PEMODELAN d ALEMBERT PADA PERHITUNGAN KETEBALAN PERISAI BETON SISTEM AKSELERATOR ELEKTRON: RADIASI ELEKTRON DAN SINAR-X

Ukuran: px
Mulai penontonan dengan halaman:

Download "PEMODELAN d ALEMBERT PADA PERHITUNGAN KETEBALAN PERISAI BETON SISTEM AKSELERATOR ELEKTRON: RADIASI ELEKTRON DAN SINAR-X"

Transkripsi

1 PEMODELAN d ALEMBERT PADA PERHITUNGAN KETEBALAN PERISAI BETON SISTEM AKSELERATOR ELEKTRON: RADIASI ELEKTRON DAN SINAR-X Parikin Pusat Penelitian dan Pengembangan IPTEK Bahan, BATAN Alvano Yulian Pusat Pengembangan Perangkat Nuklir, BATAN Mohtar Pusat Penelitian dan Pengembangan IPTEK Bahan, BATAN ABSTRACT d ALEMBERT MODELING ON CALCULATION OF CONCRETE SHIELD THICKNESS FOR AN ELECTRON ACCELERATOR SYSTEM: ELECTRON AND X-RAY RADIATION. Radiation safety is a fundamental aspect and a requirement in planning the irradiation facility, such as an electron accelerator. The hazard of the system was high penetrating radiation exposure. The main subject of the design involve predicting the effective thickness of shield which can lower the radiation dose. The computer program can simulate the mechanism of measured radiation dose rate at the outer surface, relating with safety factor. The simulation has been done on evaluating the thickness of concrete for an accelerator system. Based on the ability of programming computer and significant parameters, the thickness has been calculated using half value layers iteration method, assuming source of the beam was point source and build-up factor was Berger form. The computing result of the concrete shield thickness limited by criteria of 2.5 mrem/h dose rate, gave illustration on suitable materials. Light concrete was good to minimize bremsstrahlung and heavy concrete was good to atenuate the particle (electron) radiation. ABSTRAK PEMODELAN d ALEMBERT PADA PERHITUNGAN KETEBALAN PERISAI BETON SISTEM AKSELERATOR ELEKTRON: RADIASI ELEKTRON DAN SINAR-X. Aspek keselamatan radiasi merupakan persyaratan mutlak dan landasan penting dalam perencanaan wujud suatu fasilitas iradiasi seperti akselerator elektron. Bahaya radiasi yang dapat timbul dalam sistem ini berupa paparan radiasi yang diloloskan terlalu tinggi. Pokok utama pembuatan desain berupa perhitungan ketebalan efektif perisai yang mampu menekan dosis paparan radiasi. Simulasi telah dilakukan untuk menunjukkan besarnya laju dosis dipermukaan luar, yang dikaitkan dengan faktor keselamatan, sebagai dasar dalam menentukan ketebalan perisai beton pada sistem akselerator elektron. Berdasarkan pada kemampuan program komputer dan parameter-parameter penting, perhitungan ketebalan dilakukan dengan proses iterasi ketebalan setengah (half value layers), faktor pelipat-gandaan Berger, dan menganggap sumber berkas adalah sumber titik (point source). Hasil perhitungan ketebalan perisai beton dengan batas kriteria laju dosis 2,5 mili rem/jam, memberikan gambaran terhadap pemilihan bahan perisai yang cocok. Beton ringan baik untuk meminimumkan bremsstrahlung sedang beton berat baik untuk menahan radiasi partikel (elektron). 31

2 PENDAHULUAN Salah satu faktor dalam pembuatan desain fasilitas iradiasi adalah faktor keselamatan. Faktor ini telah menjadi penelitian bertahun-tahun oleh para ahli, baik dari segi perencanaan bangunan maupun segi bahaya radiasi. Salah satu jenis fasilitas iradiasi adalah sistem akselerator elektron. Desain perisai sistem ini ditelusuri dari berbagai sebab yang menjadi bahaya, agar sistem dapat dioperasikan dengan baik dan aman. Pokok utama pada keselamatan sistem ini adalah usaha meniadakan paparan radiasi yang diloloskan. Bila tak dapat dihindari maka diupayakan dosis paparan radiasi yang diloloskan ditekan sekecil mungkin. Bahaya radiasi terjadi akibat dosis paparan yang mengenai bagian organ tubuh melebihi tingkat radiasi yang diizinkan (2,5 mrem/jam). Salah satu kemungkinan penyebabnya adalah tidak efektifnya perisai radiasi yang digunakan. Salah satu cara dalam menanggulangi bahaya radiasi adalah dengan mengestimasi ketebalan efektif dinding perisai, yang mampu melingkupi sistem pada kondisi yang paling buruk. Dinding mampu menghalangi seluruh radiasi yang muncul (radiasi utama dan radiasi sekunder), sehingga memenuhi faktor keselamatan kerja yang diharapkan. Pengkajian aspek keselamatan fasilitas iradiasi dilakukan dengan membuat simulasi sistem itu sendiri, terutama pada kasus laju dosis paparan yang diloloskan. Simulasi dibuat dengan program komputer untuk menghitung ketebalan perisai, yang dapat menelusuri fenomena dinamika radiasi saat dilakukan iterasi penambahan ketebalan setengah (half value layers). Dari program ini dapat diketahui pula pertambahan jumlah partikel yang dihamburkan kembali dan penurunan laju dosis yang diteruskan dengan variasi penambahan ketebalan. Gambaran umum dari sistem tersebut terdiri dari sistem akselerator elektron, sistem perisai penghalang dan detektor yang mencacah dosis paparan radiasi dipermukaan dinding luar (lihat Gambar 1). TEORI Akselerator elektron merupakan sumber berkas elektron didalam sistem. Bila partikel ini menumbuk material target dapat mengemisi sinar-x. Kejadian sinar-x akibat interaksi elektron dengan materi tertera dalam literatur [1]. Keadaan radiasi langsung (2θ=0) elektron sangat kuat. Alat ini bekerja pada arus 1,0 ma dan tegangan 0,4 sampai 10 MV[2]. Elektron yang dihasilkan tiap detik, S, dapat ditentukan dengan hubungan; S = i/e (elektron/det.) (1) 32

3 dimana i adalah arus listrik dalam amper dan e adalah muatan elektron dalam coulomb. Intensitas awal elektron, I o, pada jarak r yang dipancarkan oleh mesin berkas (sebagai sumber garis isotropik, l<<r) didekati dengan pesamaan [3], I o S L l/4πr 2 (elektron/cm 2 -det.) (2) dimana S L = S/lt adalah kekuatan sumber garis, l dan t adalah lebar jendela dan waktu operasi mesin. Berdasarkan energi elektron yang diradiasikan, fraksi energi elektron; F, yang diubah menjadi bremsstrahlung (sinar-x) ditentukan dengan[4], F = 3,5 x 10-4 Z Eo (3) dan besar energi bremstrahlung yang dibangkitkan adalah E γ =7,0 x 10-4 Z Eo 2. Selanjutnya kekuatan fluks yang terukur pada jarak r adalah[4], S(r) = (F S E av ) / 4πr 2 E o (foton/cm 2 -det) (4) dengan E av (MeV) = E o /3 adalah energi rata-rata elektron dan E o adalah energi elektron datang. Prinsip penentuan ketebalan dinding perisai dilakukan berdasarkan sinar-x yang datang tegak lurus terhadap permukaan dinding penghalang (2θ=0 )[5]. Oleh karena bentuk bangunan berupa ruang persegi, maka diperlukan konsep energi efektif elektron untuk arah hamburan yang fundamental (2θ=90 dan 180 ). Gambar 2 melukiskan hubungan energi efektif elektron pada arah hamburan 90 dengan energi elektron datang Eo. Konsep ini akan mempermudah proses perhitungan ketebalan dinding perisai. Perumusan energi efektif elektron untuk arah hamburan 90 terhadap energi elektron dari sumber adalah: E ef (MeV) = exp{-[(e o )/ ] 2 } (5) Persamaan ini merupakan hasil fitting data dari Gambar 2. Pelemahan radiasi oleh bahan perisai mengikuti persamaan d Alembert[6]; I t = Io exp(-µx) (5a) Pelemahan ini bergantung pada ketebalan (x) dan konstanta atenuasi media yang dilalui (µ). Satuan ketebalan yang sering digunakan adalah ketebalan 33

4 setengah, HVL yang didefinisikan[6]; t ½ = 0,693/µ. Pada perhitungan ketebalan perisai radiasi disini dilakukan dengan, x = j t ½ (6) dimana; x adalah ketebalan bahan perisai dalam cm, j adalah jumlah HVL bahan perisai dan t ½ adalah HVL bahan perisai. Karakteristik pelemahan sinar-x diteliti dalam tiga arah penjalaran yaitu arah radiasi langsung (2θ=0 ), arah 90 dan arah 180, karena berorientasi pada bentuk bangunan yang berupa kubus (kotak), dengan perumusan[2,6]; φ(x) = S exp(-µx)/4πx 2 (7) dengan x tebal perisai dan µ koefisien atenuasi linier bahan. Adapun perisai radiasi untuk tiga arah utama yang diselidiki adalah: Perisai sinar-x 0 Model ketebalan dinding ini ditentukan berdasarkan energi sinar-x yang sebanding dengan energi efektif elektron. Untuk sinar-x yang terhambur lurus ke muka (2θ=0 ), energi efektif elektron sama dengan energi elektron datang, Eo. Perisai sinar-x 90 Ketebalan dinding perisai untuk radiasi sinar-x arah 90 terhadap arah elektron datang, ditentukan dengan mensubsitusikan harga intensitas sinar-x pada arah 90 (φ 90 ), jarak target dan pengamat d(m) dan HVL bahan perisai untuk arah 90 [6]. Parameter tersebut diturunkan berdasarkan energi efektif elektron pada persamaan (5). Perisai sinar-x 180 Model ketebalan dinding perisai untuk radiasi sinar-x arah 180 terhadap arah elektron datang, dilakukan dengan mensubsitusikan intensitas arah 180, jarak target dan pengamat di belakang sistem akselerator dan energi efektif elektron pada arah 180. Karena pendesainan untuk kondisi yang paling aman maka untuk arah ini dibuat ekuivalen dengan kasus arah 90 [6]. 34

5 METODOLOGI Pada penelitian ini penentuan ketebalan dilakukan dengan simulasi program yang dapat menirukan proses pengukuran yang sebenarnya, dimana besar dosis ditentukan dengan menggunakan detektor. Dengan bantuan metode numerik, proses simulasi dilakukan mulai dari ketebalan setengah, HVL (j=1) material perisai untuk energi tertentu, mengikuti persamaan x j = j t ½. Intensitas dan laju dosis dihitung pada setiap penambahan ketebalan perisai. Iterasi terhenti saat batas kriteria tercapai. Dari data-data lampiran 4 dalam literatur [1] dengan cara linearisasi dan regresi diperoleh persamaan nomor massa fungsi nomor atom, A(Z), konstanta-konstanta berger fungsi energi sinar-x, a(eγ) dan b(eγ) dan koefisien pelemahan massa fungsi energi sinar-x, µ(eγ). A(Z) = 1, Z 1, (Z>18) A(Z) = 1, Z 1, (8<Z 18) A(Z) = 1, Z 1, (4<Z 8) A(Z) = 2, Z -1,58526 (Z 4) (8) µ(eγ) = 2,65 Eγ -2,,9173 (Eγ 0,08 MeV) µ(eγ) = 0,02522 Eγ -0, (Eγ 0,08 MeV) (9) Perumusan Berdasarkan bentuk dan geometri sumber berkas, yang berdiameter sangat kecil (1 milimeter) jika dibandingkan dengan jarak standar (1 meter), berkas elektron searah terfokus pada suatu noda kecil (small focal spot) pada target produksi sinar-x. Maka peninjauan kejadian radiasi ini dilakukan dengan sumber titik (point source) [2], dan diilustrasikan pada Gambar 3; Besar fluks di titik P pada jarak x dari sumber radiasi (titik) setelah diatenuasi oleh perisai setebal d dirumuskan dengan [2], φ t (x) = [So/4πx 2 ]exp(-µd) (10) dengan, So kuat sumber titik dan µ koefisien atenuasi linier bahan. Titik S dan P berada dipermukaan dinding maka jarak x sama dengan d, sehingga persamaan menjadi, φ t (d) = φo exp(-µd) (11) 35

6 dengan, φo = ω S(R), dimana S(R) kekuatan sumber titik sejauh jarak jangkauan elektron dan, 6 E o ( MeV / foton) x1.6 x10 ( erg / MeV ) µ ( cm / g) x 3600 (det./ jam) ϖ = (12) 100 ( erg / g rem) Konversi satuan dari rad ke rem dilakukan dengan mengalikan faktor kualitas Q partikel. Untuk elektron, sinar-x dan sinar-γ, harga Q = 1 sehingga rem = Q rad = rad [7]. Persamaan 11) diperbesar dengan faktor pelipat-gandaan berger, dengan pertimbangan Eγ yang ditimbulkan berskala 0,01 MeV dan sumber titik adalah isotropis [5]. B(d) = 1 + a(eγ) µ(eγ) d exp{b(eγ) µ(eγ)d} (13) Koefisien atenuasi linier µ M diperoleh dengan membagi koefisien atenuasi massa terhadap harga kerapatan material perisai. Laju dosis (fluks) total dipermukaan luar dinding perisai yang sudah dilipat-gandakan secara lengkap diformulasikan menjadi; 2 φ tot (d) = B φ t (d) (14) Harga ini telah ditentukan sebagai kriteria batas, sebesar 2,5 mrem/jam. Ketebalan total untuk menahan radiasi sinar-x yang terjadi didalam material perisai adalah d. Bagan Alir (flow chart) Proses perhitungan diawali dengan memasukkan harga parameter input, yang berupa arus listrik I(mA), lebar jendela akselerator L(cm), waktu operasional akselerator TA(menit), kerapatan massa material perisai RHOM(g/cm 3 ), nomor atom material Z, kriteria batas laju dosis total PITOT (2,5 mrem/jam), energi maksimum elektron Eo dan arah radiasi yang diamati 2θ (0, 90 atau 180 ). Bagan alir proses perhitungan program diberikan pada Gambar 4. HASIL DAN PEMBAHASAN Pada simulasi perhitungan ketebalan efektif perisai beton diambil kondisi yang paling buruk agar didapat suatu desain bangunan yang paling aman. Desain bangunan berupa kotak kubus, sehingga arah radiasi yang diselidiki adalah arah fundamental (0, 90 dan 180 ). Sumber berkas 36

7 berbentuk titik (point source) diameter 1 cm dan bekerja pada arus 5 ma. Elektron dari sumber diasumsikan monoenergi dan diprediksi dari 1 MeV hingga 10 MeV. Jangkauan energi tersebut mampu membangkitkan sinar-x dengan energi 0,0182 MeV hingga 1,82 MeV pada beton berat dan dari energi 0,0077 MeV hingga 0,77 MeV pada beton ringan. Hasil analisis perhitungan memperlihatkan bahwa ketebalan efektif perisai beton bergantung pada energi sumber berkas elektron dan arah hamburan yang diselidiki. Pada Gambar 5 diberikan pola jangkauan elektron didalam beton. Dapat dilihat kurva jangkauan meningkat linier sejalan dengan kenaikan energi elektron. Untuk energi 10 MeV jangkauan elektron mencapai 2,332 cm pada beton ringan, dan pada beton berat hanya 1,105 cm. Hasil lengkap disusun dalam Tabel 1. Secara fisis komposisi beton berat lebih rapat dari beton ringan, karena mengandung unsur berat Pb, yang menyebabkan penghalang colomb (coulomb barrier) agak sulit diterobos oleh elektron [4]. Gerak lintas elektron dalam beton berat boleh jadi lebih berliku-liku, seolah-olah elektron memilih jalan yang paling mudah dilalui (lintasan dengan medan energi lebih rendah dari energi yang dimilikinya). Untuk energi elektron datang 2 MeV [1], energi yang hilang per satuan panjang lintasan yang dilalui elektron pada beton berat sebesar 0,228 MeV/cm, sedang pada beton ringan 0,136 MeV/cm. Energi yang hilang ini sebagian besar digunakan untuk mengionisasi bahan dan karena keterbatasan energi, elektron terhenti diujung lintasan dengan melepaskan semua energi yang tersisa menjadi radiasi (panas/elektromagnetik). Keunggulan perisai beton berat terhadap radiasi partikel (elektron) ditunjukkan dari fraksi hamburan balik (back scattering) (Tabel tertera dalam literatur [1]). Pada ketebalan yang sama, elektron lebih banyak dihamburkan oleh beton berat dari pada beton ringan. Untuk energi 3 MeV [1] hampir setengah (f=0,5) intensitas elektron terhambur oleh ketebalan beton berat 0,034 cm sedang pada beton ringan fraksi hamburan itu terjadi pada ketebalan 0,062 cm. Fraksi hamburan ini tidak bergantung pada energi kinetik elektron datang, tetapi akan meningkat bila ketebalan bertambah. Kenaikan semakin kecil saat ketebalan mendekati harga jangkauan elektron. Pada ketebalan ini hampir semua elektron terhambur kembali (f 1,0) sehingga perbandingan antara intensitas elektron yang diteruskan dengan intensitas elektron yang datang mendekati nol ( 0). Hasil perhitungan laju dosis total dipermukaan dinding perisai memperlihatkan pola yang diinginkan, yakni menurun secara eksponensial (Gambar tertera dalam literatur [1]). Laju dosis menurun tajam pada penambahan ketebalan beberapa cm pertama. Ketika ketebalan meningkat, faktor atenuasi material dan jarak mengecil, laju dosis menurun lambat. Pola ini terjadi pada kedua macam bahan perisai. Kedua bahan ini memperlihatkan pula bahwa sinar-x lebih banyak terbentuk dalam beton 37

8 berat dari pada beton ringan. Untuk radiasi elektron berenergi 5 MeV, pada ketebalan 8,66 cm dalam bahan beton ringan laju dosis sinar-x yang terjadi 1,273 x 10 7 rem/jam, sedang dalam beton berat laju dosis sebesar 2,330 x 10 8 rem/jam terjadi pada ketebalan 5,61 cm. Kuantitas ini menurun ketika ketebalan bertambah. Laju dosis di permukaan dinding perisai beton ringan sebesar 9,039 x 10-3 rem/jam dengan ketebalan 255,84 cm, sedang pada ketebalan yang hampir sama (247 cm) di permukaan dinding perisai beton berat laju dosis yang timbul sebesar 6,303 x 10-3 rem/jam. Hal ini menunjukkan bahwa untuk meminimalkan bahaya bremstahlung lebih tepat dipakai bahan berkerapatan rendah, sedang untuk meminimalkan radiasi partikel baik dipakai bahan berkerapatan tinggi. Pada Gambar 6 dipelihatkan pola hubungan antara energi elektron dan ketebalan efektif perisai untuk radiasi sinar-x. Dari hasil perhitungan program, Untuk energi 2 MeV, ketebalan bahan perisai sinar-x untuk arah radiasi langsung pada beton berat sebesar 86,95 cm dan pada beton ringan sebesar 11,79 cm. Akan tetapi untuk mendapatkan kondisi bangunan fasilitas iradiasi yang aman, maka dinding perisai beton didesain dengan ketebalan yang dipertimbangkan untuk radiasi partikel (elektron) dan sinar-x, sehingga ketebalan efektif bahan perisai adalah jumlah dari jangkauan elektron dan ketebalan untuk sinar-x. KESIMPULAN Dari hasil pada tabel terlampir dapat disimpulkan bahwa perhitungan ketebalan perisai beton menggunakan model d'alembert dengan batas kriteria laju dosis 2,5 mili rem/jam, mampu memberikan gambaran terhadap pemilihan bahan perisai yang cocok. Beton ringan baik untuk meminimumkan bremsstrahlung sedang beton berat baik untuk menahan radiasi partikel (elektron), sehingga untuk maksud pertimbangan aspek proteksi radiasi atau keselamatan, dapat mengkombinasikan keduanya. Ketebalan efektif perisai beton berat (hampir 1 meter) pada arah radiasi langsung yang sangat membebani biaya pembuatan, dapat dihindari bila berkas elektron dari sumber akselerator didesain untuk diarahkan ke lantai (tanah) sehingga pembuatan dinding bangunan fasilitas iradiasi hanya untuk arah radiasi 90 dan 180 (ekuivalen arah radiasi 90 ). UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih pada (Alm.) Dr.RPH. Ismuntoyo, Mr. Eri Hiswara, Dr. Setiyanto, Dr.Wuryanto, APU dan Dra. M.M. Kasih Widyastuti dan staf, atas sumbangan tenaga dan pikirannya. 38

9 PUSTAKA 1. PARIKIN, Desain Perisai Radiasi Untuk Akselerator Elektron, Skripsi S1, FMIPA- Fisika,Universitas Indonesia, Jakarta (1993) 2. JAEGER, R.G., "Engineering Compendium on Radiation Shielding", Vol. I Shielding Fundamental and Methods, New York (1968) 3. GOUSSEV, N.G., KOVALEV, E.E., FODERARO, A., "Engineering Compendium on Radiation Shielding", Vol.I, Shielding Fundamental and Methods, New York (1968) CEMBER, HERMAN, "Introduction to Health Phisycs", Sec. Ed., Peargamon Press, New York (1983) JAEGER, R.G., "Engineering Compendium on Radiation Shielding", Vol. III Shielding Fundamental and Methods, New York (1968) 6. TSOULFANIDIS, N., "Measurements and Detection of Radiation", (1972) MARTIN,ALAN, A. HARBISON, SAMUEL, "An Introduction to Radiation Protection", Chapman and Hall Ltd., New York (1986)

10 Tabel 1. Hasil perhitungan model d Alembert pada ketebalan perisai beton. E elektron (MeV) Ketebalan Perisai Sinar-X (cm) Beton Ringan Beton Berat Sinar-X 0 Sinar-X 90 Sinar-X 0 Sinar-X ,79 0,93 86,95 6, ,02 312,94 255,31 234, ,49 432,59 309,55 298,50 E elektron (MeV) Jangkauan Elektron R(cm) Beton Ringan Beton Berat Elektron 0 Elektron 90 Elektron 0 Elektron ,41 0,25 0,19 0,12 5 1,13 0,89 0,54 0, ,32 2,08 1,11 0,99 Detektor Akselerator 90 0 Detektor Detektor Gambar 1. Gambaran umum sistem yang diteliti. 40

11 Gambar 2. Energi efektif elektron untuk mengilustrasikan karakteristik penyerapan sinar-x yang dihasilkan pada arah 90 dari berkas elektron datang. d S* *P x Gambar 3. Geometri sumber titik (point source)[2]. 41

12 Mulai ] Input Hitung, Energi efektif elektron arah 0, 90 dan 180 Hitung, Jarak jangkauan elektron Hitung, Fraksi energi elektron yang diubah Bremsstrahlung Kekuatan sumber sinar-x dalam bahan Hitung, Energi sinar-x Koefisien pelemahan massa,µ Konstanta Berger a,b Hitung, Pembanding laju dosis,ω Laju dosis awal,φ o Harga HVL,t½ Hitung, Ketebalan d(n)=do + t½ Laju dosis transmisi,φ t (n) Pelipat gandaan Berger,B(n) Laju dosis total,φ tot (n) No φ tot (n) 2,5 mrem/jam Yes Output Berhenti Gambar 4. Aliran program perhitungan. 42

13 Gambar 5. Jangkauan elektron didalam bahan beton. Gambar 6. Pola hubungan ketebalan efektif perisai sinar-x dengan energi elektron datang. 43

Desain Ulang Shielding Ruangan Linear Accelerator (Linac) untuk Keselamatan Radiasi Di Gedung 14 PSTA-BATAN Yogyakarta

Desain Ulang Shielding Ruangan Linear Accelerator (Linac) untuk Keselamatan Radiasi Di Gedung 14 PSTA-BATAN Yogyakarta Desain Ulang Shielding Ruangan Linear Accelerator (Linac) untuk Keselamatan Radiasi Di Gedung 14 PSTA-BATAN Yogyakarta Rendi Akhbar 1, Galih Anindita 2, dan Mochamad Yusuf Santoso 3 1,2,3 Program studi

Lebih terperinci

RANCANGAN AWAL PERISAI RADIASI MESIN BERKAS ELEKTRON DUET

RANCANGAN AWAL PERISAI RADIASI MESIN BERKAS ELEKTRON DUET RANCANGAN AWAL PERISAI RADIASI MESIN BERKAS ELEKTRON DUET Pusat Teknologi Akselerator dan Proses Bahan - Badan Tenaga Nuklir Nasional Jl. Babarsari Kotak Pos 6101 ykbb Yogyakarta 55281 Email : rany@batan.go.id

Lebih terperinci

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ).

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ). PELURUHAN GAMMA ( ) Peluruhan inti yang memancarkan sebuah partikel seperti partikel alfa atau beta, selalu meninggalkan inti pada keadaan tereksitasi. Seperti halnya atom, inti akan mencapai keadaan dasar

Lebih terperinci

PENENTUAN TEBAL PERISAI RADIASI PERANGKAT RADIOTERAPI EKSTERNAL Co-60 UNTUK POSISI PENYINARAN

PENENTUAN TEBAL PERISAI RADIASI PERANGKAT RADIOTERAPI EKSTERNAL Co-60 UNTUK POSISI PENYINARAN PENENTUAN TEBAL PERISAI RADIASI PERANGKAT RADIOTERAPI EKSTERNAL Co-60 UNTUK POSISI PENYINARAN Kristiyanti, Budi Santoso, Leli Yuniarsari, Wiranto B.S. Pusat Rekayasa Perangkat Nuklir - BATAN Kawasan Puspiptek

Lebih terperinci

PENENTUAN KEMBALI KOMPOSISI KOMPOSIT KARET ALAM TIMBAL OKSIDA SEBAGAI PERISAI RADIASI SINAR-X SESUAI KETENTUAN BAPETEN

PENENTUAN KEMBALI KOMPOSISI KOMPOSIT KARET ALAM TIMBAL OKSIDA SEBAGAI PERISAI RADIASI SINAR-X SESUAI KETENTUAN BAPETEN PENENTUAN KEMBALI KOMPOSISI KOMPOSIT KARET ALAM TIMBAL OKSIDA SEBAGAI PERISAI RADIASI SINAR-X SESUAI KETENTUAN BAPETEN Kristiyanti, Tri Harjanto, Suripto Pusat Rekayasa Perangkat Nuklir - BATAN E-mail

Lebih terperinci

ANALISIS PERHITUNGAN KETEBALAN KONTAINER PERALATAN BRAKITERAPI MDR UNTUK TERAPI KANKER LEHER RAHIM

ANALISIS PERHITUNGAN KETEBALAN KONTAINER PERALATAN BRAKITERAPI MDR UNTUK TERAPI KANKER LEHER RAHIM ANALISIS PERHITUNGAN KETEBALAN KONTAINER PERALATAN BRAKITERAPI MDR UNTUK TERAPI KANKER LEHER RAHIM Kristiyanti, Abdul Jalil Pusat Rekayasa Perangkat Nuklir, Kawasan Puspiptek Serpong 15314 Abstrak ANALISIS

Lebih terperinci

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF Leli Yuniarsari, Kristiyanti, Bang Rozali, Beny Syawaludin Pusat Rekayasa Perangkat

Lebih terperinci

OPTIMASI SHIELDING NEUTRON PADA THERMALIZING COLUMN REAKTOR KARTINI

OPTIMASI SHIELDING NEUTRON PADA THERMALIZING COLUMN REAKTOR KARTINI OPTIMASI SHIELDING NEUTRON PADA THERMALIZING COLUMN REAKTOR KARTINI Fidayati Nurlaili 1, M. Azam 1, K. Sofjan Firdausi 1, Widarto 2 1). Jurusan Fisika Universitas Diponegoro 2). BATAN DIY ABSTRACT Shield

Lebih terperinci

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF

PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF PERANCANGAN PERISAI RADIASI PADA KEPALA SUMBER UNTUK PESAWAT RADIOTERAPI EKSTERNAL MENGGUNAKAN CO-60 PADA POSISI BEAM OFF Leli Yuniarsari, Kristiyanti, Bang Rozali,Beny Syawaludin PRPN BATAN, Kawasan PUSPIPTEK,

Lebih terperinci

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60 PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60 Kristiyanti, Budi Santoso, Abdul Jalil, Sukandar PRPN BATAN, Kawasan PUSPIPTEK, Gedung 71, Tangerang Selatan, 15310 ABSTRAK. PERANCANGAN

Lebih terperinci

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60

PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60 PERANCANGAN RUANGAN RADIOTERAPI EKSTERNAL MENGGUNAKAN SUMBER Co-60 Kristiyanti, Budi Santoso, Abdul Jalil, Sukandar Pusat Rekayasa Perangkat Nuklir (PRPN) BATAN E-mail : kristiyantiwst@yahoo.com ABSTRAK

Lebih terperinci

VII. PELURUHAN GAMMA. Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi

VII. PELURUHAN GAMMA. Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi VII. PELURUHAN GAMMA Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi 7.1. PELURUHAN GAMMA TUJUAN INSTRUKSIONAL KHUSUS: Setelah mempelajari Sub-pokok

Lebih terperinci

PERANCANGAN RUANGAN RADIOGRAFI MEDIK DI SEKOLAH TINGGI TEKNIK NUKLIR

PERANCANGAN RUANGAN RADIOGRAFI MEDIK DI SEKOLAH TINGGI TEKNIK NUKLIR YOGYAKARTA, 3OKTOBER 0 PERANCANGAN RUANGAN RADIOGRAFI MEDIK DI SEKOLAH TINGGI TEKNIK NUKLIR Kristiyanti, Ferry Suyatno Pusat Rekayasa Perangkat Nuklir-BATAN Gd 7 Kawasan Puspiptek Serpong Email untuk korespondensi

Lebih terperinci

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10.

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10. ABSTRAK ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10. Benar Bukit, Kristiyanti, Hari Nurcahyadi Pusat Rekayasa Perangkat Nuklir-BATAN ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI

Lebih terperinci

PEMETAAN DOSIS RADIASI GAMMA DI FASILITAS KALIBRASI PTNBR UNTUK SUMBER 60 Co 400 GBq DENGAN MCNP5

PEMETAAN DOSIS RADIASI GAMMA DI FASILITAS KALIBRASI PTNBR UNTUK SUMBER 60 Co 400 GBq DENGAN MCNP5 PEMETAAN DOSIS RADIASI GAMMA DI FASILITAS KALIBRASI PTNBR UNTUK SUMBER 60 Co 400 GBq DENGAN MCNP5 Rasito, Rini H. Oetami, Tri Cahyo L., Endang Kurnia, Suhulman, Soleh Sofyan, dan Zaenal Arifin Pusat Teknologi

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kesehatan merupakan salah satu hal yang sangat penting dalam kehidupan manusia, bahkan bisa dikatakan tanpa kesehatan yang baik segala yang dilakukan tidak akan maksimal.

Lebih terperinci

BAB II Besaran dan Satuan Radiasi

BAB II Besaran dan Satuan Radiasi BAB II Besaran dan Satuan Radiasi A. Aktivitas Radioaktivitas atau yang lebih sering disingkat sebagai aktivitas adalah nilai yang menunjukkan laju peluruhan zat radioaktif, yaitu jumlah inti atom yang

Lebih terperinci

BAB II RADIASI PENGION

BAB II RADIASI PENGION BAB II RADIASI PENGION Salah satu bidang penting yang berhubungan dengan keselamatan radiasi pengukuran besaran fisis radiasi terhadap berbagai jenis radiasi dan sumber radiasi. Untuk itu perlu perlu pengetahuan

Lebih terperinci

METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA

METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA Kristiyanti, Tri Harjanto, Abdul Jalil Pusat Rekayasa Perangkat Nuklir BATAN Kawasan Puspiptek Gd 71 lt 2

Lebih terperinci

Partikel sinar beta membentuk spektrum elektromagnetik dengan energi

Partikel sinar beta membentuk spektrum elektromagnetik dengan energi Partikel sinar beta membentuk spektrum elektromagnetik dengan energi yang lebih tinggi dari sinar alpha. Partikel sinar beta memiliki massa yang lebih ringan dibandingkan partikel alpha. Sinar β merupakan

Lebih terperinci

PERANCANGAN KONSUL UNTUK OPERATOR PADA PEREKAYASAAN PESAWAT SINAR-X MAMOGRAFI

PERANCANGAN KONSUL UNTUK OPERATOR PADA PEREKAYASAAN PESAWAT SINAR-X MAMOGRAFI PERANCANGAN KONSUL UNTUK OPERATOR PADA PEREKAYASAAN PESAWAT SINAR-X MAMOGRAFI Rahmat, Budi Santoso, Kristiyanti Pusat Rekayasa Fasilitas Nuklir-BATAN ABSTRAK PERANCANGAN KONSUL UNTUK OPERATOR PADA PEREKAYASAAN

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Tempat dan Waktu Penelitian Penelitian ini dilakukan di laboratorium Komputasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret, Surakarta dengan

Lebih terperinci

EVALUASI TEBAL DINDING RUANGAN PESAWAT LINEAR ACCELERATOR (LINAC) SINAR-X DI INSTALASI RADIOTERAPI RUMAH SAKIT UNIVERSITAS HASANUDDIN

EVALUASI TEBAL DINDING RUANGAN PESAWAT LINEAR ACCELERATOR (LINAC) SINAR-X DI INSTALASI RADIOTERAPI RUMAH SAKIT UNIVERSITAS HASANUDDIN EVALUASI TEBAL DINDING RUANGAN PESAWAT LINEAR ACCELERATOR (LINAC) SINAR-X DI INSTALASI RADIOTERAPI RUMAH SAKIT UNIVERSITAS HASANUDDIN Ismail T., Syamsir Dewang, Bualkar Abdullah Jurusan Fisika, Fakultas

Lebih terperinci

SIMULATION FOR RADIATION SHIELDING DESIGN OF EBM-LATEX USING MCNP5

SIMULATION FOR RADIATION SHIELDING DESIGN OF EBM-LATEX USING MCNP5 Simulasi Desain Perisai Radiasi MBE-lateks Menggunakan MCNP5 (Darsono, Safirudin, M.Toifur) SIMULASI DESAIN PERISAI RADIASI MBE-LATEKS MENGGUNAKAN MCNP5 SIMULATION FOR RADIATION SHIELDING DESIGN OF EBM-LATEX

Lebih terperinci

KAJIAN LAJU PAPARAN RADIASI PADA TITIK PENGUKURAN DI REAKTOR KARTINI SEBAGAI DASAR PENENTUAN KONDISI BATAS OPERASI (KBO)

KAJIAN LAJU PAPARAN RADIASI PADA TITIK PENGUKURAN DI REAKTOR KARTINI SEBAGAI DASAR PENENTUAN KONDISI BATAS OPERASI (KBO) KAJIAN LAJU PAPARAN RADIASI PADA TITIK PENGUKURAN DI REAKTOR KARTINI SEBAGAI DASAR PENENTUAN KONDISI BATAS OPERASI (KBO) Mahrus Salam, Supriyatni dan Fajar Panuntun, BATAN jl Babarsari Po box 6101 ykbb

Lebih terperinci

KUMPULAN SOAL FISIKA KELAS XII

KUMPULAN SOAL FISIKA KELAS XII KUMPULAN SOAL FISIKA KELAS XII Nada-Nada Pipa Organa dan Dawai Soal No. 1 Sebuah pipa organa yang terbuka kedua ujungnya memiliki nada dasar dengan frekuensi sebesar 300 Hz. Tentukan besar frekuensi dari

Lebih terperinci

UJI KESESUAIAN PESAWAT CT-SCAN MEREK PHILIPS BRILIANCE 6 DENGAN PERATURAN KEPALA BAPETEN NOMOR 9 TAHUN 2011

UJI KESESUAIAN PESAWAT CT-SCAN MEREK PHILIPS BRILIANCE 6 DENGAN PERATURAN KEPALA BAPETEN NOMOR 9 TAHUN 2011 UJI KESESUAIAN PESAWAT CT-SCAN MEREK PHILIPS BRILIANCE 6 DENGAN PERATURAN KEPALA BAPETEN NOMOR 9 TAHUN 2011 Ivonne Chirsnia 1, Dian Milvita 1, Heru Prasetio 2, Helfi Yuliati 2 1 Jurusan Fisika FMIPA Universitas

Lebih terperinci

PRIMA Volume 8, Nomor 1, Juni 2011 ISSN : DESAIN PINTU RUANG PESAWAT SINAR-X DARI BAHAN KOMPOSIT KARET ALAM TIMBAL OKSIDA

PRIMA Volume 8, Nomor 1, Juni 2011 ISSN : DESAIN PINTU RUANG PESAWAT SINAR-X DARI BAHAN KOMPOSIT KARET ALAM TIMBAL OKSIDA ABSTRAK DESAIN PINTU RUANG PESAWAT SINAR-X DARI BAHAN KOMPOSIT KARET ALAM TIMBAL OKSIDA Sri Mulyono Atmojo*Krismawan*Abdul Jalil* *Pusat Rekayasa Perangkat Nuklir-BATAN Telah dilakukan perancangan pintu

Lebih terperinci

Perancangan Keselamatan Ruangan Radiologi Pesawat Sinar-X Di PSTA BATAN Yogyakarta

Perancangan Keselamatan Ruangan Radiologi Pesawat Sinar-X Di PSTA BATAN Yogyakarta Proceeding 1 st Conference on Safety Engineering and Its Application ISSN No. 581 1770 Perancangan Keselamatan Ruangan Radiologi Pesawat Sinar-X Di PSTA BATAN Yogyakarta M. Tekad Reza R 1, Galih Anindita,

Lebih terperinci

Metode Monte Carlo adalah metode komputasi yang bergantung pada. pengulangan bilangan acak untuk menemukan solusi matematis.

Metode Monte Carlo adalah metode komputasi yang bergantung pada. pengulangan bilangan acak untuk menemukan solusi matematis. Bab II. Teori Dasar II.1. Metode Monte Carlo Metode Monte Carlo adalah metode komputasi yang bergantung pada pengulangan bilangan acak untuk menemukan solusi matematis. Metode ini sering digunakan untuk

Lebih terperinci

PENGUNGKUNGAN SUMBER 85 Kr, 133 Xe, 198 Au, DAN 24 Na PASCA IRADIASI

PENGUNGKUNGAN SUMBER 85 Kr, 133 Xe, 198 Au, DAN 24 Na PASCA IRADIASI PENGUNGKUNGAN SUMBER 85 Kr, 133 Xe, 198 Au, DAN 24 Na PASCA IRADIASI Wijono, Pujadi, dan Gatot Wurdiyanto Pusat Teknologi Keselamatan dan Metrologi Radiasi - BATAN ABSTRAK PENGUNGKUNGAN 85 Kr, 133 Xe,

Lebih terperinci

Analisis Persamaan Respon Dosis Thermoluminescent Dosimeter (TLD) Pada Spektrum Sinar-X Menggunakan Metode Monte Carlo

Analisis Persamaan Respon Dosis Thermoluminescent Dosimeter (TLD) Pada Spektrum Sinar-X Menggunakan Metode Monte Carlo Analisis Persamaan Respon Dosis Thermoluminescent Dosimeter (TLD) Pada Spektrum Sinar-X Menggunakan Metode Monte Carlo Merina Handayani 1, Heru Prasetio 2, Supriyanto Ardjo Pawiro 1 1 Departemen Fisika,

Lebih terperinci

Rekayasa Bahan untuk Meningkatkan Daya Serap Terhadap Gelombang Elektromagnetik dengan Matode Deposisi Menggunakan Lucutan Korona

Rekayasa Bahan untuk Meningkatkan Daya Serap Terhadap Gelombang Elektromagnetik dengan Matode Deposisi Menggunakan Lucutan Korona Rekayasa Bahan untuk Meningkatkan Daya Serap Terhadap Gelombang Elektromagnetik dengan Matode Deposisi Menggunakan Lucutan Korona Vincensius Gunawan.S.K Laboratorium Fisika Zat Padat, Jurusan Fisika, Universitas

Lebih terperinci

BAB IV PERHITUNGAN DOSIS SERTA ANALISIS PENGARUH UKURAN MEDAN PAPARAN TERHADAP OUTPUT BERKAS FOTON

BAB IV PERHITUNGAN DOSIS SERTA ANALISIS PENGARUH UKURAN MEDAN PAPARAN TERHADAP OUTPUT BERKAS FOTON 33 BAB IV PERHITUNGAN DOSIS SERTA ANALISIS PENGARUH UKURAN MEDAN PAPARAN TERHADAP OUTPUT BERKAS FOTON Kita telah melakukan simulasi dengan berbagai settingan peralatan yang telah ditetapkan sebelumnya.

Lebih terperinci

Suparno, Anda Sanusi - PENENTUAN WAKTU PENYINARAN RADlOGRAFllr-192 MENGGUNAKAN PERSAMAAN DOSIS RADIASI

Suparno, Anda Sanusi - PENENTUAN WAKTU PENYINARAN RADlOGRAFllr-192 MENGGUNAKAN PERSAMAAN DOSIS RADIASI Suparno, Anda Sanusi - PENENTUAN WAKTU PENYINARAN RADlOGRAFllr-192 PENENTUAN WAKTU PENYINARAN RADIOGRAFI Ir-192 Suparno, Anda Sanusi Pusat Pendidikan dan Pelatihan BATAN, parnomrj@batan.go.id ABSTRAK PENENTUAN

Lebih terperinci

Prodi Fisika FMIPA, Universitas Sebelas Maret, Surakarta.

Prodi Fisika FMIPA, Universitas Sebelas Maret, Surakarta. ANALISIS PENGARUH TEGANGAN EKSTRAKSI PADA SIMULASI LINTASAN BERKAS ELEKTRON PADA MESIN BERKAS ELEKTRON 300 kev / 20 ma DI PSTA-BATAN MENGGUNAKAN SOFTWARE SIMION 8.1 Andy Saktia Warseno 1, Fuad Anwar 1,

Lebih terperinci

ANALISIS DOSIS SERAP RADIASI PADA PERBEDAAN DIMENSI DAN BENTUK LAPANGAN PENYINARAN BERKAS RADIASI FOTON 6 MV

ANALISIS DOSIS SERAP RADIASI PADA PERBEDAAN DIMENSI DAN BENTUK LAPANGAN PENYINARAN BERKAS RADIASI FOTON 6 MV ANALISIS DOSIS SERAP RADIASI PADA PERBEDAAN DIMENSI DAN BENTUK LAPANGAN PENYINARAN BERKAS RADIASI FOTON 6 MV Oleh, Hieronimus Honorius Lada NIM: 642014801 TUGAS AKHIR Diajukan kepada Program Studi Fisika,

Lebih terperinci

PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN PADA BESI, TEMBAGA DAN STAINLESS STEEL SEBAGAI BAHAN PERISAI RADIASI

PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN PADA BESI, TEMBAGA DAN STAINLESS STEEL SEBAGAI BAHAN PERISAI RADIASI Youngster Physics Journal ISSN : 3-7371 Vol., No., April 15, Hal 19- PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN PADA BESI, TEMBAGA DAN STAINLESS STEEL SEBAGAI BAHAN PERISAI RADIASI Iwan Setiyawan, Heri Sutanto,

Lebih terperinci

PENGUKURAN DOSIS RADIASI RUANGAN RADIOLOGI II RUMAH SAKIT GIGI DAN MULUT (RSGM) BAITURRAHMAH PADANG MENGGUNAKAN SURVEYMETER UNFORS-XI

PENGUKURAN DOSIS RADIASI RUANGAN RADIOLOGI II RUMAH SAKIT GIGI DAN MULUT (RSGM) BAITURRAHMAH PADANG MENGGUNAKAN SURVEYMETER UNFORS-XI PENGUKURAN DOSIS RADIASI RUANGAN RADIOLOGI II RUMAH SAKIT GIGI DAN MULUT (RSGM) BAITURRAHMAH PADANG MENGGUNAKAN SURVEYMETER UNFORS-XI Dira Rizki Martem 1, Dian Milvita 1, Helfi Yuliati 2, Dyah Dwi Kusumawati

Lebih terperinci

ANALISIS PERHITUNGAN BERAT KONTAINER SUMBER Ir-192 AKTIVITAS 10 Ci UNTUK BRAKITERAPI HDR

ANALISIS PERHITUNGAN BERAT KONTAINER SUMBER Ir-192 AKTIVITAS 10 Ci UNTUK BRAKITERAPI HDR PROSDNG SEMNAR PENELTAN DAN PENGELOLAAN PERANGKAT NUKLR ANALSS PERHTUNGAN BERAT KONTANER SUMBER r-192 AKTVTAS 1 Ci UNTUK BRAKTERAP HDR Kristiyanti, Tri Harjanto Pusat Rekayasa Perangkat Nuklir-BATAN,PUSPPTEK

Lebih terperinci

UM UGM 2017 Fisika. Soal

UM UGM 2017 Fisika. Soal UM UGM 07 Fisika Soal Doc. Name: UMUGM07FIS999 Version: 07- Halaman 0. Pada planet A yang berbentuk bola dibuat terowongan lurus dari permukaan planet A yang menembus pusat planet dan berujung di permukaan

Lebih terperinci

ANALISIS DOSIS SERAP RELATIF BERKAS ELEKTRON DENGAN VARIASI KETEBALAN BLOK CERROBEND PADA PESAWAT LINEAR ACCELERATOR

ANALISIS DOSIS SERAP RELATIF BERKAS ELEKTRON DENGAN VARIASI KETEBALAN BLOK CERROBEND PADA PESAWAT LINEAR ACCELERATOR Youngster Physics Journal ISSN : 2303-7371 Vol. 3, No. 3, Juli 2014, Hal 231-236 ANALISIS DOSIS SERAP RELATIF BERKAS ELEKTRON DENGAN VARIASI KETEBALAN BLOK CERROBEND PADA PESAWAT LINEAR ACCELERATOR Lamtiyah

Lebih terperinci

Buletin Fisika Vol. 8, Februari 2007 : 31-37

Buletin Fisika Vol. 8, Februari 2007 : 31-37 31 Buletin Fisika Vol. 8, Februari 2007 : 31-37 Pengaruh Posisi dan Sudut Penyinaran Pada Radio Terapi Kanker Dengan Menggunakan Metode Clarkson s (Ratnawati I Gusti Ayu, Suharta W.G., Widyatmika I Putu,

Lebih terperinci

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII 1. Tumbukan dan peluruhan partikel relativistik Bagian A. Proton dan antiproton Sebuah antiproton dengan energi kinetik = 1,00 GeV menabrak proton

Lebih terperinci

PENGHITUNGAN FAKTOR BUILDUP TITANIUM DENGAN MENGGUNAKAN METODA MONTE CARLO. Hengky Istianto Has * Balza Achmad **, Andang Widi Harto **.

PENGHITUNGAN FAKTOR BUILDUP TITANIUM DENGAN MENGGUNAKAN METODA MONTE CARLO. Hengky Istianto Has * Balza Achmad **, Andang Widi Harto **. PENGHITUNGAN FAKTOR BUILDUP TITANIUM DENGAN MENGGUNAKAN METODA MONTE CARLO Hengky Istianto Has * Balza Achmad **, Andang Widi Harto **. ABSTRAK PENGHITUNGAN FAKTOR BUILDUP TITANIUM DENGAN MENGGUNAKAN METODA

Lebih terperinci

BAB III BESARAN DOSIS RADIASI

BAB III BESARAN DOSIS RADIASI BAB III BESARAN DOSIS RADIASI Yang dimaksud dengan dosis radiasi adalah jumlah radiasi yang terdapat dalam medan radiasi atau jumlah energi radiasi yang diserap atau diterima oleh materi yang dilaluinya.

Lebih terperinci

PENGARUH VARIASI AIR GAP TERHADAP DOSIS SERAP PENYINARAN BERKAS ELEKTRON PADA PESAWAT LINAC SIEMENS / PRIMUS M CLASS 5633

PENGARUH VARIASI AIR GAP TERHADAP DOSIS SERAP PENYINARAN BERKAS ELEKTRON PADA PESAWAT LINAC SIEMENS / PRIMUS M CLASS 5633 Youngster Physics Journal ISSN : 2303-7371 Vol. 3, No. 3, Juli 2014, Hal 217-222 PENGARUH VARIASI AIR GAP TERHADAP DOSIS SERAP PENYINARAN BERKAS ELEKTRON PADA PESAWAT LINAC SIEMENS / PRIMUS M CLASS 5633

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i. PERNYATAAN BEBAS PLAGIARISME... ii. HALAMAN PENGESAHAN... iii. HALAMAN TUGAS... iv. HALAMAN PERSEMBAHAN...

DAFTAR ISI. HALAMAN JUDUL... i. PERNYATAAN BEBAS PLAGIARISME... ii. HALAMAN PENGESAHAN... iii. HALAMAN TUGAS... iv. HALAMAN PERSEMBAHAN... DAFTAR ISI HALAMAN JUDUL... i PERNYATAAN BEBAS PLAGIARISME... ii HALAMAN PENGESAHAN... iii HALAMAN TUGAS... iv HALAMAN PERSEMBAHAN... v HALAMAN MOTTO... vi KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR

Lebih terperinci

Dualisme Partikel Gelombang

Dualisme Partikel Gelombang Dualisme Partikel Gelombang Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung agussuroso10.wordpress.com, agussuroso@fi.itb.ac.id 19 April 017 Pada pekan ke-10 kuliah

Lebih terperinci

PELURUHAN SINAR GAMMA

PELURUHAN SINAR GAMMA PELURUHAN SINAR GAMMA Pendahuluan Radioaktivitas disebut juga peluruhan radioaktif, yaitu peristiwa terurainya beberapa inti atom tertentu secara spontan yang diikuti dengan pancaran partikel alfa (inti

Lebih terperinci

PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co

PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co M. Azam, K. Sofjan Firdausi, Sisca Silvani Jurusan Fisika, FMIPA,Universitas diponegoro ABSTRACT Wedge filter usually

Lebih terperinci

Jurnal Radioisotop dan Radiofarmaka ISSN Journal of Radioisotope and Radiopharmaceuticals Vol 10, Oktober 2007

Jurnal Radioisotop dan Radiofarmaka ISSN Journal of Radioisotope and Radiopharmaceuticals Vol 10, Oktober 2007 PERHITUNGAN PEMBUATAN KADMIUM-109 UNTUK SUMBER RADIASI XRF MENGGUNAKAN TARGET KADMIUM ALAM Rohadi Awaludin Pusat Radioisotop dan Radiofarmaka (PRR), BATAN Kawasan Puspiptek, Tangerang, Banten ABSTRAK PERHITUNGAN

Lebih terperinci

SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5

SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5 SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5 Rasito, P. Ilham Y., Muhayatun S., dan Ade Suherman Pusat Teknologi Nuklir Bahan dan Radiometri

Lebih terperinci

ANALISIS PAPARAN RADIASI LINGKUNGAN RUANG RADIOLOGI DI RUMAH SAKIT DENGAN PROGRAM DELPHI

ANALISIS PAPARAN RADIASI LINGKUNGAN RUANG RADIOLOGI DI RUMAH SAKIT DENGAN PROGRAM DELPHI ANALISIS PAPARAN RADIASI LINGKUNGAN RUANG RADIOLOGI DI RUMAH SAKIT DENGAN PROGRAM DELPHI Toto Trikasjono 1, Kamila Hanifasari 2, Budi Suhendro 3 Sekolah Tinggi Teknologi Nuklir Badan Tenaga Nuklir Nasional

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

PELURUHAN RADIOAKTIF

PELURUHAN RADIOAKTIF PELURUHAN RADIOAKTIF Inti-inti yang tidak stabil akan meluruh (bertransformasi) menuju konfigurasi yang baru yang mantap (stabil). Dalam proses peluruhan akan terpancar sinar alfa, sinar beta, atau sinar

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

OPERASI MESIN BERKAS ELEKTRON (MBE) PTAPB BATAN TIPE BA 350 kev / 10 ma

OPERASI MESIN BERKAS ELEKTRON (MBE) PTAPB BATAN TIPE BA 350 kev / 10 ma OPERASI MESIN BERKAS ELEKTRON (MBE) PTAPB BATAN TIPE BA 350 kev / 10 ma A. PENDAHULUAN Pada umumnya suatu instrumen atau alat (instalasi nuklir) yang dibuat dengan didesain atau direncanakan untuk dapat

Lebih terperinci

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER)

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) Oleh: Kusnanto Mukti / M0209031 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 2012 I. Pendahuluan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kanker adalah suatu penyakit yang disebabkan oleh adanya sel-sel yang membelah secara abnormal tanpa kontrol dan mampu menyerang jaringan sehat lainnya. Data

Lebih terperinci

PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN DAN DOSIS RADIASI PADA VARIASI KOMBINASI KAYU DAN ALUMINIUM

PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN DAN DOSIS RADIASI PADA VARIASI KOMBINASI KAYU DAN ALUMINIUM Youngster Physics Journal ISSN : 232-7371 Vol. 4, No. 1, Januari 215, Hal 87-92 PENENTUAN NILAI KOEFISIEN SERAPAN BAHAN DAN DOSIS RADIASI PADA VARIASI KOMBINASI KAYU DAN ALUMINIUM Andri Yanyah dan Heri

Lebih terperinci

Fungsi distribusi spektrum P (λ,t) dapat dihitung dari termodinamika klasik secara langsung, dan hasilnya dapat dibandingkan dengan Gambar 1.

Fungsi distribusi spektrum P (λ,t) dapat dihitung dari termodinamika klasik secara langsung, dan hasilnya dapat dibandingkan dengan Gambar 1. Fungsi distribusi spektrum P (λ,t) dapat dihitung dari termodinamika klasik secara langsung, dan hasilnya dapat dibandingkan dengan Gambar 1. Hasil perhitungan klasik ini dikenal sebagai Hukum Rayleigh-

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

ANALISIS KESELAMATAN PESAWAT SINAR-X DI INSTALASI RADIOLOGI RUMAH SAKIT UMUM DAERAH SLEMAN YOGYAKARTA

ANALISIS KESELAMATAN PESAWAT SINAR-X DI INSTALASI RADIOLOGI RUMAH SAKIT UMUM DAERAH SLEMAN YOGYAKARTA ANALISIS KESELAMATAN PESAWAT SINAR-X DI INSTALASI RADIOLOGI RUMAH SAKIT UMUM DAERAH SLEMAN YOGYAKARTA Toto Trikasjono, Djoko Marjanto 1, Bety Timorti 2 1 Sekolah Tinggi Teknologi Nuklir-Badan Tenaga Nuklir

Lebih terperinci

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 UJI COBA MATA PELAJARAN KELAS/PROGRAM ISIKA SMA www.rizky-catatanku.blogspot.com PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 : FISIKA : XII (Dua belas )/IPA HARI/TANGGAL :.2012

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

SIMULASI PENGUKURAN EFFISIENSI DETEKTOR HPGe DAN NaI (Tl) MENGGUNAKAN METODE MONTE CARLO MCNP5

SIMULASI PENGUKURAN EFFISIENSI DETEKTOR HPGe DAN NaI (Tl) MENGGUNAKAN METODE MONTE CARLO MCNP5 ABSTRAK SIMULASI PENGUKURAN EFFISIENSI DETEKTOR HPGe DAN NaI (Tl) MENGGUNAKAN METODE MONTE CARLO MCNP5 Annisatun Fathonah dan Suharyana Jurusan Fisika FMIPA Universitas Sebelas Maret Jl. Ir Sutami No.36

Lebih terperinci

KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI JURUSAN FISIKA

KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI JURUSAN FISIKA KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI 140310110018 JURUSAN FISIKA OUTLINES : Sinar X Difraksi sinar X pada suatu material Karakteristik Sinar-X Prinsip

Lebih terperinci

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali Buletin Pengelolaan Reaktor Nuklir. Vol. 13 No. 1, April 2016 EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89 Elisabeth Ratnawati, Jaka Iman, Hanapi Ali ABSTRAK

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang dan Rumusan Masalah. Penggunaan radiasi dalam bidang kedokteran terus menunjukkan

BAB I PENDAHULUAN. 1.1 Latar Belakang dan Rumusan Masalah. Penggunaan radiasi dalam bidang kedokteran terus menunjukkan BAB I PENDAHULUAN 1.1 Latar Belakang dan Rumusan Masalah 1.1.1 Latar belakang Penggunaan radiasi dalam bidang kedokteran terus menunjukkan peningkatan dari waktu ke waktu. Dalam bidang kedokteran, pemanfaatan

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMA / MA 2011 Program IPA Mata Ujian : Fisika Jumlah Soal : 20 1. Gas helium (A r = gram/mol) sebanyak 20 gram dan bersuhu 27 C berada dalam wadah yang volumenya 1,25 liter. Jika tetapan

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Dua buah bola A dan B dengan massa m A = 3 kg;

Lebih terperinci

1. Hasil pengukuran ketebalan plat logam dengan menggunakan mikrometer sekrup sebesar 2,92 mm. Gambar dibawah ini yang menunjukkan hasil pengukuran

1. Hasil pengukuran ketebalan plat logam dengan menggunakan mikrometer sekrup sebesar 2,92 mm. Gambar dibawah ini yang menunjukkan hasil pengukuran 1. Hasil pengukuran ketebalan plat logam dengan menggunakan mikrometer sekrup sebesar 2,92 mm. Gambar dibawah ini yang menunjukkan hasil pengukuran tersebut adalah.... A B. C D E 2. Sebuah perahu menyeberangi

Lebih terperinci

SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5

SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5 290 Simulasi Efisiensi Detektor Germanium Di Laboratorium AAN PTNBR Dengan Metode Monte Carlo MCNP5 ABSTRAK SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5

Lebih terperinci

Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down

Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down Berkala Fisika ISSN : 141-9662 Vol.9, No.1, Januari 26, hal 15-22 Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down Risprapti Prasetyowati (1), M. Azam (1), K. Sofjan Firdausi

Lebih terperinci

BAB 1 PENDAHULUAN. radionuklida, pembedahan (surgery) maupun kemoterapi. Penggunaan radiasi

BAB 1 PENDAHULUAN. radionuklida, pembedahan (surgery) maupun kemoterapi. Penggunaan radiasi BAB 1 PENDAHULUAN 1.1. Latar Belakang Radioterapi merupakan salah satu jenis terapi untuk penyakit tumor atau kanker, pengobatan kanker dilakukan dengan menggunakan radiasi pengion atau radionuklida, pembedahan

Lebih terperinci

Fisika Modern (Teori Atom)

Fisika Modern (Teori Atom) Fisika Modern (Teori Atom) 13:05:05 Sifat-Sifat Atom Atom stabil adalah atom yang memiliki muatan listrik netral. Atom memiliki sifat kimia yang memungkinkan terjadinya ikatan antar atom. Atom memancarkan

Lebih terperinci

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Diameter minimum benda sebesar. A. 9,775 cm B. 9,778 cm C. 9,782 cm D. 9,785 cm E. 9,788 cm 2. Sebuah

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini permintaan siklotron komersial untuk terapi proton dan produksi isotop semakin meningkat. Produksi isotop ini digunakan untuk kebutuhan PET (Positron Emission

Lebih terperinci

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N 1. Sebuah lempeng besi tipis, tebalnya diukur dengan menggunakan mikrometer skrup. Skala bacaan hasil pengukurannya ditunjukkan pada gambar berikut. Hasilnya adalah... A. 3,11 mm B. 3,15 mm C. 3,61 mm

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Fisika Kuantum - Latihan Soal Doc. Name: AR12FIS0799 Version: 2012-09 halaman 1 01. Daya radiasi benda hitam pada suhu T 1 besarnya 4 kali daya radiasi pada suhu To, maka T 1

Lebih terperinci

Fisika EBTANAS Tahun 1991

Fisika EBTANAS Tahun 1991 Fisika EBTNS Tahun 99 EBTNS-9-0 Sebuah benda dijatuhkan dari ujung sebuah menara tanpa kecepatan awal. Setelah detik benda sampai di tanah (g = 0 m s ). Tinggi menara tersebut. 40 m B. 5 m C. 0 m D. 5

Lebih terperinci

ANALISIS GEOMETRI ANODA DALAM OPTIMASI DESAIN SUMBER ION PENNING UNTUK SIKLOTRON

ANALISIS GEOMETRI ANODA DALAM OPTIMASI DESAIN SUMBER ION PENNING UNTUK SIKLOTRON Analisis Geometri Anoda Dalam Optimasi Desain Sumber Ion Penning Untuk Siklotron (Silakhuddin) ANALISIS GEOMETRI ANODA DALAM OPTIMASI DESAIN SUMBER ION PENNING UNTUK SIKLOTRON Silakhuddin Pusat Teknologi

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional 1 Pokok Bahasan STRUKTUR ATOM DAN INTI ATOM A. Struktur Atom B. Inti Atom PELURUHAN RADIOAKTIF A. Jenis Peluruhan B. Aktivitas Radiasi C. Waktu

Lebih terperinci

1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah.

1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1 A. 5, 22 mm B. 5, 72 mm C. 6, 22 mm D. 6, 70 mm E. 6,72 mm 5 25 20 2. Dua buah vektor masing-masing 5 N dan 12 N. Resultan kedua

Lebih terperinci

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan

Lebih terperinci

Staf pengajar Program Studi Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Surakarta. Jl. A. Yani Tromol Pos 1, Pabelan Kartasura Surakarta.

Staf pengajar Program Studi Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Surakarta. Jl. A. Yani Tromol Pos 1, Pabelan Kartasura Surakarta. The Influence of Water Cement Ratio to the Ability of Normal Concrete as Gammaray Shield Radiation PENGARUH FAKTOR AIR SEMEN PADA BETON NORMAL SEBAGAI PERISAI RADIASI SINAR GAMMA Anis Rahmawati 1), Ika

Lebih terperinci

INTERAKSI RADIASI DENGAN MATERI

INTERAKSI RADIASI DENGAN MATERI INTERAKSI RADIASI DENGAN MATERI Disusun Oleh : ERMAWATI UNIVERSITAS GUNADARMA JAKARTA 1999 1 ABSTRAK Dalam mendesain semua sistem nuklir, pelindung radiasi, generator isotop, sangat tergantung dari jalan

Lebih terperinci

Fisika EBTANAS Tahun 1994

Fisika EBTANAS Tahun 1994 Fisika EBTANAS Tahun 1994 EBTANAS-94-01 Diantara kelompok besaran di bawah ini yang hanya terdiri dari besaran turunan saja adalah A. kuat arus, massa, gaya B. suhu, massa, volume C. waktu, momentum, percepatan

Lebih terperinci

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini.

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1 Diameter maksimum dari pengukuran benda di atas adalah. A. 2,199 cm B. 2,275 cm C. 2,285 cm D. 2,320 cm E. 2,375 cm 2.

Lebih terperinci

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN Berkala Fisika ISSN : 1410-9662 Vol 10, No.4, Oktober 2007 hal. 187-192 STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN Nanang Suriansyah

Lebih terperinci

Analisa Kualitas Sinar-X Pada Variasi Ketebalan Filter Aluminium Terhadap Dosis Efektif

Analisa Kualitas Sinar-X Pada Variasi Ketebalan Filter Aluminium Terhadap Dosis Efektif Analisa Kualitas Sinar-X Pada Variasi Ketebalan Filter Aluminium Terhadap Dosis Efektif Ella nurlela 1, purwantiningsih 1, Budi Santoso 1 1 Program Studi Fisika, Universitas Nasional, Jalan Sawo Manila,

Lebih terperinci

ANALISIS DOSIS RADIASI PADA KOLAM AIR IRADIATOR GAMMA 2 MCi MENGGUNAKAN MCNP

ANALISIS DOSIS RADIASI PADA KOLAM AIR IRADIATOR GAMMA 2 MCi MENGGUNAKAN MCNP ANALISIS DOSIS RADIASI PADA KOLAM AIR IRADIATOR GAMMA 2 MCi MENGGUNAKAN MCNP Kristiyanti, Edy Karyanta Pusat Rekayasa Fasilitas Nuklir - BATAN Email : kristiyantiwst@yahoo.com ABSTRAK ANALISIS DOSIS RADIASI

Lebih terperinci

PENGUKURAN LAJU DOSIS PAPARAN RADIASI EKSTERNAL DI AREA RADIOTERAPI RSUD DR. SAIFUL ANWAR MALANG. Diterima: 6 Juni 2016 Layak Terbit: 25 Juli 2016

PENGUKURAN LAJU DOSIS PAPARAN RADIASI EKSTERNAL DI AREA RADIOTERAPI RSUD DR. SAIFUL ANWAR MALANG. Diterima: 6 Juni 2016 Layak Terbit: 25 Juli 2016 PENGUKURAN LAJU DOSIS PAPARAN RADIASI EKSTERNAL DI AREA RADIOTERAPI RSUD DR. SAIFUL ANWAR MALANG Novita Rosyida Pendidikan Vokasi, Universitas Brawijaya Jl. Veteran 12-16 Malang, 65145, Telp. 085784638866,

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN

DAFTAR ISI BAB I PENDAHULUAN DAFTAR ISI BAB I PENDAHULUAN 3 BAB II STRUKTUR DAN INTI ATOM 5 A Struktur Atom 6 B Inti atom 9 1. Identifikasi Inti Atom (Nuklida) 9 2. Kestabilan Inti Atom 11 Latihan 13 Rangkuman Bab II. 14 BAB III PELURUHAN

Lebih terperinci

Mata Pelajaran : FISIKA

Mata Pelajaran : FISIKA Mata Pelajaran : FISIKA Kelas/ Program : XII IPA Waktu : 90 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! 1. Hasil pengukuran tebal meja menggunakan

Lebih terperinci

PERHITUNGAN KETEBALAN BAHAN PERISAI Pb SEBAGAI KONTAINER ISOTOP Ir-192 UNTUK BRAKITERAPI MENGGUNAKAN SOFTWARE MCNP

PERHITUNGAN KETEBALAN BAHAN PERISAI Pb SEBAGAI KONTAINER ISOTOP Ir-192 UNTUK BRAKITERAPI MENGGUNAKAN SOFTWARE MCNP PERHITUNGAN KETEBALAN BAHAN PERISAI Pb SEBAGAI KONTAINER ISOTOP Ir-192 UNTUK BRAKITERAPI MENGGUNAKAN SOFTWARE MCNP Kristiyanti 1, Kasmudin 1 1) PRFN-BATAN, email: kristiyantiwst@yahoo.com, kasmudin@batan.go.id

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

PERBANDINGAN DOSIS RADIASI DI UDARA TERHADAP DOSIS RADIASI DI PERMUKAAN PHANTOM PADA PESAWAT CT-SCAN

PERBANDINGAN DOSIS RADIASI DI UDARA TERHADAP DOSIS RADIASI DI PERMUKAAN PHANTOM PADA PESAWAT CT-SCAN PERBANDINGAN DOSIS RADIASI DI UDARA TERHADAP DOSIS RADIASI DI PERMUKAAN PHANTOM PADA PESAWAT CT-SCAN Suwarni 1, Dian Milvita 1, Heru Prasetio 2, Helfi Yuliati 2 1 Jurusan Fisika FMIPA Universitas Andalas

Lebih terperinci