BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 Bab V Kesimpulan dan Saran Berisi tentang kesimpulan dari hasil pengujian serta analisa yang dilakukan secara teoritis serta saran untuk penelitian selanjutnya. BAB II TINJAUAN PUSTAKA 2.1. Energi Surya Matahari adalah suatu bola dari awan gas dengan suhu yang sangat panas. Diameter bola matahari adalah 1,39 x 10 9 km,sedangkan jauh rata-rata dengan bumi adalah 1,5 x km. Matahari berputar pada sumbunya dengan kecepatan sekali putar dalam empat minggu. Karena matahari terdiri dari kumpulan awan gas dan tidak solid maka bagian ekuatorialnya berputar sekali dalam 27 hari sedangkan kutub-kutubnya berputar sekali dalam 30 hari. Suhu efektif pada permukaan besarnya 5760 K. sedang pada inti temperaturnya dapat mencapai lebih kurang 8 x 10 6 sampai dengan 40 x 10 6 K.[Lit.12] Suatu teori yang akhir-akhir ini dapat diterima para ahli mengatakan bahwa radiasi gelombang elektromagnetik merupakan kombinasi dari gelombang elektrik arus bolak-balik berkecepatan tinggi dengan gelombang medan magnet yang menumbuhkan partikel-partikel energi dalam bentuk foton. Gelombang energi yang memancar melalui ruangan angkasa memberikan pancaran radiasi dengan panjang gelombang yang berbeda-beda. Radiasi gelombang elektromagnetik dikelompokkan pada panjang gelombang yang memberikan rangsangan energi yang lebih besar dimana semakin pendek panjang gelombang nya semakin besar energinya. Radiasi yang dipancarkan melalui permukaan

2 matahari mempunyai variasi panjang gelombang dari yang paling panjang (gelombang radio) sampai yang paling pendek (gelombang sinar X dan sinar gamma).[lit.7 hal. 290] Jarak rata-rata antara bumi dengan matahari R BM = 1,49 x10 11,sedangkan besar rapat radiasi adalah: 2 kalori cm 2 /menit = 2 langleys/menit = 2 x 10 4 kalori/m 2 menit = 1/3 x 10 3 kalori/m 2 dt. (Lit.2) Matahari memancarkan energi dalam bentuk radiasi ektromagnetik. Radiasi tersebut hanya sekitar 50% yang dapat diserap oleh bumi. Menurut pengukuran yang dilakukan oleh badan luar angkasa Amerika Serikat NASA (National Aeronautics and Space Administration) melalui misi ruang angkasanya pada tahun 1971,diperoleh data tentang besaran konstanta matahari yang harganya sama dengan 1353 Watt/m 2. Dari besaran tersebut 7,85% atau 105,8 Watt/m 2 dipancarkan melalui sinar ultraviolet, 47,33% atau Watt/m 2 dipancarkan oleh sinar yang dapat dilihat oleh manusia (visible light) dan 44,85% atau 606,8 Watt/m 2 dipancarkan oleh sinar infra merah. Pada dasarnya energi radiasi yang dipancarkan oleh sinar matahari mempunyai besaran yang tetap (konstan),tetapi karena peredaran bumi mengelilingi matahari dalam bentuk elips maka besaran konstanta matahari bervariasi antara 1308 Watt/m 2 dan 1398 Watt/m 2.Dengan berpedoman pada luas penampang bumi yang menghadap matahari dan yang berputar sepanjang tahun, maka energi yang dapat diserap oleh bumi besarnya adalah 751 x 10 kw-jam Tinjauan Perpindahan Panas

3 Sebagai suatu gambaran mengenai tiga cara perpindahan panas dalam sebuah alat pemanas, panas mengalir secara konduktif sepanjang pelat penyerap dan melaui dinding saluran. Kemudian panas dipindahkan ke fluida dalam saluran dengan cara konveksi; apabila dilakukan dengan sirkulasi dengan sebuah pompa, maka disebut konveksi paksa. Pelat penyerap yang panas itu melepaskan panas ke pelat penutup kaca (umumnya menutupi kolektor) dengan cara konveksi alamiah dan dengan cara radiasi. 1. Konduksi Jika pada suatu benda terdapat gradient suhu (temperature gradient), maka akan terjadi perpindahan energi dari bagian bersuhu tinggi ke bagian yangbersuhu rendah. Dapat dikatakan bahwa energi berpindah secara konduksi(conduction) atau hantaran dan bahwa laju perpindahankalor itu berbanding dengan gradient suhu normal: δq T : A x T q = - ka x u τ= μ y μ x Re = υ δq : A T x Jika dimasukkan konstanta proporsionalitas (proportionality constant) atau tetapan kesebandingan, maka : q = - T ka x dimana A adalah luas penampang tegak-lurus pada aliran panas (m 2 ) dt/dx adalah gradien temperatur dalam arah aliran panas,(k/m) dan q adalah laju perpindahan

4 kalor (Watt). Konstanta positif k disebut konduktivitas termal atau kehantaran (W/(m.K)), konstanta positif diberikan agar memenuhi hukum termodinamika yaitu kalor mengalir ke tempat yang lebih rendah dalam skala suhu. 2. Konveksi Pada bagian tepi pelat terbentuk suatu daerah dimana pengaruh gaya viskos semakin meningkat. Gaya-gaya viskos dapat diterangkan dengan tegangan geser ( τ ) antara lapisan-lapisan fluida. Jika tegangan ini dianggap berbanding lurus dengan gradient kecepatan normal, maka dapat dirumuskan persamaan dasar untuk viskositas : u τ= μ y Konstanta proporsional µ disebut viskositas dinamik. Pada permulaan, pembentukan lapisan batas laminarpada suatu jarak kritis karena sifat-sifat fluida, gangguan-ganguan kecil pada aliran itu membesar dan mulailah terjadi proses transsisi hingga akhirnya aliran menjadi turbulen. Karakterstik aliran ini ditentukan oleh kuantitas suatu besaran yang disebut bilangan Reynolds. Untuk aliran melintas pada pelat rata, bilangan Reynold didefenisikan sebagai : Re = μ x υ Dimana, µ ε adalah kecepatan aliran bebas (m/s); x adalah jarak dari tepi depan pelat (m); ϑ adalah viskositas kinematik fluida (m 2 /s) Transisi dari aliran laminar menjadi turbulen terjadi apabila Re > 5x10 5 walaupun untuk tujuan analisis angka Reynold kritis untuk transisi di atas pelat rata bisa dianggap 5x10 5, namun dalam situasi praktis nilai kritis ini sangat bergantung

5 pada kekasaran permukaan dan tingkat keturbulenan. Tetapi untuk aliran sepanjang pelat selalu turbulen untuk Re 4 x Pada daerah aliran turbulen, lapisan yang sangat tipis dekat pelat bersifat laminar (laminar sublayer), dan di sini aksi viskositas dan perpindahan kalor masih pemting. Daerah ini disebut lapisan buffer (buffer layer). Lebih jauh lagi, aliran menjadi sepenuhnya turbulen, dan mekanisme utama penukaran kalor dan momentum melibatkan bongkahbongkah makroskopik fluida yang bergerak. Udara yang mengalir di atas suatu permukaan logam panas,misalnya dalam saluran baja sebuah alat pemanas udara surya,dipanasi secara konveksi. Apabila saluran udara disebabkan oleh sebuah blower,disebut konveksi paksa; apabila disebabkan oleh gradien massa jenis,maka disebut konveksi alamiah. Pada umumnya,perpindahan panas konveksi dapat dinyatakan dengan hukum pendinginan Newton,sebagai berikut: ( ) q = ha T - T watt w s dimana h adalah koefisien konveksi,w/(m 2.K); A adalah luas permukaan,m 2 ; T w adalah temperatur dinding; T adalah temperatur fluida,k. Umumnya koefisien konveksi h dinyatakan dengan parameter tanpa dimenis yang disebut bilangan Nusselt, (menurut nama dari Wilhelm Nusselt),Nu=hdi/k, dimana k adalah konduktivitas panas. Karena aliran dalam pemanas cairan surya itu laminar dan tabung-tabungnya adalah relatif pendek, maka bilangan Nusselt rata-rata dan karena itu harga harga h dalam tabung dapat dicari dari grafik bilangan Nusselt. [Lit.1] 3. Radiasi

6 Radiasi termal adalah radiasi elektromagnetik yang dipancarkan oleh suatu benda karena suhunya. Ada beberapa jenis radiasi elektromagnetik,radiasi termal hanyalah salah satu diantaranya. Apapun jenis radiasi itu, ia selalu merambat dengan kecepatan cahaya, 3x10 10 m/s. kecepatan ini sama denga hasil perkalian panjang-gelombang denga frekuensi radiasi, Cλv= Dimana, C adalah kecepatan cahaya; λ adalah panjang gelombang dan ν adalah frekuensi.perambatan radiasi termal berlangsung dalam bentuk kuantumkuantum yang diskrit atau farik (discrete), setaip kuantum mengandung energi sebesar, E = hv Dimana h adalah 6,625 x J.s Bila densitas energi diintegrasikan sepanjang seluruh panjanggelombang,maka energi total yang dipancarkan sebanding dengan pangkat empat suhu absolut atau sesuai dengan hukum Stefan-Boltzmann :[Lit.2] EσT= b 4 Dimana, E b adalah energi yang diradiasikan persatuan waktu dan persatuan luas (Watt/m 2 ), dan σ adalah konstanta Stefan-Boltzmann yang nilainya ( σ ) = 5,669x10-8 W/m 2. K 4. Penukaran panas netto secara radiasi termal adalah: 4 4 ( ) q=σa T - T Watt 1 2 dimana σ adalah konstanta Stefan-Boltsman,5,67 x 10-8 W/(m 2.K 4 ); A adalah luas bidang,m 2,dan temperatur adalah derajat Kelvin pangkat empat,k 4.

7 Penggunaan energi surya meliputi pengaturan kedudukan permukaan pengumpul (kolektor) pada berbagai sudut dengan bidang horizontal. Sementara pengukuran radiasi pada permukaan horizontal di banyak tempat sudah dilaksanakan,pemanasan pada permukaan miring harus dihitung. Lapisan luar matahari yang disebut fotosfer memancarkan suatu spektrum radiasi yang kontiniu. Radiasi yang dipancarkan oleh permukaan matahari,e s,adalah sama dengan hasil perkalian konstanta Stefan-Boltzmann σ, pangkat empat temperatur permukaan absolute T 4 2 s, dan luas permukaan π ds, Eσπd = T W 2 4 s s s Dimana σ = 5,67 x 10-8 W/(m 2.K 4 ), temperatur permukaan T s dalam K,dan diameter matahari d s dalam meter. Pada radiasi ke semua arah, energi yang diradiasikan mencapai luas permukaan bola dengan matahari sebagai titik tengahnya. Jari-jari (R) adalah sama dengan jarak rata-rata antara matahari dan bumi. Luas permukaan bola adalah sama dengan 2 4π R,dan fluks radiasi pada satu satuan luas dari permukaan bola tersebut yang dinamakan iradiansi,menjadi: 2 4 σdsts G = W/m 2 2 4R Dengan garis tengah matahari 1,39 x 10 9, temperatur permukaan matahari 762 K,dan jarak rata-rata antara matahari dan bumi sebesar 1,5 x m, maka fluks radiasi per satuan luas dalam arah yang tegak lurus pada radiasi tepat di luar atmosfer bumi adalah G = ( ) ( ) ( ) -8 W (m.k ) 5, ,39 10 m 5, K = , 5 10 m W/m 2

8 Harga G ini disebut kontanta surya,g sc pengukuran yang baru-baru ini dilakukan oleh pesawat antariksa telah membenarkan harga G sc ini,yang kemudian telah diterima oleh NASA sebagai standar Kolektor Surya Plat Datar Kolektor surya plat datar mempunyai temperatur keluaran dibawah 95 C. Keuntungan utama dari sebuah kolektor surya plat datar adalah memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah. Pada umumnya kolektor jenis ini digunakan untuk memanaskan ruangan dalam rumah, pengkondisian udara, dan proses-proses pemanasan dalam industri. Tipe ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur di bawah 100 C. Spesifikasi tipe ini dapat dilihat dari absorber-nya yang berupa plat datar yang terbuat dari material dengan konduktivitas termal tinggi, dan dilapisi dengan cat berwarna hitam. Data radiasi surya pada bidang miring jarang diperoleh : karakteristik dari permukaan di sekitarnya berbeda antara satu tempat dengan yang lainnya, sehingga standarisasi pengukuran sukar dibuat. Misalnya, data untuk suatu permukaan miring yang menghadap tanah tertutup salju serta menerima komponenen radiasi karena pemantulan, harus dirinci dulu kondisi saljunya, yaitu sifat pantulnya. a. Koefisien radiasi dalam (ekivalen) h ri. Penukaran panas radiasi antara penyerap dan penutup adalah :

9 4 4 σa(t1 - T 2) q= ε ε 1 2 b. Tahanan termal kaca dinyatakan dengan R(kaca) = t k Dimana t adalah tebal kaca, m dan k adalah konduktivitas termal W/(m.K) c. Koefisien konveksi luar h o dihitung dengan h o = 5, V dimana V adalah kecepatan angin dalam m/s d. Koefisien radiasi luar ekivalen dapat ditulis sebagai H ro = 4 4 ( ) ε σ T -T c c langit T -T c langit W/(m 2.K) Dimana temperatur langit diperkirakan oleh Swinbank adalah T langit = 0,0552 (T 3/2 a ) Temperatur luar T a adalah dalam derajat Kelvin (K) Effisiensi termal a) Persamaan empiris untuk koefisien kerugian U t Sebuah persamaan empiris disarankan oleh S.A. Klein dan baru-baru ini dimodifikasi oleh Agarwal dan Larson untuk memperhitungkan ketergantungan sudut U t pada kemiringan β, U t - 1 é ù 2 2 N 1 s ( Tp + Ta)( Tp + Ta = + + ) C æt 1 p - T ö a h - é 0 2N + f -1ù 0,33 éep 0,05N( 1 e ù p T ç ) p N F êë + - úû + - ë ê è + ø û ú êë eg úû N

10 Dimana : N = jumlah kaca penutup C = 250[1-0,0044( β -90 o )] F = (1-0,04 h o + 0,0005h o 2 )(1+0,091N) Harga h o = 5,7 + 3,8 V W/m 2.K Dimana V adalah kecepatan angin Benda kelabu Benda kelabu (gray body) adalah benda yang mempunyai emisivitas monokromatik ( ò λ ) yang tidak bergantung dari panjang-gelombang. emisivitas monokromatik didefenisikan sebagai perbandingan antara daya emisi=monokromatik benda itu dengan daya emisivitas monokromatik benda hitam pada panjang-gelombang dan suhu yang sama. Penyerapan radiasi oleh permukaan ditandai oleh fraksi-fraksi dari jumlah ideal yang dipancarkan ( ε emisivitas) dan diserap ( α,absorpsivitas),misalnya,perpindahan panas yang terjadi dalam sebuah kolektor surya adalah perpindahan panas radiasi dari pelat penyerap ke pelat penutup kaca. Untuk pelat-pelat paralel semacam itu,hubungannya sangat bermanfaat 4 4 σa(t1 - T 2) q = ε ε 1 2 dimana ε1 dan ε 2 adalah emisivitas dari pelat-pelat penyerap dan kaca. Radiasi surya adalah radiasi gelombang pendek yang diserap oleh pelat penyerap sebuah kolektor surya dan diubah menjadi panas. Oleh sebab itu penyerap panas harus memiliki harga α yang cukup tinggi dalam batas yang masih praktis. Pelat penyerap,yang menjadi panas,memancarkan radiasi termal

11 dalam daerah panjang gelombang yang panjang (inframerah). Kerugian radiasi ini dapat dikurangi sehingga sangat kecil dengan cara menggunakan permukaan khusus yang memiliki harga absorpsivitas yang tinggi (α tinggi) dalam daerah panjang gelombang pendek (radiasi surya) dan harga emisivitas yang rendah ( ε rendah) dalam daerah inframerah. Permukaan semacam itu disebut permukaan selektif. Salah satu diantaranya adalah dengan memberikan warna hitam (cat hitam) pada permukaan penyerap. Pelat warna hitam memiliki memiliki harga α =0.98 dan ε =0.98. Sumber : [Lit.5] Gambar 2.1 Tabel Emisivitas Material Benda Hitam Bila seberkas sinar enrgi panas mengenai permukaan suatu benda, maka sebagian diserap,sebagian dipantulkan dan sebagian lainnya lagi diteruskan 4 melewati benda itu. Benda hitam memenuhi persamaan E b = σt hal ini karena tidak memantulkan sesuatu radiasi. Jadi benda hitam adlah, benda yang menyerap seluruh radiasi yang menompanya. E b disebut daya emisi (emissive power) benda-

12 hitam. Pada keseimbangan, energi yang diserap benda itu mesti sama dengan energy yang dipancarkan; sebab,jika tidak,tentu ada energi yang mengalir masuk atau keluar benda itu dan menyebabkan suhunya naik atau turun. Perbandingan daya emisi suatu benda dengan daya emisi benda hitam pada suhu yang sama ialah sama dengan absorpsivitas benda itu. Perbandingan itu disebut emisivitas : E Î= E b Î= a Sumber : [Lit. 7] Gambar 2.2. Grafik Perbandingan antara Daya Emisi Benda Hitam dengan Benda Kelabu dengan Daya Emisi Permukaan Nyata

13 Gambar 2.2 menunjukkan spektrum radiasi relatif dan benda hitam pada 3000 F dan benda kelabu ideal yang sebanding dengan emisivitas 0,6. Juga diberikan kurva yang menunjukkan tingkah laku kira-kira untuk permukaan yang nyata, yang mungkin sangat berbeda dari benda hitam ideal maupun benda hitam ideal. Adanya pergeseran titik maksimum kurva radiasi menjelaskan perubahan warna jika benda dipanaskan. Oleh karena itu pita panjang gelombang yang dapat dilihat oleh mata terletak 0,3 dan 0,7 µ m, maka hanya sebagian kecil saja spektrum energi radiasi pada suhu rendah dapat dilihat oleh mata. Ketika benda dipanaskan,intensitas maksimum digeser kearah panjang-gelombang pendek, dan tanda pertama yang memperlihatkan adanya kenaikan suhu benda ialah warna merah-tua. Dengan peningkatan suhu menjadi lebih tinggi, warna itu berubah menjadi merah cerah, kemudian kuning cerah dan akhirnya putih Mesin Pendingin Adsorpsi Siklus Ideal Mesin Pendingin Adsorpsi Adsorpsi dan desorpsi merupakan suatu proses yang dapat berlangsung secara reversibel. Adsorpsi merupakan proses exothermic dimana adsorben (padatan) dan adsorbat (fluida) melepaskan panas sehingga menyebabkan penurunan pergerakan molekul adsorbat yang mengakibatkan adsorbat tersebut menempel pada permukaan adsorben dan membentuk suatu lapisan tipis. Ketika panas diberikan kepada sistem tersebut maka pergerakan molekul adsorbat akan meningkat sehingga pada jumlah panas tertentu akan menghsailkan energi kinetik molekul adsorbat yang cukup untukmerusak gaya van der Waals antara adsorben dan adsorbat. Proses pelepasan adsorbat dari adsorben disebut

14 sebagai proses desorpsi, dimana proses ini membutuhkan energi panas sehingga disebut proses endothermic. Jumlah adsorbat yang terkandung didalam adsorban dapat digambarkan oleh garis isosters pada diagram tekanan vs temperatur (Ln P vs -1/T) seperti pada gambar 2.3. Sumber : Nishio A. FT UI (2008) Gambar 2.3 Diagram Tekanan vs Temperatur yang Menggambarkan Garis Isosters Mesin pendingin ini membutuhkan energi panas yaitu energi radiasi matahari yang digunakan sebagi energi untuk berlangsungnya proses pendinginan. Siklus pendingin adsorpsi dapat dilihat pada gambar 2.4. Sistem pendingin adsorpsi ini terdiri atas empat proses yang dapat dijelaskan sebagai berikut.

15 Sumber : [Lit.10] Gambar 2.4Diagram Clayperon pada Sistem Pendingin Siklus Adsorpsi 1. Proses Pemanasan (Pemberian Tekanan) Pada gambar 2.4 menjelaskan bahwa proses pemanasan dimulai dari titik A dimana adsorbent berada pada temperatur rendah T A dan pada tekanan rendah P e (takanan evaporator). Proses ini berlangsung pada siang hari,proses AB: Adsorber menerima panas sehingga temperatur adsorber meningkat dan diikuti oleh peningkatan tekanan dari tekanan evaporasi menjadi tekanan kondensasi. Selama proses ini tidak ada aliran metanol yang masuk maupun keluar dari adsorber. 2. Proses Desorpsi Pada gambar 2.4 menjelaskan proses desorpsi berlangsung pada waktu panas diberikan dari titik B ke D sehingga adsorber mengalami peningkatan temperatur yang menyebabkan timbulnya uap desorpsi. Sehingga, sehingga adsorbat yang berada pada adsorben dalam bentuk gas mengalir ke kondensor untuk mengalami proses kondensasi menjadi cair dan mengalir ke kondensor. 3. Proses Pendinginan (Penurunan Tekanan)

16 Pada gambar 2.4 menjelaskan proses pendinginan berlangsung dari titik D ke F yang berlangsung pada malam hari, adsorber melepaskan panas dengan cara didinginkan sehingga suhu di adsorber turun dan diikuti oleh penurunan tekanan dari tekanan kondensasi ke tekanan evaporasi. 4. Proses Adsorpsi Pada gambar 2.4 menjelaskan proses adsorpsi berlangsung dari titik F ke A, Adsorber terus melepaskan panas sehingga adsorber mengalami penurunan temperatur dan tekanan yang menyebabkan timbulnya uap adsorpsi. Adsorbat dalam bentuk uap dihasilkan dari proses penyerapan kalor oleh adsorbat dari air yang ada disekitar evaporator sebesar kalor laten penguapan adsorbat tersebut Perkembangan Mesin Pendingin Adsorpsi Perkembangan mutakhir di bidang refrigeran utamanya didorong oleh dua masalah besar dalam lingkungan, yakni lubang ozon dan pemanasan global. Sifat merusak ozon dimiliki oleh refrigeran utama yang digunakan yaitu CFCs (ChloroFluoro Carbons). (Molina dan Rowland 1974, diacu dalam Indartono 2006). Setelah keberadaan lubang ozon dilapisan atmosfer diverisifikasi secara saintifik, perjanjian internasional untuk mengatur dan melarang penggunaan zatzat perusak disepakati pada tahun 1987 yang terkenal dengan sebutan Protokol Montreal. Penggunaan CFCs dan HCFCs (Hydro Chloro Fluoro Carbons) merupakan dua refrigeran utama yang dijadwalkan untuk dihapuskan masingmasing pada tahun 1996 dan 2030 untuk negara negara maju. Sedangkan untuk negara Negara berkembang dijadwalkan untuk dihapus (phase- out) pada tahun 2010 (CFCs) dan 2040 (HCFCs) (Powell dalam Indartono, 2006). Pada tahun

17 1997, Protokol Kyoto mengatur pembatasan dan pengurangan gas-gas penyebab rumah kaca, termasuk HCFCs. Munculnya beberapa permasalahan pada refrigerasi siklus kompresi uap dalam dekade belakangan ini membuat para peneliti berusaha memunculkan sistem refrigerasi alternatif yang tidak mengandung permasalahan serupa. Teknologi alternatif tersebut diantaranya adalah refrigerasi sistem adsorpsi padatan (solid adsorption). Sistem adsorpsi padatan ini tidak menggunakan refrigeran yang merusak ozon, serta bisa memanfaatkan matahari dan panas buangan. Teknik pendinginan adsorpsi merupakan salah satu pilihan dari metode pendinginan yang dapat digunakan jika sumber listrik tidak ada dan sebagai pengganti refrigeran yang tidak ramah lingkungan. Metode pendinginan ini memerlukan sumber energi panas sebagai penghasil siklus pendinginan. Sumber energi tersebut dapat diperoleh dari biomassa, energi radiasi surya, maupun panas buangan. Perkembangan mesin ini telah dikenal pada tahun 1980 sampai sekarang, dimana M. Pons dan J.J. Guilleminot (1981) membuat alat mesin pendingin dengan menggunakan pasangan Zeolit air dan pasanganan karbon aktif metanol. Sokoda dan Suzuki (1984) dan Critoph et al (1988) melakukan studi kinerja siklus adsorpsi untuk pendingin surya. Vichan Tangkengsirin et al (1997) menggunakan pasangan silicagel air dan sumber panas dari energi surya. Siegfried Kreussler dan Detlef Bolz melakukan penelitian mesin pendingin solar adsorpsi menggunakan zeolit dan air, diperoleh energi pendingin sebesar 350 kj/kg zeolit dan COP 8 %. K Sumanthy (1999) melakukan percobaan alat

18 pendingin solar energi dengan pasangan karbon aktif -methanol, dan berhasil membuat es sebanyak 4 kg/hari dengan luas kolektor 0,92 m 2. Hildrand C, Dind P., Pons M., Butchter F.(2001), melakukan penelitian pada mesin pendingin menggunakan silica gel water dengan sumber panas kolektor surya dengan luas 2 m2 mendapatkan harga COP antara 0.10 sampai Sedangkan Wang D.C, Xia Z.Z, Zhai H, Wang R.Z dan Dou W.D.(2005), melakukan penelitian mesin pendingin adsorpsi menggunakan silica gel dan air, diperoleh Kapasitas pendinginan dan COP sebesar 7,15 kw dan 0,38. Beberapa penelitian pada sistem pendingin adsorpsi telah dilakukan di laboratorium Energi dan Elektrifikasi, diantaranya oleh Aep et al, (2002) telah melakukan penelitian mesin pendingin adsorpsi dengan menggunakan silicagel metanol dengan pembangkitan panas dari listrik, dari hasil penelitian dengan 3 kali pengujian dengan tekanan awal sebesar 5,4 kpa diperoleh temperature evaporator 10 C dengan pemanasan pada generator sebesar 72 C. Pada saat proses desorpsi yang berlangsung selama 7 jam, temperatur evaporator meningkat menjadi 26 C dengan lama proses selama 2 jam. Sedangkan pendinginan dengan menggunakan beban pendinginan dan tekanan awal 0.11 kpa (0.88 mmhg) dan suhu evaporator sebesar 24 C menurun menjadi 10 C dan terus meningkat karena adanya beban pendinginan air pada chiller dan berlangsung selama 7 jam yang mencapai 26 C. Pendinginan menghasilkan selisih C perbedaan suhu yang masuk dan keluar dari evaporator. Selain itu penelitian untuk melihat kinerja alat pendingin adsorpsi juga dilakukan oleh Setiono B, (2005) dimana hasil yang didapatkan menunjukkan besaran temperatur di evaporator 9.7 C pada tekanan 26.1 torr (3.48 kpa) tanpa

19 menggunakan beban pendinginan, sedangkan dengan menggunakan beban pendinginan didapatkan suhu evaporator sebesar 13.5 C pada tekanan 38.7 torr (5.16 kpa) dan 13.4 C pada tekanan 45.1 torr (6.01 kpa). Pada percobaan yang dilakukan ini berhasil menurunkan temperatur rata-rata 5 C. Tetapi pada penelitian ini proses awal yang dilakukan adalah proses evaporasi-adsorpsi, kemudian dilanjutkan dengan proses generasi-desorpsi. [Lit.14] 2.5. Adsorpsi, Adsorben, dan Adsorbat Adsorpsi Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat kepada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan padatan tersebut. Berbeda dengan absorpsi, dimana fluida terserap oleh fuida lainnya dengan membentuk suatu larutan. Untuk mengetahui karakteristik yang terjadi dalam proses adsorpsi dapat diilustrasikan dengan gambar 2.5, padatan berpori (pores) yang menghisap (adsorp) dan melepaskan (desorp) suatu fluida disebut adsorben. Molekul fluida yang dihisap tetapi tidak terakumulasi/melekat kepermukaan adsorben disebut adsorptive, sedangkan yang terakumulasi/melekat disebut adsorbat. Desorp/melepaskan

20 Sumber : Nishio A. FT UI (2008) Gambar 2.5. Adsorption Nomenclature Pada umumnya proses adsorpsi diklasifikasikan menjadi dua proses yaitu proses adsorpsi secara fisik yang disebabkan oleh gaya van der Waals, dan secara kimia yang disebabkan melalui reaksi kimia antara molekul-molekul adsorbat dengan atom-atom penyusun permukaan adsorben. Jika interaksi antara padatan dan molekul yang mengembun tadi relatif lemah, maka proses itu disebut sebagai adsorpsi fisik. Walaupun adsorpsi biasanya dikaitkan dengan perpindahan dari suatu gas atau cairan ke suatu permukaan padatan, perpindahan dari suatu gas ke suatu permukaan cairan juga terjadi. Substansi yang terkonsentrasi pada permukaan didefinisikan sebagai adsorbat dan material pada mana adsorbat terakumulasi didefinisikan sebagai adsorben. Pada dasarnya adsorben dibagi menjadi tiga yaitu, adsorben yang mengadsorpsi secara fisik (karbon aktif, silika gel dan zeolit), adsorben yang

21 mengadsorpsi secara kimia (calcium chloride, metal hydrides, dan complex salts ), dan compositeadsorbent adsorben yang mengadsorpsi secara kimia dan fisik. Adsorpsi Secara Fisika Proses adsorpsi atau penyerapan adalah fenomena fisik yang terjadi saat molekul-molekul gas atau cair dikontakan dengan suatu padatan dan sebagian dari molekul-molekul tadi mengembun pada permukaan padatan tersebut. Apabila interaksi antara padatan dan molekul yang mengembun tadi relatif lemah, maka proses ini disebut adsorpsi fisik yang terjadi hanya karena gaya van der Waals. Penyerapan yang digolongkan berdasarkan interaksi permukaan adsorben dengan adsorbat dapat dibagi menjadi dua jenis, yaitu penyerapan secara fisika (adsorpsi) dan penyerapan secara kimia (absorpsi). Pada adsorpsi jenis ini, adsorpsi terjadi tanpa adanya reaksi antara molekul-molekul adsorbat dengan permukaan adsorben. Molekul-molekul adsorbat terikat secara lemah karena adanya gaya van der Waals. Adsorpsi ini relatif berlangsung cepat dan bersifat reversibel (reversible). Karena dapat berlangsung di bawah temperatur kritis adsorbat yang relatif rendah, maka panas adsorpsi yang dilepaskan juga rendah. Adsorbat yang terikat secara lemah pada permukaan adsorben, dapat bergerak dari suatu bagian permukaan ke bagian permukaan lain. Peristiwa adsorpsi fisika menyebabkan molekul-molekul gas yang teradsorpsi mengalami kondensasi. Besarnya panas yang dilepaskan dalam proses adsorpsi fisika adalah kalor kondensasinya. Proses adsorpsi fisik terjadi tanpa memerlukan energi aktivasi, sehingga proses tersebut membentuk lapisan jamak (multilayers) pada permukaan adsorben. Ikatan yang terbentuk dalam adsorpsi fisika dapat diputuskan dengan

22 mudah, yaitu dengan cara degassing atau pemanasan pada temperatur C selama 2-3 jam. Sumber : [Lit.13] Gambar 2.6. Siklus Refrigerasi Adsorpsi (Clapeyron Diagram) Keterangan Gambar: Dalam adsorber: 1-2, panas masuk (pemanasan isosteric); 2-3, panas masuk (pemanasan isobarik dan desorpsi); 3-4, panas keluar (pendinginan isosteric) , panas keluar (pendinginan dan isobarikadsorpsi). Dalam evaporatorkondensor,:2-3 panas keluar (kondensasi isobarik);3-4 -1, efek pendinginan (isosteric refrigerant pendingin diri dan isobarikpenguapan). Pasangan adsorben dan adsorbat untuk adsorpsi fisik salah satunya adalah: Karbon aktif atau serat karbon aktif dengan amonia dan metanol Proses adsorpsi karbon aktif / metanol dankarbon aktif / amonia sama, dan larutan adsorbat akan mengisi dan memenuhi pori-pori adsorben. Adsorpsi biasanya terjadi pada micropores, dimana volume jenis sekitar ) 0,15-0,50 cm 3 g -1, dan area permukaansekitar 95% dari luas seluruh permukaan karbon aktif. Fungsi dari

23 besar pori adsorben yang relatif sedang dan besar sebagai penghantar molekul adsorbat ke mikropori. Karbon aktif - metanol merupakan salah satu yang paling umum digunakan, karena kuantitas adsorpsi besar dan panas adsorpsi rendah, yang sekitar kj / kg. Paling utama konsumsi panas dalam fase desorpsi berkaitan dengan panas adsorpsi, nilai nilai yang rendah dari panas adsorpsi bermanfaat bagi COP. Karbon aktif / metanol juga merupakan pasangan kerja yang sesuai untuk menggunakan panas matahari sebagai sumber panas karena suhu desorpsi rendah, dimana sekitar C. Suhu yang lebih tinggi dari C harus dihindari karena menurut Hu, dekomposisi metanol menjadi senyawa lain terjadi di atas suhu ini. Namun, karbon aktif / metanol tidak dapat bekerja secara maksimal di bawah tekanan subatmosfer. Perlunya vakum di dalam mesin pada saat menggunakan pasangan ini meningkatkan kompleksitas manufaktur, dan mengurangi keandalan sistem, bahkan sebuah infiltrasi udara kecil dapat mengubah efisiensi mesin. Pasangan karbon aktif - amonia biasa digunakan. Dibandingkan dengan karbon aktif - metanol,walaupun kedua pasangan memiliki panas adsorpsi yang sama, namun pasangan karbon aktif/ amonia memiliki keuntungan dari tekanan kerja yang lebih tinggi, yaitu sekitar 16 bar di kondensasi temperatur 40 0 C. Karena operasi yang lebih tinggi tekanan pasangan karbon aktif/ amonia memiliki kinerja perpindahan massa lebih baik, dan waktu siklus dapat dikurangi. Keuntungan lain dari karbon aktif/ amonia bila dibandingkan dengan pasangan karbon aktif/ metanol adalah kemungkinan untuk menggunakan sumber panas pada C atau di atas. Kerugian dari pasangan karbon aktif/ amonia

24 berhubungan dengan toksisitas dan bau menyengat dari amonia, ketidakcocokan antara amonia dan tembaga, dan kuantitas adsorpsi siklus yang lebih kecil, jika dibandingkan dengan nilai yang diperoleh dengan pasangan karbon aktif/ metanol, pada kondisi kerja yang sama [Lit.13] Faktor-faktor yang Mempengaruhi Adsorpsi Daya adsorpsi dipengaruhi oleh tiga faktor, yaitu : 1. Tekanan (P), Tekanan yang dimaksud adalah tekanan adsorbat. Kenaikan tekanan adsorbat dapat menaikan jumlah yang diadsopsi. 2. Temperatur absolut (T), Temperatur yang dimaksud adalah temperatur adsorbat. Pada saat molekul-molekul gas atau adsorbat melekat pada permukaan adsorben akan terjadi pembebasan sejumlah energi yang dinamakan pristiwa exothermic. Berkurangnya temperatur akan menambah jumlah adsorbat yang teradsopsi demikian juga untuk pristiwa sebaliknya. 3. Interaksi Potensial (E), interaksi potensial antara adsorbat dengan dinding adsorben sangat bervariasi, tergantung dari sifat adsorbat-adsorben. [Nishio A. FT UI 2008] Adsorben (Karbon Aktif) Luasnya permukaan spesifik, sangat mempengaruhi besarnya kapasitas penyerapan dari adsorben. Semakin luas permukaan spesifik dari adsorben, maka semakin besar pula kemampuan penyerapannya. Volume adsorben membatasi jumlah dan ukuran pori-pori pembentuk permukaan dalam (internal surface) yang

25 menentukan besar atau kecilnya permukaan penyerapan spesifik. Karakteristik adsorben yang dibutuhkan untuk adsorpsi : 1) Luas permukaannya besar, sehingga kapasitas adsorpsinya tinggi. 2) Memiliki aktifitas terhadap komponen yang diadsorp. 3) Memiliki daya tahan guncang yang baik. 4) Tidak ada perubahan volume yang berarti selama proses adsorpsi dan desorpsi. Adsorben Fisik Pada penelitian ini yang akan digunakan adalah karbon aktif. Karbon aktif dapat dibuat dari batu bara, kayu, gambut,tulang, kulit kacang dan tempurung kelapa melalui proses pyrolizing dan carburizing pada temperatur 700 sampai 800 C. Hampir semua adsorbat dapat diserap oleh karbon aktif kecuali air. Aktif karbon dapat ditemukan dalam bentuk bubuk dan granular. Pada umumnya karbon aktif dapat mengadsorpsi metanol atau amonia sampai dengan 30%, bahkan karbon aktif super dapat mengadsorpsi sampai dua kalinya. Bentuk butiran karbon aktif adalah seperti gambar 2.7. Sumber : Nishio A. FT UI (2008) Gambar 2.7 Bentuk Butiran Karbon Aktif

26 Struktur dari pori karbon aktif terdiri dari saluran yang tidak teratur, yang memiliki luas pori-pori yang lebih besar pada permukaan butiran, dan area pori sempit dalam butiran. Alasan di atas yang membedakan antara karbon aktif dan jenis lainnya adsorben adalah bentuk permukaan. Seluruh permukaan aktif karbon ditutupi oleh oksida matriks dan oleh beberapa bahan anorganik, dan karena itu karbon aktiv adalah non-polar atau memiliki polaritas lemah. Panas adsorpsi karbon pasangan aktif lebih rendah dari pada jenis lain atau pasangan adsorben fisik. Karbon aktif jenis serat umumnya digunakan dalam produksi kain, seperti pakaian, tisu, dll. Dibandingkan dengan karbon aktif jenis butiran, serat karbon mempunyai kinerja pindahan panas yang lebih baik. Permukaan karbon aktif jenis serat lebih besar daripada karbon aktif, pori-pori karbon aktif serat lebih seragam daripada karbon aktif, dan kinerja pindahan panas dari karbon aktif serat juga lebih besar dari karbon aktif. Kelemahan dari serat karbon aktif adalah anisotropicthermal conductivity, dan kontak resistansi termal antara serat yang tinggi terhadap dinding adsorber, bila dibandingkan dengan karbon aktif butiran.struktur karbon aktif dapat dilihat pada gambar 2.8.

27 Adsorbat (Refrigeran-Metanol) Sumber : [Lit.13] Gambar 2.8 Struktur Karbon Aktif Teknologi adsorpsi dapat digunakan tidak hanya untuk AC dan pendinginan tetapi juga untuk meng-upgrade panas dengan transformator termal, dan jenis refrigerant harus dipilih sesuai dengan aplikasi. Sifat-sifat yang harus dimiliki oleh refrigerant, antara lain : 1) panas penguapan laten tinggi per satuan volume atau unit massa, 2) stabilitas termal, 3) tidak berbahaya terhadap lingkungan 4) nonflammable, 5) tidak berbahaya, 6) saturasi tekanan antara 1 dan 5 atm pada suhu kerja (nilai sempurna akan mendekati 1 atm). Sayangnya, tidak ada refrigeran yang memiliki semua karakteristik di atas, dan refrigeran yang biasa di pakai untuk sistem pendingin adsorpsi adalah amonia, air dan metanol. Beberapa sifat fisik refrigeran untuk sistem adsorpsi ditunjukkan pada tabel 2.1 Tabel 2.1 Sifat Fisik Refrigeran [Lit.13] Some Physical of Common Refrigerants for Adsorption Systems Refrigerant Chemical Normal Molecular Latent heat of Density ρ x L Formula Boiling Point Weight vaporization ( o C) (mol) L (kj/kgk) ρ (kg/m 3 ) (ml/m 3 ) Ammonia NH Water H 2 O

28 Methanol CH 3 OH Ethanol C 2 H 5 OH Refrigeran dengan titik didih di bawah -10 o C pada 1 atm adalahrefrigeran tekanan positif, sedangkan yang lainnyarefrigeran vakum. Ammonia adalah contoh refrigeran tekanan positif, dan dapat digunakan dengan klorida, karbon aktif dan serat karbon aktif. Tekanan saturasi etanol dan metanol adalah sama, tetapi panas latenetanol adalah sekitar 30% lebih rendah dibanding metanol. Metanol biasanya digunakan dengan karbon aktif atau serat karbon aktif. Air dapat dianggap sebagai pendingin yang sempurna, kecuali untuk tekanan saturasi ekstrim yang rendah dan tidak mungkin untuk menghasilkan suhu di bawah 0 0 C. Biasanya air dipasangkan dengan gel silika atau zeolit. Refrigeran yangdigunakan untuk pendinginan pada penelitian ini adalah metanol. Metanol Di banyak hal kemampuan atau performa metanol berada diantara air dan ammonia. Metanol memiliki tekanan penguapan yang lebih tinggi dibandingkan dengan air (meskipun pada tekanan 1 atm), sehingga sangat cocok untuk membuat es. Meskipun demikian pada temperatur lebih dari C, tekanan menjadi tidak stabil. Untuk temperatur aplikasi lebih dari C adsorben yang biasa digunakan adalah karbon aktif, silika gel, dan zeolit.

BAB 2 DASAR TEORI 2.1 ADSORPSI

BAB 2 DASAR TEORI 2.1 ADSORPSI BAB 2 DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat kepada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan

Lebih terperinci

BAB II DASAR TEORI. 7 Universitas Indonesia

BAB II DASAR TEORI. 7 Universitas Indonesia BAB II DASAR TEORI 2.1 Adsorpsi 2.1.1 Pengertian Adsorpsi Adsopsi adalah proses dimana molekul-molekul fluida menyentuh dan melekat pada permukaan padatan (Nasruddin,2005). Adsorpsi adalah fenomena fisik

Lebih terperinci

BAB II DASAR TEORI. Desorp/melepaskan

BAB II DASAR TEORI. Desorp/melepaskan BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat kepada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Adsorption nomenclature [4].

BAB II DASAR TEORI. Gambar 2.1 Adsorption nomenclature [4]. BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah fenomena fisik yang terjadi saat molekul molekul gas atau cair dikontakkan dengan suatu permukaan padatan dan sebagian dari molekul molekul tadi mengembun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Adsorpsi. Adsorpsi adalah suatu proses yang terjadi ketika suatu fluida (cairan maupun gas) terikat pada suatu padatan dan akhirnya membentuk suatu film (lapisan tipis) pada permukaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

BAB II TINJAUAN PUSTAKA. berputar sekali dalam 27 hari sedangkan kutub-kutubnya berputar sekali dalam 30 hari (lit.7).

BAB II TINJAUAN PUSTAKA. berputar sekali dalam 27 hari sedangkan kutub-kutubnya berputar sekali dalam 30 hari (lit.7). BAB II TINJAUAN PUSTAKA.1. Energi surya Matahari adalah suatu bola dari awan gas dengan suhu yang sangat panas. Diameter bola matahari adalah 1,39 x 10 9 km,sedangkan jauh rata-rata dengan bumi adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Adsorpsi Adsorpsi adalah fenomena fisik yang terjadi saat molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan dan sebagian dari molekulmolekul tadi mengembun

Lebih terperinci

PENGANTAR ILMU KIMIA FISIK. Subtitle

PENGANTAR ILMU KIMIA FISIK. Subtitle PENGANTAR ILMU KIMIA FISIK Subtitle PENGERTIAN ZAT DAN SIFAT-SIFAT FISIK ZAT Add your first bullet point here Add your second bullet point here Add your third bullet point here PENGERTIAN ZAT Zat adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Surya Energi surya adalah energi yang didapat dengan mengubah energi panas surya (matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain. Sumber energi

Lebih terperinci

PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SATU UNIT MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA DENGAN LUAS KOLEKTOR 1,5 m 2

PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SATU UNIT MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA DENGAN LUAS KOLEKTOR 1,5 m 2 PENGEMBANGAN PERANGKAT LUNAK UNTUK SIMULASI SATU UNIT MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA DENGAN LUAS KOLEKTOR 1,5 m 2 SKRIPSI Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

Universitas Sumatera Utara BAB 2 TINJAUAN PUSTAKA

Universitas Sumatera Utara BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Umum Adsorpsi Adsorpsi atau juga yang biasa disebut dengan penyerapan, adalah suatu proses yang terjadi ketika fluida (cairan ataupun gas) terikat pada suatu padatan atau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Pendinginan Proses pendinginan merupakan proses pengambilan kalor/panas dari suatu ruang atau benda untuk menurunkan suhunya dengan jalan memindahkan kalor yang terkandung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DASAR TEORI Absorbsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

Pemanasan Bumi. Suhu dan Perpindahan Panas

Pemanasan Bumi. Suhu dan Perpindahan Panas Pemanasan Bumi Meteorologi Suhu dan Perpindahan Panas Suhu merupakan besaran rata- rata energi kine4k yang dimiliki seluruh molekul dan atom- atom di udara. Udara yang dipanaskan akan memiliki energi kine4k

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

MODIFIKASI DAN PENGUJIAN EVAPORATOR MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA

MODIFIKASI DAN PENGUJIAN EVAPORATOR MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA MODIFIKASI DAN PENGUJIAN EVAPORATOR MESIN PENDINGIN SIKLUS ADSORPSI YANG DIGERAKKAN ENERGI SURYA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik JUNIUS MANURUNG NIM.

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sejarah FORTRAN Pada tahun 1956, saat komputer masih digunakan terutama oleh para ilmuwan untuk menyelesaikan masalah matematis, bahasa FORTRAN pertama kali dikembangkan oleh

Lebih terperinci

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan,

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan, menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan, adsorpsi, dan penguapan (4 1) : Selama periode ini, sorber yang terus melepaskan panas ketika sedang terhubung ke evaporator,

Lebih terperinci

BAB IV ANALISA KOMPONEN MESIN

BAB IV ANALISA KOMPONEN MESIN 4. Pipa saluran dari Kondensor menuju Hand expansion valve Bagian ini dirancang sebagai saluran yang mengalirkan metanol dari Kondensor ke hand expansion valve pada saat proses kondensasi berlangsung.

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mesin Pendingin Mesin pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas ke suatu tempat yang temperaturnya

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A PREDIKSI 7 1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A B C D E 2. Pak Pos mengendarai sepeda motor ke utara dengan jarak 8 km, kemudian

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini.

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. Dari gambar dapat disimpulkan bahwa tebal keping adalah... A. 4,30 mm B. 4,50 mm C. 4,70

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

Qs Kalor sensibel zat [J] Q L Kalor laten Zat [J] ΔT Beda temperatur [ C] Δ Pads-evap. laju peningkatan rata-rata temperatur.

Qs Kalor sensibel zat [J] Q L Kalor laten Zat [J] ΔT Beda temperatur [ C] Δ Pads-evap. laju peningkatan rata-rata temperatur. Qs Kalor sensibel zat [J] Q L Kalor laten Zat [J] ΔT Beda temperatur [ C] Δ Pads-evap Perbedaan tekanan antara Adsorber dengan Evaporator [cmhg] laju peningkatan rata-rata temperatur pada adsorber [ ]

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Mesin pendingin BAB II TINJAUAN PUSTAKA Mesin pendingin merupakan mesin yang berfungsi untuk memindahkan panas dari lingkungan bersuhu rendah ke lingkungan bersuhu tinggi. Mesin pendingin dapat dibayangkan

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1. Perbedaan Suhu dan Panas Panas umumnya diukur dalam satuan joule (J) atau dalam satuan

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan 1 BAB I PENDAHULUAN 1.1. Latar belakang Sistem refrigerasi telah memainkan peran penting dalam kehidupan sehari-hari, tidak hanya terbatas untuk peningkatan kualitas dan kenyamanan hidup, namun juga telah

Lebih terperinci

KEGIATAN BELAJAR 6 SUHU DAN KALOR

KEGIATAN BELAJAR 6 SUHU DAN KALOR KEGIATAN BELAJAR 6 SUHU DAN KALOR A. Pengertian Suhu Suhu atau temperature adalah besaran yang menunjukkan derajat panas atau dinginnya suatu benda. Pengukuran suhu didasarkan pada keadaan fisis zat (

Lebih terperinci

Termodinamika. Energi dan Hukum 1 Termodinamika

Termodinamika. Energi dan Hukum 1 Termodinamika Termodinamika Energi dan Hukum 1 Termodinamika Energi Energi dapat disimpan dalam sistem dengan berbagai macam bentuk. Energi dapat dikonversikan dari satu bentuk ke bentuk yang lain, contoh thermal, mekanik,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

Beranda SK-KD Indikator Materi Latihan Soal Uji Kompetensi Referensi Penyusun. Rela Berbagi Ikhlas Memberi

Beranda SK-KD Indikator Materi Latihan Soal Uji Kompetensi Referensi Penyusun. Rela Berbagi Ikhlas Memberi RADIASI BENDA HITAM SMA Kelas XII Semester 2 Standar Kompetensi 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas Einstein dalam paradigma fisika modern

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

MODUL V FISIKA MODERN RADIASI BENDA HITAM

MODUL V FISIKA MODERN RADIASI BENDA HITAM 1 MODUL V FISIKA MODERN RADIASI BENDA HITAM Tujuan instruksional umum : Agar mahasiswa dapat memahami tentang radiasi benda hitam Tujuan instruksional khusus : Dapat menerangkan tentang radiasi termal

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744

Ditemukan pertama kali oleh Daniel Gabriel Fahrenheit pada tahun 1744 A. Suhu dan Pemuaian B. Kalor dan Perubahan Wujud C. Perpindahan Kalor A. Suhu Kata suhu sering diartikan sebagai suatu besaran yang menyatakan derajat panas atau dinginnya suatu benda. Seperti besaran

Lebih terperinci

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

FISIKA 2014 TIPE A. 30 o. t (s)

FISIKA 2014 TIPE A. 30 o. t (s) No FISIKA 2014 TIPE A SOAL 1 Sebuah benda titik dipengaruhi empat vektor gaya masing-masing 20 3 N mengapit sudut 30 o di atas sumbu X positif, 20 N mnegapit sudut 60 o di atas sumbu X negatif, 5 N pada

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

Perhatikan siklus dasar refrigerasi adsorpsi di bawah ini.

Perhatikan siklus dasar refrigerasi adsorpsi di bawah ini. Siklus adsorpsi adalah siklus termodinamika yang dapat digunakan untuk menghasilkan efek pendinginan, siklus ini menggunakan panas sebagai sumber energi utama untuk menghasilkan efek pendinginan (Ambarita,

Lebih terperinci

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT FISIKA MODERN Radiasi Benda Hitam 1. Suatu benda hitam pada suhu 27 0 C memancarkan energi sekitar 100 J/s. Benda hitam tersebut dipanasi sehingga suhunya menjadi 327 0 C.

Lebih terperinci

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK TUNTAS 5 Siswa 5 40 TIDAK TUNTAS 6 Siswa 6 40 TIDAK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Matahari atau juga disebut Surya adalah bintang terdekat dengan Bumi dengan jarak sekitar 149.680.000 kilometer (93.026.724 mil). Matahari adalah suatu bola gas yang pijar dan ternyata

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari. Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

KALOR SEBAGAI ENERGI B A B B A B

KALOR SEBAGAI ENERGI B A B B A B Kalor sebagai Energi 143 B A B B A B 7 KALOR SEBAGAI ENERGI Sumber : penerbit cv adi perkasa Perhatikan gambar di atas. Seseorang sedang memasak air dengan menggunakan kompor listrik. Kompor listrik itu

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 i KONDUKTIVITAS TERMAL LAPORAN Oleh: LESTARI ANDALURI 100308066 I LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 ii KONDUKTIVITAS

Lebih terperinci

PENGUKURAN SUHU MENGGUNAKAN THERMOMETER INFRA MERAH

PENGUKURAN SUHU MENGGUNAKAN THERMOMETER INFRA MERAH SEMINAR LITERATUR PENGUKURAN SUHU MENGGUNAKAN THERMOMETER INFRA MERAH ZULFA 0503111062 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS RIAU PEKANBARU 2009 1. PENDAHULUAN 1.1. LATAR

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Teori Dasar Perpindahan Kalor 2.1.1. Umum Penukaran Kalor sering dipergunakan dalam kehidupan sehari hari dan juga di gedung dan industri. Contoh kegiatan penukaran kalor dalam

Lebih terperinci

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N 1. Sebuah lempeng besi tipis, tebalnya diukur dengan menggunakan mikrometer skrup. Skala bacaan hasil pengukurannya ditunjukkan pada gambar berikut. Hasilnya adalah... A. 3,11 mm B. 3,15 mm C. 3,61 mm

Lebih terperinci