebagai: [8] q = h T T... (2.14) dimana: h =... (2.15) c) tahanan termal kaca dinyatakan dengan: R =... (2.16) 14

12 dimana: t = tebal kaca k = konduktivitas termal d) koefisien konveksi luar h dihitung dengan; h = V... (2.17) dimana: V = kecepatan angin dalam m/s e) koefisien radiasi luar ekivalen dapat ditulis: h =... (2.18) dimana temperatur langit diperkirakan oleh Swinbank adalah: T = T... (2.19) Temperatur luar T adalah dalam derajat Kelvin (K) Koefisien kerugian total U ditentukan dengan menambahkan koefisien kerugian bawah dari kolektor pada U, atau U = U + U... (2.20) Persamaan Empiris untuk Koefisien Kerugian U t Sebuah persamaan empiris disarankan untuk memperhitungkan ketergantungan sudut U t pada kemiringin : [8] U = (2.28) [. ( )] 15

13 dimana: N = jumlah kaca penutup F = (1 0.04h h )( N) C = 250{ (β 90 o )] Harga h = V W m. K Kondensor Kondensor adalah alat untuk membuat kondensasi bahan pendingin gas dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor merupakan jaringan pipa yang berfungsi sebagai pengembunan. Refrigeran yang yang dipompakan dari kompresor akan mengalami penekanan sehingga mengalir ke pipa kondensor, kemudian mengalami pengembunan. Dari sini refrigeran yang sudah mengembun dan menjadi zat cair akan mengalir menuju pipa evaporator. Kondensor sebagai alat penukar kalor berguna untuk membuang kalor dan mengubah wujud refrigeran dari uap menjadi cair. Faktor - faktor yang mempengaruhi kapasitas kondensor adalah: 1. Luas muka perpindahan panasnya meliputi diameter pipa kondensor, panjang pipa kondensor, dan karakteristik pipa kondensor. 2. Aliran udara pendinginnya secara konveksi natural atau aliran paksa oleh fan 3. Perbedaan suhu antara refrigeran dengan udara luar. 4. Sifat dan karakteristik refrigeran di dalam sistem. Kondensor ditempatkan di luar ruangan yang sedang didinginkan, agar dapat melepaskan panas saat mengkondensasi methanol pada proses desorpsi. Tekanan refrigeran yang meninggalkan kondensor harus cukup tinggi untuk mengatasi gesekan pada pipa dan tahanan dari alat ekspansi, sebaliknya jika tekanan di dalam kondensor sangat rendah dapat menyebabkan refrigeran tidak mampu mengalir melalui alat ekspansi. [9] 16

14 Klasifikasi Kondensor Menurut zat yang mendinginkannya, kondensor dapat dibagi menjadi tiga jenis yaitu: [9] 1. Kondensor Berpendingin Udara (Air Cooled Condenser) Air Cooled Condenser adalah kondensor yang menggunakan udara sebagai cooling mediumnya, biasanya digunakan pada sistem berskala rendah dan sedang dengan kapasitas hingga 20 ton refrigerasi. Air Cooled Condenser merupakan peralatan AC (Air Conditioner) standard untuk keperluan rumah tinggal (residental) atau digunakan di suatu lokasi di mana pengadaan air bersih susah diperoleh atau mahal. Untuk melayani kebutuhan kapasitas yang lebih besar biasanya digunakan multiple air cooled condenser. Udara sebagai pendingin kondensor dapat mengalir secara alamiah atau dialiri paksa oleh fan. Kulkas pada umumnya menggunakan kondensor berpendingin udara secara alamiah (konveksi natural) yang umum disebut sebagai kondensor statis. Fan dapat meniupkan udara kearah kondensor dalam jumlah yang lebih besar, sehingga dapat memperbesar kapasitas pelepasan panas oleh kondensor. Air Cooled Condenser dapat dilihat pada gambar 2.7. Gambar 2.7 Air Cooled Condenser [9] 17

15 2. Kondensor Berpendingin Air (Water Cooled Condenser) Kondensor jenis ini digunakan pada system yang berskala besar untuk keperluan komersil di lokasi yang mudah memperoleh air bersih. Kondensor jenis ini menjadi pilihan yang ekonomis bila terdapat suplai air bersih mudah dan murah. Pada umumnya kondensor seperti ini berbentuk tabung yang di dalamnya berisi pipa (tubes) tempat mengalirnya air pendingin. Uap refrigeran berada di luar pipa tetapi di dalam tabung (shell). Kondensor seperti ini disebut shell and tube water cooled condenser. Air yang menjadi panas, akibat kalor yang dilepas oleh refrigeran yang mengembun, kemudian air yang telah menjadi panas ini didinginkan di dalam alat yang disebut menara pendingin (cooling tower). Setelah keluar dari cooling tower, air menjadi dingin kembali dan disalurkan dengan pompa kembali ke kondensor. Dengan cara inilah pendingin disirkulasikan. Kondensor jenis ini biasanya digunakan pada sistem berkapasitas besar. Water cooled condenser dapat dilihat pada gambar 2.8. Gambar 2.8 Water Cooled Condenser [9] 3. Kondensor Berpendingin Campuran Udara dan Air (Evaporative Condenser) Kondensor jenis ini merupakan kombinasi dari kondensor berpendingin udara dan kondensor berpendingin air. Koil kondensor ini diletakkan 18

16 berdekatan dengan media pendinginnya yang berupa udara tekan dan air yang disemprotkan melalui suatu lubang nozzle. Kondensor jenis ini disebut juga evaporative condenser. Kondensornya sendiri berbentuk seperti kondensor dengan pendingin air, namun diletakkan di dalam menara pendingin. Percikan air dari atas menara akan membasahi muka kondensor jadi kalor dari refrigeran yang mengembun diterima oleh air dan kemudian diberi pada aliran udara yang mengalir dari bagian bawah ke bagian atas menara. Sebagai akibatnya air yang telah menjadi panas tersebut diatas, didinginkan oleh aliran udara, sehingga pada saat air mencapai bagian bawah menara, air ini sudah menjadi dingin kembali. Selanjutnya air dingin ini dipompakan ke bagian atas menara demikian seterusnya. Dalam negara yang bermusim empat, pada musim dingin sering kali tidak dibutuhkan percikan air dari atas menara, karena udara sudah cukup dingin dan mampu secara langsung menerima beban kondensor. Dalam keadaan seperti ini, dikatakan bahwa evaporative condenser dioperasikan secara kering. Maka evaporative condenser ini akan berfungsi seperti kondensor berpendingin udara. Gambar evaporative condenser dapat dilihat pada gambar 2.9. Gambar 2.9 Evaporative Condenser [9] 19

17 Analisis Kondensor Dua sistem A dan B yang berbeda suhunya, bila dihubungkan satu sama lain akan terjadi perubahan suhu sampai suhu keduanya sama besar (setimbang). Perubahan suhu itu terjadi karena aliran panas atau perpindahan dari A ke B atau sebaliknya. Ada suatu pendapat yang menyatakan bahwa aliran panas itu tidak lain adalah suatu perpindahan energi yang dapat dinyatakan dengan persamaan sebagai berikut: [9] Q = m. c. T... (2.29) dimana: Q = panas yang diserap atau dikeluarkan (W) m = massa benda (kg) c = panas jenis (kj/kg o C) T = selisih temperatur ( o C) Pada peristiwa melebur atau meleleh,panas yang diserap atau dikeluarkan oleh benda yang mengalami perubahan fase tersebut. Demikian juga pada peristiwa mendidih, mengembun dan sublimasi. Banyaknya panas persatuan massa benda pada waktu terjadi perubahan fase disebut panas laten (L). Q = m. L... (2.30) dimana: Q = panas yang diserap atau dikeluarkan pada waktu perubahan fase (kj) m = massa benda L = panas laten (kj/kg) Perhitungan panas yang dilepas air persatuan massa dapat dirumuskan sebagai berikut: Z = Cp (T T ) + L + Cp (T T )... (2.31) dimana: Z = panas yang dilepas air per satuan massa (kj/kg) 20

18 Cp w = panas jenis air (kj/kg.k) Cp es = panas jenis es (kj/kg.k) L = panas laten yang harus dilepas (kj/kg) T 3 = temperatur akhir rata rata es (K) Evaporator Evaporator dalam sistem refrigerasi adalah alat penukar kalor yang memegang peranan penting di dalam siklus refrigerasi, yaitu mendinginkan media sekitarnya Tujuan sistem refrigerasi adalah untuk membebaskan panas dari fluida seperti udara, air atau beberapa benda yang lain. Evaporator diletakkan dibagian unit pendingin dari lemari pendingin dan akan bersentuhan langsung dengan media yang akan didinginkan, yaitu air. Cairan metanol akan menguap pada saat temperatur adsorben naik atau pada saat pemanasan adsorben. Metanol akan mencair dikondensor dan cairannya akan terkumpul kembali di evaporator, dan malam hari temperatur adsorben akan turun perlahan lahan dan akan menyerap metanol. Akibatnya metanol akan menguap dan menyerap kalor dari sekitarnya sehingga temperatur akan turun. [10] Perpindahan Kalor di dalam Evaporator a. Koefisien Perpindahan Kalor Faktor yang mempengaruhi koefisien perpindahan kalor adalah kecepatan aliran fluida atau benda yang akan didinginkan, disamping itu makin besar luas bidang benda yang hendak diinginkan atau dekat dengan bidang pendingin juga mempengaruhi koefisien perpindahan kalor. Untuk temperatur penguapan refrigeran, temperatur benda atau fluida yang akan didinginkan akan dipengaruhi oleh kecepatan aliran dari zat yang hendak didinginkan. Di dalam evaporator,banyaknya perpindahan kalor dihitung berdasarkan perbedaan rata- rata temperatur, makin besar perbedaan temperatur, makin kecil ukuran penukar kalor (luas bidang perpindahan kalor) yang bersangkutan, namun dalam hal tersebut diatas, temperatur penguapannya menjadi rendah. 21

19 b. Kapasitas (Q) Pendingin di dalam Evaporator Kapasitas suatu mesin pendingin ialah kemampuan mesin tersebut untuk menyerap panas dari benda yang didinginkan, umumnya dinyatakan dalam kkal/jam atau btu/jam. Satuan lain yang sering dipakai ialah Ton Of Refrigeration (TR) atau Refrigeration Ton (RT). Satuan ini dihitung berdasarkan panas pencairan 1 ton es selama 24 jam. Dimana tiap 1 lb es yang mencair membutuhkan panas 144 btu, maka: 1RT = = (2.32) Kapasitas mesin pendingin pada umumnya ditentukan tiga hal, yaitu; jumlah refrigeran yang diuapkan tiap jam, temperatur penguapan refrigeran di dalam evaporator, jenis refrigeran yang digunakan Jenis Evaporator macam, yaitu : Berdasarkan bentuk dan permukaan koilnya, evaporator dibagi menjadi 3 1. Evaporator Pipa Telanjang (Bare Tube Evaporator) Evaporator ini umumnya terbuat dari tembaga atau baja. Untuk bahan tembaga biasanya digunakan pada evaporator yang berukuran kecil dimana refrigeran yang digunakan adalah selain dari ammonia. Sedangkan untuk bahan baja biasanya digunakan pada evaporator yang berukuran besar dimana refrigeran yang digunakan adalah ammonia. Gambar bare tube evaporator dapat dilihat pada gambar

20 Gambar 2.10 Bare Tube Evaporator [11] 2. Evaporator Pelat (Plate Surface Evaporator) Dalam evaporator jenis ini,piring digunakan sebagai permukaan untuk pemanasan, bukanlah tabung atau shell penukar kalor. Assembling daripada piring ini mempunyai kesamaan dengan piring penukar kalor yang dilengkapi dengan laluan uap dalam jumlah besar. Gambar plat surface evaporator dapat dilihat pada gambar Gambar 2.11 Plate Surface Evaporator [11] 23

21 3. Evaporator Bersirip (Finned Evaporator) Evaporator bersirip adalah tipe bare tube evaporator yang ditutupi dengan sirip. Ketika fluida (udara atau air) yang akan didinginkan mengalir melalui bare tube evaporator, terdapat banyak efek pendinginan dari refrigeran yang terbuang sia-sia karena kurangnya permukaan untuk mentransfer panas dari cairan ke refrigeran. Fluida cenderung mengalir di antara ruang terbuka dari tabung dan tidak bersentuhan langsung dengan permukaan kumparan, maka itu bare tube evaporator menjadi kurang efektif. Sirip pada permukaan luar dari bare tube evaporator meningkatkan kontak permukaan dari tabung logam dengan fluida dan meningkatkan laju perpindahan panas, sehingga finned evaporator lebih efektif dibandingkan dengan bare tube evaporator. Gambar finned evaporator dapat dilihat pada gambar Gambar 2.12 Finned Evaporator [11] Kalor (Q) Kalor adalah salah satu bentuk energi yang dapat mengakibatkan perubahan suhu. Pada abad ke 19 berkembang teori bahwa kalor merupakan fluida ringan yang dapat mengalir dari suhu tinggi ke suhu rendah, jika suatu benda mengandung banyak kalor, maka suhu benda itu tinggi (panas). 24

22 Sebaliknya, jika benda itu mengandung sedikit kalor, maka dikatakan benda itu bersuhu rendah (dingin). Kuantitas energi kalor (Q) dihitung dalam satuan joules (J). Laju aliran kalor dihitung dalam satuan joule per detik (J/s) atau watt (W). Laju aliran energi ini juga disebut daya, yaitu laju dalam melakukan usaha. [12] Kalor Laten Suatu bahan biasanya mengalami perubahan temperatur bila terjadi perpindahan kalor antara bahan dengan lingkungannya. Pada suatu situasi tertentu, aliran kalor ini tidak merubah temperaturnya. Hal ini terjadi bila bahan mengalami perubahan fasa. Misalnya padat menjadi cair (mencair), cair menjadi uap (mendidih) dan perubahan struktur kristal (zat padat). Energi yang diperlukan disebut kalor transformasi. Kalor yang diperlukan untuk merubah fasa dari bahan bermassa m adalah: [12] Q = L m... (2.33) dimana: Q = kalor laten zat (J) Le = kapasitas kalor spesifik laten (J/kg) m = massa zat (kg) Kalor Sensibel Tingkat panas atau intensitas panas dapat diukur ketika panas tersebut merubahtemperatur dari suatu subtansi. Perubahan intensitas panas dapat diukur dengan termometer. Ketika perubahan temperatur didapatkan, maka dapat diketahui bahwa intensitas panas telah berubah dan disebut sebagai panas sensibel. Dengan kata lain, kalor sensibel adalah kalor yang diberikan atau yang dilepaskan oleh suatu jenis fluida sehingga temperaturnya naik atau turun tanpa menyebabkan perubahan fasa fluida tersebut. [12] Q = m. C. T... (2.34) dimana: Q = kalor sensibel zat (J) 25

23 C p = kapasitas kalor spesifik sensibel (J kg. K) T = beda temperatur (K) m = massa benda Perpindahan Panas Perpindahan panas adalah salah satu dari displin ilmu teknik termalyang mempelajari cara menghasilkan panas, menggunakan panas, mengubah panas, dan menukarkan panas di antara sistem fisik. Perpindahan panas diklasifikasikan menjadi konduktivitas termal, konveksi termal, radiasi termal, dan perpindahan panas melalui perubahan fasa. Sebagai suatu gambaran mengenai tiga cara perpindahan panas dalam sebuah alat pemanas cairan surya, panas mengalir secara konduktif sepanjang pelat penyerap dan melalui dinding saluran. Kemudian panas dipindahkan ke fluida dalam saluran dengan cara konveksi. Apabila sirkulasi dilakukan dengan sebuah pompa, maka kita menyebutnya konveksi paksa. Pelat penyerap yang panas itu melepaskan panas ke pelat penutup kaca (umumnya menutupi kolektor) dengan cara konveksi alamiah dan dengan cara radiasi. [12] Perpindahan Panas Konduksi Perpindahan panas konduksi adalah proses perpindahan panas dari daerah yang bersuhu tinggi ke daerah yang bersuhu rendah dalam satu medium baik itu cair, padat, dan gas ataupun antara medium-medium yang berlainan yang bersinggungan secara langsung. Setiap benda mempunyai konduktivitas termal (kemampuan mengalirkan panas) tertentu yang akan mempengaruhi panas yang dihantarkan dari sisi yang panas ke sisi yang lebih dingin. Semakin tinggi nilai konduktivitas termal suatu benda, semakin cepat benda itu akan mengalirkan panas yang diterima dari satu sisi ke sisi yang lain. Dapat dikatakan bahwa energi dapat berpindah secara konduksi apabila laju perpindahan kalor berbanding dengan gradien suhu normal. [12] q A ~ T x 26

24 Panas mengalir secara konduksi dari dareah yang bertemperatur tinggi ke daerah yang bertemperatur rendah. Laju perpindahan panas dinyatakan dengan hukum Fourier. [12] dimana: q = laju perpindahan panas A = luas penampang dimana panas mengalir (m 2 ) = gradien suhu pada penampang k = konduktivitas thermal bahan (W/m 2 K) q = ka... (2.35) Proses perpindahan kalor secara konduksi bila dilihat secara atomik merupakan pertukaran energi kinetik antar molekul (atom), dimana partikel yang energinya rendah dapat meningkat dengan menumbuk partikel dengan energi yang lebih tinggi. Sebelum dipanaskan atom dan elektron dari logam bergetar pada posisi setimbang. Pada ujung logam mulai dipanaskan, pada bagian ini atom dan elektron bergetar dengan amplitudo yang makin membesar. Selanjutnya bertumbukan dengan atom dan elektron disekitarnya dan memindahkan sebagian energinya. Kejadian ini berlanjut hingga pada atom dan elektron di ujung logam yang satunya. Konduksi terjadi melalui getaran dan gerakan elektron bebas. Fourier telah memberikan sebuah model matematika untuk proses ini. Dalam hal satu dimensi, model matematikanya yaitu: [12] Q = ka... (2.36) dimana: Q = laju aliran energi (W) A = luas penampang (m 2 ) T = beda suhu (K) L = panjang (m) K = daya hantar konduktivitas termal (W/mK) 27

25 Perpindahan Panas Konveksi Perpindahan panas konveksi adalah proses perpindahan energi panas dengan kerja gabungan dari konduksi panas, penyimpanan, energi dan gerakan mencampur. Proses terjadi pada permukaan padat (lebih panas atau dingin) terhadap cairan atau gas (lebih dingin atau panas). Pada bagian tepi pelat terbentuk suatu daerah dimana pengaruh gaya viskos semakin meningkat. Gaya - gaya viskos dapat diterangkan dengan tegangan geser ( ) antara lapisan-lapisan fluida. Jika tegangan ini dianggap berbanding lurus dengan gradient kecepatan normal, maka dapat dirumuskan persamaan dasar untuk viskositas: [12] τ = μ... (2.37) Konstanta proporsional disebut viskositas dinamik. 1. Bilangan Prandtl (Pr) Bilangan Prandtl adalah bilangan tanpa dimensi yang merupakan fungsi dari sifat-sifat fluida. Bilangan Prandtl didefinisikan sebagai perbandingan viskositas kinematik terhadap difusitas thermal fluida yaitu: dimana: P =. C p = panas spesifik fluida (J/kg.K) = viskositas fluida (Pa.det) k = konduktivitas termal (W/m 2 K)... (2.38) 2. Bilangan Nusselt (Nu) dimana: h c = koefisien konveksi (W/m 2 K) N =. D = diameter efektif aliran fluida (m) k = konduktivitas termal fluida (W/mK)... (2.39) 28

26 Banyak rumusan yang telah dikembangkan untuk susunan aliran tertentu sehingga hubungan antara bilangan Nusselt, Reynolds dan Prandtl dapat dirumuskan: N = C(Re + Pr )...(2.40) Perpindahan Panas Radiasi Radiasi termal adalah radiasi elektromagnetik yang dipancarkan oleh suatu benda karena suhunya. Ada beberapa jenis radiasi elektromagnetik, radiasi termal hanyalah salah satu diantaranya. Apapun jenis radiasi itu, ia selalu merambat dengan kecepatan cahaya. Adapun kecepatan ini sama dengan hasil perkalian panjang-gelombang dengan frekuensi radiasi. [12] C = λ. v... (2.41) dimana: C = kecepatan cahaya λ = panjang gelombang v = frekuensi Perambatan radiasi termal berlangsung dalam bentuk kuantum - kuantum yang diskrit atau farik (discrete), setiap kuantum mengandung energi sebesar: [12] E = h. v... (2.42) dimana: h = 6,625 x J.s v = frekuensi Bila densitas energi diintegrasikan sepanjang seluruh panjang gelombang, maka energi total yang dipancarkan sebanding dengan pangkat empat suhu absolut atau sesuai dengan hukum Stefan-Boltzmann: [12] E = σt... (2.43) dimana: 29

27 E b = energi yang diradiasikan persatuan waktu dan persatuan luas (Watt/m 2 ) = konstanta Stefan-Boltzmann = 5,669 x 10-8 W/m 2.K 2 T = temperatur (K) Penukaran panas netto secara radiasi termal adalah: [12] q = σa(t T )... (2.44) dimana: = konstanta Stefan-Boltsman = 5,67 x 108 W/(m 2.K 2 ) A = luas bidang (m 2 ) T = temperatur (K) Adsorben Adsorben merupakan zat padat yang dapat menyerap partikel fluida dalamsuatu proses adsorpsi. Adsorben bersifat spesifik dan terbuat dari bahanbahan yang berpori. Ada beberapa jenis adsorben yang efektif digunakan untuk mesin pendingin adsorpsi, antara lain zeolit, silika gel, dan karbon aktif. Pemilihan jenis adsorben dalam proses adsorpsi harus disesuaikan dengan sifat dan keadaan zat yang akan diadsorpsi. Dalam pengujian ini jenis adsorben yang digunakan adalah karbon aktif. Karbon aktif merupakan suatu bahan berupa karbon armof yang sebagian besar teridiri atas karbon bebas serta memiliki permukaan dalam (internal surface) sehingga mempunyai kemampuan daya serap yang baik. Karbon aktif umumnya mengandung senyawa karbon hingga 85% sampai 95%. Karbon aktif dibagi atas 2 tipe, yaitu karbon aktif sebagai pemucat dan sebagai penyerap uap. Karbon aktif sebagai pemucat biasanya berbentuk bubuk yang sangat halus, digunakan dalam fase cair, dan berfungsi untuk memindahkan zat - zat pengganggu yang menyebabkan warna dan bau yang tidak diharapkan pada pelarut. Sementara karbon aktif sebagai penyerap uap biasanya berbentuk granular atau pelet yang sangat keras, digunakan pada fase gas, dan berfungsi untuk pengembalian pelarut, katalis, dan pemurnian gas. 30

28 Sesuai dengan kegunaannya sebagai adsorben, maka karbon aktif di dalam perdagangan diklasifikasikan sebagai bahan kimia, bukan sebagai bahan energi seperti halnya arang yang digunakan sebagai bahan bakar. Di pasaran ada dua tipe bahan kimia yang diperdagangkan, yaitu bahan kimia proanalis dan bahan kimia teknis. [12] Bahan kimia pro analis adalah bahan kimia yg memiliki kemurnian sangat tinggi (>99,5%) dan biasanya digunakan untuk keperluan laboratorium. Bahan kimia pro analis telah diteliti konsentrasinya secara kuantitatif di laboratorium tempat bahan kimia itu diproduksi. Untuk penggunaannya biasanya bahan kimia pro analis digunakan sebagai pereaksi baik itu primer atau sekunder di laboratorium. Sedangkan bahan kimia teknis adalah bahan kimia yg tidak memiliki kemurnian setinggi bahan kimia pro analis dan biasa dipergunakan dalam proses produksi karena harganya yang relatif jauh lebih murah dari bahan kimia pro analis. Bahan kimia teknis dihitung kadar / konsentrasinya hanya dengan hitungan stokiometri tanpa analisa secara kuantitatif. Bahan kimia teknis umumnya hanya digunakan sebagai larutan penambah atau larutan pembersih. Karbon aktif yang digunakan dapat dilihat pada gambar Gambar 2.13 Karbon Aktif 31

29 Karbon aktif yang digunakan dalam penelitian ini terbuat dari cangkang kelapa. Adapun sifat dari adsorben karbon aktif yang digunakan dapat dilihat pada tabel 2.1. Tabel 2.1 Sifat Adsorben Karbon Aktif [13] No Sifat Adsorben Karbon Aktif Nilai Sifat Karbon Aktif 1 Massa Jenis 352, ,629 m 3 /kg 2 Pore Volume 0,56 1,20 cm 3 /g 3 Diameter Rata - Rata Pori Å 4 Temperatur Regenerasi o C 5 Ukuran Karbon Aktif 3 mm Refrigeran Refrigeran adalah zat yang mengalir dalam mesin pendingin (refrigerasi) atau mesin pengkondisian udara. Zat ini berfungsi untuk menyerap panas dari benda atau udara yang didinginkan dan membawanya kemudian membuangnya ke udara sekeliling di luar benda Metanol Untuk terjadinya suatu proses pendinginan diperlukan suatu bahan yang mudah dirubah bentuknya dari gas menjadi cair atau sebaliknya. Dalam pengujian kali ini, refrigeran yang dipakai adalah metanol yang dapat dilihat pada gambar

30 Gambar 2.14 Metanol Adapun sifat Metanol dapat dilihat seperti tabel 2.2: Tabel 2.2 Sifat Metanol [14] Sifat Metanol Massa Jenis Titik Lebur Titik Didih Klasifikasi EU Panas Laten Penguapan 787 kg/m 3, cair o C 64,5 o C Flammable (F), Toxic (T) 1100 kj/kg Metanol juga dikenal sebagai metil alkohol, wood alcohol atau spiritus. Metanol merupakan bentuk alkohol paling sederhana. Pada keadaan atmosfer, metanol berbentuk cairan yang ringan, mudah menguap, tidak berwarna, mudah terbakar dan beracun dengan bau yang khas (berbau lebih ringan dari pada etanol). Metanol digunakan sebagai bahan pendingin anti beku, pelarut, bahan 33

31 bakar dan sebagai bahan aditif bagi etanol industri. Metanol diproduksi secara alami oleh metabolisme anaerobik oleh bakteri. Hasil proses tersebut adalah uap metanol (dalam jumlah kecil) di udara.setelah beberapa hari uap metanol akan teroksidasi oleh oksigen dengan bantuan sinar matahari menjadi karbon dioksida dan air Siklus Adsorpsi Siklus adsorpsi dari mesin pendingin tenaga surya ini dapat dilihat pada gambar Gambar 2.15 Siklus Dasar Refrigerasi Adsorpsi [1] Pada kondisi awal sistem berada pada tekanan dan temperatur rendah, adsorben memiliki konsentrasi refrigeran yang tinggi dan vessel lain terdapat refrigeran dalam bentuk gas (gambar a). Vessel yang terdapat adsorben dipanaskan yang mengakibatkan naiknya temperatur dan tekanan sistem sehingga 34

32 kandungan adsorbat yang ada di dalam adsorben berkurang atau menguap. Proses berkurangnya kandungan adsorbat pada adsorben pada kasus ini disebut desorpsi. Refrigeran yang terdesorpsi kemudian terkondensasi sebagai cairan di dalam labu kedua dengan dikeluarkannya panas ke lingkungan dimana tekanan dan temperatur sistem masih tinggi (gambar b). Pemanasan pada labu pertama dihentikan, lalu pada botol labu yang pertama terjadi perpindahan panas ke lingkungan sehingga tekanan sistem menjadi rendah. Tekanan sistem yang rendah menyebabkan adsorbat cair pada botol labu yang kedua menguap dan terserap kebotol pertama yang berisi adsorben. Proses terserapnya adsorbat ke adsorben pada kasus ini disebut adsorpsi. Proses adsorpsi menghasilkan efek pendinginan yang terjadi pada botol labu kedua, dimana pada tekanan rendah panas dari lingkungan diserap untuk menguap adsorbat (d) sampai sistem kembali ke kondisi awal. [1} 35

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sistem Mesin Pendingin Adsorpsi Sistem pendinginan adsorpsi mirip dengan siklus pendinginan kompresi uap. Perbedaan utama kedua siklus tersebut adalah gaya yang menyebabkan

Lebih terperinci

PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SATU UNIT MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA DENGAN LUAS KOLEKTOR 1,5 m 2

PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SATU UNIT MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA DENGAN LUAS KOLEKTOR 1,5 m 2 PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SATU UNIT MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA DENGAN LUAS KOLEKTOR 1,5 m 2 SKRIPSI Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Adsorption nomenclature [4].

BAB II DASAR TEORI. Gambar 2.1 Adsorption nomenclature [4]. BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah fenomena fisik yang terjadi saat molekul molekul gas atau cair dikontakkan dengan suatu permukaan padatan dan sebagian dari molekul molekul tadi mengembun

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

Perhatikan siklus dasar refrigerasi adsorpsi di bawah ini.

Perhatikan siklus dasar refrigerasi adsorpsi di bawah ini. Siklus adsorpsi adalah siklus termodinamika yang dapat digunakan untuk menghasilkan efek pendinginan, siklus ini menggunakan panas sebagai sumber energi utama untuk menghasilkan efek pendinginan (Ambarita,

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB II DASAR TEORI. 7 Universitas Indonesia

BAB II DASAR TEORI. 7 Universitas Indonesia BAB II DASAR TEORI 2.1 Adsorpsi 2.1.1 Pengertian Adsorpsi Adsopsi adalah proses dimana molekul-molekul fluida menyentuh dan melekat pada permukaan padatan (Nasruddin,2005). Adsorpsi adalah fenomena fisik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan,

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan, menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan, adsorpsi, dan penguapan (4 1) : Selama periode ini, sorber yang terus melepaskan panas ketika sedang terhubung ke evaporator,

Lebih terperinci

BAB II DASAR TEORI. Desorp/melepaskan

BAB II DASAR TEORI. Desorp/melepaskan BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat kepada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung (Indirect Cooling System) Sistem pendinginan tidak langsung (indirect Cooling system) adalah salah satu jenis proses pendinginan dimana digunakannya

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Simulator Pengertian simulator adalah program yg berfungsi untuk menyimulasikan suatu peralatan, tetapi kerjanya agak lambat dari pada keadaan yg sebenarnya. Atau alat untuk melakukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Pengertian Air Conditioner Air Conditioner (AC) digunakan untuk mengatur temperatur, sirkulasi, kelembaban, dan kebersihan udara didalam ruangan. Selain itu, air conditioner juga

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

PENGANTAR ILMU KIMIA FISIK. Subtitle

PENGANTAR ILMU KIMIA FISIK. Subtitle PENGANTAR ILMU KIMIA FISIK Subtitle PENGERTIAN ZAT DAN SIFAT-SIFAT FISIK ZAT Add your first bullet point here Add your second bullet point here Add your third bullet point here PENGERTIAN ZAT Zat adalah

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

BAB 4 ANALISA KONDISI MESIN

BAB 4 ANALISA KONDISI MESIN BAB 4 ANALISA KONDISI MESIN 4.1. KONDENSOR Penggunaan kondensor tipe shell and coil condenser sangat efektif untuk meminimalisir kebocoran karena kondensor model ini mudah untuk dimanufaktur dan terbuat

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013 1.2.3 AC Central AC central sistem pendinginan ruangan yang dikontrol dari satu titik atau tempat dan didistribusikan secara terpusat ke seluruh isi gedung dengan kapasitas yang sesuai dengan ukuran ruangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolektor Surya Plat Datar Kolektor suryaplat datar seperti pada gambar 2.1 merupakan kotak tertutup yang bagian atas dipasang kaca atau plastik transparan dengan lempengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

BAB III PERBAIKAN ALAT

BAB III PERBAIKAN ALAT L e = Kapasitas kalor spesifik laten[j/kg] m = Massa zat [kg] [3] 2.7.3 Kalor Sensibel Tingkat panas atau intensitas panas dapat diukur ketika panas tersebut merubah temperatur dari suatu subtansi. Perubahan

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

MODIFIKASI DAN PENGUJIAN EVAPORATOR MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA

MODIFIKASI DAN PENGUJIAN EVAPORATOR MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA MODIFIKASI DAN PENGUJIAN EVAPORATOR MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik JUNIUS MANURUNG NIM.

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN Kemas. Ridhuan 1), I Gede Angga J. 2) Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Metro Jl. Ki Hjar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Pendinginan Proses pendinginan merupakan proses pengambilan kalor/panas dari suatu ruang atau benda untuk menurunkan suhunya dengan jalan memindahkan kalor yang terkandung

Lebih terperinci

BAB 2 DASAR TEORI 2.1 ADSORPSI

BAB 2 DASAR TEORI 2.1 ADSORPSI BAB 2 DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat kepada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah II. TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan metode pengawetan alami yang sudah dilakukan dari zaman nenek moyang. Pengeringan tradisional dilakukan dengan memanfaatkan cahaya matahari untuk

Lebih terperinci

= Perubahan temperatur yang terjadi [K]

= Perubahan temperatur yang terjadi [K] BAB II DASAR TEORI 2.1 KALOR Kalor adalah salah satu bentuk energi. Jika suatu zat menerima atau melepaskan kalor, maka ada dua kemungkinan yang akan terjadi. Yang pertama adalah terjadinya perubahan temperatur

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain Fisika Umum (MA-301) Topik hari ini (minggu 5) Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Adsorpsi Adsorpsi adalah fenomena fisik yang terjadi saat molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan dan sebagian dari molekulmolekul tadi mengembun

Lebih terperinci

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744 A. Suhu dan Pemuaian B. Kalor dan Perubahan Wujud C. Perpindahan Kalor A. Suhu Kata suhu sering diartikan sebagai suatu besaran yang menyatakan derajat panas atau dinginnya suatu benda. Seperti besaran

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika Fisika Umum (MA-301) Topik hari ini Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan

Lebih terperinci

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari.

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. KALOR A. Pengertian Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan

Lebih terperinci

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur.

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur. KALOR Tujuan Pembelajaran: 1. Menjelaskan wujud-wujud zat 2. Menjelaskan susunan partikel pada masing-masing wujud zat 3. Menjelaskan sifat fisika dan sifat kimia zat 4. Mengklasifikasikan benda-benda

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENERGI MATAHARI Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Mesin pendingin BAB II TINJAUAN PUSTAKA Mesin pendingin merupakan mesin yang berfungsi untuk memindahkan panas dari lingkungan bersuhu rendah ke lingkungan bersuhu tinggi. Mesin pendingin dapat dibayangkan

Lebih terperinci

KEGIATAN BELAJAR 6 SUHU DAN KALOR

KEGIATAN BELAJAR 6 SUHU DAN KALOR KEGIATAN BELAJAR 6 SUHU DAN KALOR A. Pengertian Suhu Suhu atau temperature adalah besaran yang menunjukkan derajat panas atau dinginnya suatu benda. Pengukuran suhu didasarkan pada keadaan fisis zat (

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DASAR TEORI Absorbsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Adsorpsi. Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat pada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan

Lebih terperinci

KALOR SEBAGAI ENERGI B A B B A B

KALOR SEBAGAI ENERGI B A B B A B Kalor sebagai Energi 143 B A B B A B 7 KALOR SEBAGAI ENERGI Sumber : penerbit cv adi perkasa Perhatikan gambar di atas. Seseorang sedang memasak air dengan menggunakan kompor listrik. Kompor listrik itu

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split BAB II DASAR TEORI 2.1 AC Split Split Air Conditioner adalah seperangkat alat yang mampu mengkondisikan suhu ruangan sesuai dengan yang kita inginkan, terutama untuk mengkondisikan suhu ruangan agar lebih

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Absorpsi Siklus absorpsi adalah termodinamika yang dapat digunakan sebagai siklus refrigerasi dan pengkondisian udara yang digerakkan oleh energi dalam bentuk panas.

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini. Suhu dan Kalor

Fisika Umum (MA-301) Topik hari ini. Suhu dan Kalor Fisika Umum (MA-301) Topik hari ini Suhu dan Kalor RIVIEW Keadaan/Wujud Zat ES (H 2 O Padat) AIR (H 2 O Cair) UAP (H 2 O Gas) Secara mikroskopis, apa perbedaan ketiga jenis keadaan/wujud zat tersebut?

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

Fisika Dasar 13:11:24

Fisika Dasar 13:11:24 13:11:24 Coba anda gosok-gosok tangan anda, apa yang anda rasakan? 13:11:24 Apakah tangan anda menghangat? Kenapa bisa terjadi seperti itu? Mempelajari pengaruhdarikerja, aliranpanas, dan energi di dalam

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

- - KALOR - - Kode tujuh3kalor - Kalor 7109 Fisika. Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila.

- - KALOR - - Kode tujuh3kalor - Kalor 7109 Fisika. Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila. - - KALOR - - KALOR Definisi Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK TUNTAS 5 Siswa 5 40 TIDAK TUNTAS 6 Siswa 6 40 TIDAK

Lebih terperinci

BAB IV ANALISA KOMPONEN MESIN

BAB IV ANALISA KOMPONEN MESIN 4. Pipa saluran dari Kondensor menuju Hand expansion valve Bagian ini dirancang sebagai saluran yang mengalirkan metanol dari Kondensor ke hand expansion valve pada saat proses kondensasi berlangsung.

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi Standar Kompetensi 7. Menerapkan konsep suhu dan kalor 8. Menerapkan konsep fluida 9. Menerapkan hukum Termodinamika 10. Menerapkan getaran, gelombang, dan bunyi 11. Menerapkan konsep magnet dan elektromagnet

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem Refrigerasi Kompresi Uap merupakan system yang digunakan untuk mengambil sejumlah panas dari suatu barang atau benda lainnya dengan memanfaatkan

Lebih terperinci

BAB III DESAIN SISTEM REFRIGERASI ADSORPSI

BAB III DESAIN SISTEM REFRIGERASI ADSORPSI BAB III DESAIN SISTEM REFRIGERASI ADSORPSI 3.1 SISTEM REFRIGERASI ADSORPSI Desain dan peralatan sistem refrigerasi dengan menggunakan prinsip adsropsi yang direncanakan pada percobaan kali ini dapat dilihat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori 2.1.1 Pengertian Heat Exchanger (HE) Heat Exchanger (HE) adalah alat penukar panas yang memfasilitasi pertukaran panas antara dua cairan pada temperatur yang berbeda

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci