BAB III BESARAN DOSIS RADIASI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III BESARAN DOSIS RADIASI"

Transkripsi

1 BAB III BESARAN DOSIS RADIASI Yang dimaksud dengan dosis radiasi adalah jumlah radiasi yang terdapat dalam medan radiasi atau jumlah energi radiasi yang diserap atau diterima oleh materi yang dilaluinya. Besaran dosis radiasi dengan menyatakan jumlah radiasi yang terdapat dalam medan radiasi antara lain paparan, fluks, dan intensitas, sedangkan Besaran dosis radiasi dengan menyatakan jumlah energi radiasi yang ttau diterima oleh materi yang dilaluinya adalah dosis serap. Dengan modifikasi dosis serap, dalam bidang keselamatan radiasi,dosis radiasi dinyatakan dengan dosis ekivalen. A. Besaran Dosis radiasi 1. Fluks Fluks radiasi atau intensitas radiasi adalah jumlah radiasi yang bus satu satuan luas per satuan waktu. Satuan yang sering digunakan (radiasi cm -2 s -1 ) Untuk sumber radiasi yang isotropic, dan serapan medium Kan, maka hubungan kuat sumber (S) dengan fluks radiasi (I) pada jarak r dituliskan sebagai berikut: Berdasarkan persamaan (3-1), terlihat bahwa fluks radiasi berbanding terbalik dengan kuadrat jarak, maka dapat diperoleh hubungan fluks radiasi pada r 1 dan r 2 berikut: 2. Paparan Paparan dengan satuan roentgen (R) menyatakan jumlah radiasi gama gelombang elektromagnetik dalam medan radiasi dengan jumlah muatan sejenis yang ditimbulkan per kg udara kering. Satuan mi hanya untuk radiasi berupa gelombang elektromagnetik, antara lain radiasi gama dan sinar-x. Menurut SI satuan besaran paparan adalah C/kg udara, yang mana 1R = 2,58 x 10-4 C/kg. Untuk sumber radiasi berupa radionukilda, maka didifinisikan suatu letapan pancaran spesifik radiasi gama (F), yaitu laju paparan yang pada jarak 1 meter dan sumber radionuklida dengan aktivitas A dan berbentuk titik, maka Universitas Gadjah Mada 1

2 Nilai besaran fluks akan sebanding dengan besaran laju paparan, maka berdasakan persamaan (3-2), dapat ditulis persamaan laju paparan pada jarak r, serta hubungan laju paparan pada jarak r 2 dengan laju paparan pada jarak r 1, berikut Pancaran spesifik gama tersebut dapat dibaca pada Tabel 3.1. Tabel 3.1 Pancaran spesifik radiasi gama No Nuklida Г (R jam -1 Ci -1 ) 1 Co 60 1,32 2 I 131 0,22 3 Cs 137 0,33 4 Ir 192 0,48 5 Sr 85 0,30 Jika data pancaran spesifik gama tidak diperoleh, tetapan gama dapat dihitung dengan persamaan (3-5), untuk energi radiasi 0,1-10 MeV dengan tetapan serapan energi oleh udara µ en = 3,5 x 10-9 m -1, dan ρ udara 1,293 kg m -3. dengan n fraksi pelepasan foton dengan energi E. Dalam bidang proteksi radiasi tetapan F sering menggunakan satuan dosis radiasi yang lain, dan sering disebut tetapan laju dosis radionuklida, Misalnya dengan satuan µsv m 2 jam -1 GBq Dosis scrap Dosis serap dengan satuan Gray (Gy) menyatakan jumlah energi radiasi yang diserap atau diterima oldi materi yang dilaluinya dengan energi (J) yang diserap per kg materi. Satuan dosis serap yang lain adalah rad atau 100 erg/gram. Hubungan kedua satuan tersebut adalah1 Gy = 100 rad. Hubungan besaran paparan dengan dosis serap dalam udara 1 C/kg = 34 Gy, sehingga hubungan besaran dosis serap untuk materi tertentu (m), dapat dituliskan dalam persamaan berikut: Universitas Gadjah Mada 2

3 4. Dosis ekivalen Dalam bidang keselamatan manusia dinyatakan dengan dosis equivalent man). Menurut SI satuan hubungannya 1 Sv = 100 rem. Dari sudut pandang biologi, efek biologi juga tergantung pada distribusi spasial energi yang diserap di sepanjang jejak radiasi, sehingga untuk energi yang radiasi, dosis radiasi yang diterima oleh ekivalen dengan satuan rem (roungent dosis ekivalen adalah Sievert (Sv), yang sama tetapi jenis radiasi yang berbeda dapat mengakibatkan efek biologi yang Untuk maksud ini didifinisikan tetapan yang disebut dengan RBE biological effectivness), yaitu perbandingan radiasi dan pesawat sinar-x yang menghasilkan efek biologi tertentu dengan dosis radiasi yang dihasilkan efek biologi yang sama. Berdasarkan tetapan tersebut dapat ditulis [gall dosis ekivalen dengan dosis serap berikut: H(rem) = D(rad)x RBE (3-7) Tetapan RBE berkaitan dengan efek biologi tertentu sehingga lebih pada radiology biologi. Dalam bidang Fisika kesehatan didifinisikan yang disebut dengan factor kualitas (QF), yang tergantung pada besaran energi linear(linear Energy Transfer) pada Tabel 3.1. Tabel 3.1. Hubungan Faktor kualitas dengan alih energi linear Alih Energi Linear (kev / micron dalam air) < 3,5 3,5 7,0 7, QF Pada Tabel 3-2 dirinci factor kualitas untuk berbagai jenis radiasi. urut ICRP 60 tahun 1990, tetapan faktor kualitas tersebut disebut sebagai bobot radiasi (WR). Hubungan besaran dosis ekivalen dengan dosis serap, selanjutnya dapat ditulis sebagai berikut : Universitas Gadjah Mada 3

4 Tabel 3.2. Hubungan Faktor Kualitas dengan jenis radiasi Radiasi Sinar gama, dan radium dalam keseimbangan, difilter dengan 0,5 mm platinum Sinar-x Elektron, beta E> 0,003 MeV Elektron, beta E<0,03 Netron termal Netron cepat Proton AIfa Ion berat (Cember, 1988) QF I 1 1 1, Masing-masing jaringan tubuh manusia mempunyai kepetaan yang berbeda satu sama lain, oleh karenanya dosis masing-masing organ di bobot dengan factor bobot organ (WT), yang menunjukkan tingkat kepekaan organ terhadap dosis radiasi. Dosis ekivalen yang telah dibobot dengan factor bobot organ disebut dosis ekivalen effektif (H eff ) Tabel 3.3 Faktor Bobot Organ Organ Faktor Bobot Organ Gonad 0,25 Dada 0,15 Sumsum tulang merah 0,12 Paru-paru 0,12 Kelenjar gondok 0,03 Tulang (permukaan) 0,03 Lainnya 0,30 (BAPETEN, 1999) Universitas Gadjah Mada 4

5 Dalam memperkirakan konstribusi dan lainnya pada Tabel 3-3, dosis rata-rata dievaluasi untuk masing-masing dan 5 organ atau jaringan dan lainnya itu yang terkena penyinaran paling tinggi. Tidak termasuk lensa mata, kulit dan tangan, lengan, kaki dan tungkai. Faktor bobot 0,06 digunakan untuk masing-masing organ. Desaran dosis ekivalen lain yang sering digunakan adalah dosis ekivalen terikat (H 50 ), yaitu dosis yang diterima sesorang dalam jangka waktu 50 tahun. B. Cara Menghitung Dosis Radiasi Sumber radiasi dapat dibedakan menjadi 2 yaitu sumber radiasi yang berada di dalam tubuh dan sumber radiasi di luar tubuh. Cara perhitungan dosis kedua jenis sumber radiasi tersebut berbeda. 1. Cara menghitung dosis radiasi penyinaran dalam Energi radiasi dialihkan ke medium yang di sepanjang jejaknya. Radiasi dapat dibedakan berdasarkan pada daya tembusnya, yaitu yang daya tembusjya pendek dan yang daya tembusnya panjang. Partikel bermuatan merupakanradiasi yang berdaya tembus pendek, sehingga untuk perhitungan dosis radiasi penyinaran dalam sering dianggap semua enrgi radiasi dialihkan ke materi, sedangkan radiasi gama, dan sinar-x masuk dalam kelompok radiasi yang berdaya tembus panjang, yang hanya sebagian energi radiasinya yang dialihkan ke materi yang dilewatinya. Salah satu cara menghitung dosi radiasi adalah denganan menggunakan metode MIRD (Medical Internal radiation Dose Committee of society of Nuclear Medicine), yang memperkenalkan istilah organ sumber dan organ sasaran., untuk menghitung dosis serap digunakan tetapan Φ yaitu bagian energi yang terserap organ sasaran. Untuk radiasi bermuatan tetapan Φ = 1, sedangkan untuk elektromagnitik Φ 1. Radiasi alfa dan beta merupakan radiasi bermuatan, sehingga dosis serap penyinaran dalam dan radionuklida pemancar beta dengan aktivitas tertentu dapat sebagai berikut: Universitas Gadjah Mada 5

6 Aktivitas zat radioaktif dalam organ akan berkurang akibat peluruhan dan proses biologi, yang untuk menghitung pengurangannya didifinisikan tetapan pengurangan effektif. Untuk radionuklida pemancar alfa dapat dilakukan dengan cara yang sama pada persamaan (3-12) Untuk radiasi gama dan sinar-x, hanya sebagian energi yang dialihkan ke Untuk menghitung dosis dapat dilakukan dengancara analitis, dengan zat radioaktif tersebar merata dengan konsentrasi cv di seluruh volume organ.untuk organ bentuk bola, laju dosis di pusat bola dapat dituliskan sebagai berikut: Secara umum laju dosis dapat dituliskan dalam bentuk dengan g = factor geometri suatu titik tertentu, Untuk menghitung dosis rata-rata di seluruh jaringan perlu dihitung nilai factor geometri untuk seluruh titik dalam jaringan tersebut. Untuk bola, faktor geometri rata-rata 3/4 kali factor geometri untuk pusat bola. Faktor geometri ratarata bentuk silinder dirinci pada Tabel 3.4. Universitas Gadjah Mada 6

7 Tinggi Silinder (cm) Tabel 3.4 Faktor geometri bentuk silinder mengandung zat radioaktif pemancar gama tersebar merata. Jari-jari silinder (cm) ,50 22,30 25,17 22,70 25,90 25,90 26,00 26,00 26,00 (Wiryosimin, 1995) 22,10 31,80 38,10 40,50 41,00 41,30 41,60 41,60 41,60 30,30 47,70 61,30 68,90 71,30 72,40 73,00 73,30 73,30 34,00 56,40 76,10 89,80 94,60 96,50 97,80 98,40 98,50 36,20 61,60 86,50 100,00 112,00 116,00 118,00 119,00 119,00 37,50 65,20 93,40 117,00 126,00 131,00 134,00 135,00 136,00 38,60 67,90 98,40 126,00 137,00 143,00 148,00 150,00 150,00 39,30 70,50 103,00 133,00 146,00 153,00 159,00 161,00 162,00 2. Cara Menghitung Dosis Penyinaran Luar Untuk menghitung laju dosis akibat penyinaran luar, dengancara menghitung fluks atau paparan yang mengenai tubuh tersebut. Sehubungan dosis radiasi berbandinglurus dengan fluks atau paparan maka dapat ditung nilai dosis radiasi tersebut. Dalam subbab ini hanya akan dipelajani cara penghitungan fluks radiasi untuk radiasi berupa gelombang elektromaknetik, yang merupakan sumber radiasi ekstema yang penting. Berbagai bentuk sumber radiasi sering dijumpai dalam bidang proteksi yang disederhanakan menjadi beberapa bentuk sederhana, yaitu titik, luasan (piringan). Cara menghitung fluks bentuk titik teakh dibicarakan di depan, berikut untuk sumber radiasi bentuk garis dan piringan. a. Fluks radiasi dan sumber bentuk garis Untuk menghitung fluks bentuk garis, dilakukan dengan anggapan bahwa ber radiasi bentuk garis adalah kumpulan dan saumber radiasi bentuk titik, maka fluks pada titik di atas ujung garis yang diakibatkan oleh sumber titik dalam garis tersebut dapat dituliskan sbb: Universitas Gadjah Mada 7

8 S L θ b = kuat sumber paersatuan panjang sumber radiasi = adalah sudut yang dibentuk oleh garis dan titik yang dimaksud ke kedua ujung garis sumber radiasi = panjang garis sumber radiasi maka 0 = arctan(b/a) Persamaan (3-19) dengan anggapan tidak terjadi serapan oleh medium. serapan medium diperhitungkan maka diperoleh persamaan. Jika persamaan (3-20) diseslesaikan dengan mensubtitusi dl = a (sec( θ)) 2 dθ maka akan diperoleh persamaan berikut F(θ,x) adalah Fungsi integral Sievert. b. Fluks radiasi dan sumber bentuk piringan Sumber radiasi berbentuk piringan merupakan kumpulan sumber radiasi bentuk titik yang membentuk piringan. Untuk mendapatkan fuiks radiasi berasal dan sumber radiasi tersebut, sumber radiasi dibagi menjadi benyak elemen luasan, yang masing-masing elemen luasan dapat dianggap sebagai sumber titik. Untuk menghitung fluks radiasi pada titik di atas titik tengah sumber bentuk piringan berupa lingkaran berpusat pada titik tengah sumber tersebut dengan tebal dr, sehingga jika serapan medium diabaikan fluks pada titik di atas titik tengan sumber berbentuk piringan berjarak a, dapat dihitung sebagai berikut: Universitas Gadjah Mada 8

9 Jika persamaan (3-24) diselesaikan akan diperoleh persamaan Jika medum ada serapan medium, maka dengan mensubtitusi r = a tg θ dan y = µa sec θ sehingga Maka Dengan Untuk Kondisi yang lain dapat dikembangkan dengan menggunakan persamaan (3-26). Fluks radiasi berbanding lurus dengan dosis radiasi, sehingga dosis radiasi dapat ditentukan berdasarkan nilai fluks tersebut. Universitas Gadjah Mada 9

BAB II Besaran dan Satuan Radiasi

BAB II Besaran dan Satuan Radiasi BAB II Besaran dan Satuan Radiasi A. Aktivitas Radioaktivitas atau yang lebih sering disingkat sebagai aktivitas adalah nilai yang menunjukkan laju peluruhan zat radioaktif, yaitu jumlah inti atom yang

Lebih terperinci

TEORI DASAR RADIOTERAPI

TEORI DASAR RADIOTERAPI BAB 2 TEORI DASAR RADIOTERAPI Radioterapi atau terapi radiasi merupakan aplikasi radiasi pengion yang digunakan untuk mengobati dan mengendalikan kanker dan sel-sel berbahaya. Selain operasi, radioterapi

Lebih terperinci

BAB II RADIASI PENGION

BAB II RADIASI PENGION BAB II RADIASI PENGION Salah satu bidang penting yang berhubungan dengan keselamatan radiasi pengukuran besaran fisis radiasi terhadap berbagai jenis radiasi dan sumber radiasi. Untuk itu perlu perlu pengetahuan

Lebih terperinci

RENCANA PROGRAM KEGIATAN. Prasyarat : 1. Deteksi Dan Pengukuran Radiasi 2. Fisika Atom Dan Inti

RENCANA PROGRAM KEGIATAN. Prasyarat : 1. Deteksi Dan Pengukuran Radiasi 2. Fisika Atom Dan Inti RENCANA PROGRAM KEGIATAN Nama Matakuliah : Proteksi Radiasi Dan Keselamatan Kerja Kode/sks : TKN 364/3 sks Prasyarat : 1. Deteksi Dan Pengukuran Radiasi 2. Fisika Atom Dan Inti Status kuliah : Wajib DESKRIPSI

Lebih terperinci

MODEL ATOM. Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama.

MODEL ATOM. Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. BAB.19 ATOM ATOM Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. MODEL ATOM J.JTHOMSON ( 1910 ) ERNEST RUTHERFORD ( 1911 )

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional 1 Pokok Bahasan STRUKTUR ATOM DAN INTI ATOM A. Struktur Atom B. Inti Atom PELURUHAN RADIOAKTIF A. Jenis Peluruhan B. Aktivitas Radiasi C. Waktu

Lebih terperinci

PENGUKURAN RADIASI. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T.

PENGUKURAN RADIASI. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T. Oleh : ADI WIJAYANTO 1 Adi Wijayanto Badan Tenaga Nuklir Nasional www.batan.go.id CAKUPAN

Lebih terperinci

PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id

PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id PELURUHAN RADIOAKTIF NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id 081556431053 Istilah dalam radioaktivitas Perubahan dari inti atom tak stabil menjadi inti atom yg stabil: disintegrasi/peluruhan

Lebih terperinci

Materi. Radioaktif Radiasi Proteksi Radiasi

Materi. Radioaktif Radiasi Proteksi Radiasi Fisika Radiasi Materi Radioaktif Radiasi Proteksi Radiasi PENDAHULUAN kecil dan berbeda, sama atom- Perkembanagn Model Atom : * Model Atom Dalton: - Semua materi tersusun dari partikel- partikel yang sangat

Lebih terperinci

Partikel sinar beta membentuk spektrum elektromagnetik dengan energi

Partikel sinar beta membentuk spektrum elektromagnetik dengan energi Partikel sinar beta membentuk spektrum elektromagnetik dengan energi yang lebih tinggi dari sinar alpha. Partikel sinar beta memiliki massa yang lebih ringan dibandingkan partikel alpha. Sinar β merupakan

Lebih terperinci

FISIKA ATOM & RADIASI

FISIKA ATOM & RADIASI FISIKA ATOM & RADIASI Atom bagian terkecil dari suatu elemen yang berperan dalam reaksi kimia, bersifat netral (muatan positif dan negatif sama). Model atom: J.J. Thomson (1910), Ernest Rutherford (1911),

Lebih terperinci

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ).

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ). PELURUHAN GAMMA ( ) Peluruhan inti yang memancarkan sebuah partikel seperti partikel alfa atau beta, selalu meninggalkan inti pada keadaan tereksitasi. Seperti halnya atom, inti akan mencapai keadaan dasar

Lebih terperinci

X. ADMILNISTRASI. 1. Konsep satuan-satuan radiasi. Besaran-besaran radiologis yang banyak digunakan dalam proteksi radiasi adalah :

X. ADMILNISTRASI. 1. Konsep satuan-satuan radiasi. Besaran-besaran radiologis yang banyak digunakan dalam proteksi radiasi adalah : X. ADMILNISTRASI Dalam bekerja dengan radioisotop dan sumber radiasi lainnya, kita hams selalu berhati-hati terhadap efek biologis dari radiasi. Radiasi tak terlihat dan tak terasa, hanya setelah beberapa

Lebih terperinci

Bab 2. Nilai Batas Dosis

Bab 2. Nilai Batas Dosis Bab 2 Nilai Batas Dosis Teknik pengawasan keselamatan radiasi dalam masyarakat umumnya selalu berdasarkan pada konsep dosis ambang. Setiap dosis betapapun kecilnya akan menyebabkan terjadinya proses kelainan,

Lebih terperinci

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si.

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si. PENEMUAN RADIOAKTIVITAS Sulistyani, M.Si. Email: sulistyani@uny.ac.id SINAR KATODE Penemuan sinar katode telah menginspirasi penemuan sinar-x dan radioaktivitas Sinar katode ditemukan oleh J.J Thomson

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang

BAB I PENDAHULUAN. I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Radiasi nuklir merupakan suatu bentuk pancaran energi. Radiasi nuklir dibagi menjadi 2 jenis berdasarkan kemampuannya mengionisasi partikel pada lintasan yang dilewatinya,

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN. 01 A. Latar Belakang.. 01 Tujuan Instruksional Umum.. 01 Tujuan Instruksional Khusus. 01

DAFTAR ISI. BAB I PENDAHULUAN. 01 A. Latar Belakang.. 01 Tujuan Instruksional Umum.. 01 Tujuan Instruksional Khusus. 01 DAFTAR ISI BAB I PENDAHULUAN. 01 A. Latar Belakang.. 01 Tujuan Instruksional Umum.. 01 Tujuan Instruksional Khusus. 01 BAB II UNIT DAN SATUAN.. 03 A. Paparan. 03 B. Laju Paparan. 04 1. Pengukuran Paparan

Lebih terperinci

BAB V Ketentuan Proteksi Radiasi

BAB V Ketentuan Proteksi Radiasi BAB V Ketentuan Proteksi Radiasi Telah ditetapkan Peraturan Pemerintah No. 63 Tahun 2000 tentang Keselamatan dan kesehatan terhadap pemanfaatan radiasi pengion dan Surat Keputusan Kepala BAPETEN No.01/Ka-BAPETEN/V-99

Lebih terperinci

U Th He 2

U Th He 2 MODUL UNSUR RADIOAKTIF dan RADIOISOTOP Radiasi secara spontan yang di hasilkan oleh unsure di sebut keradioaktifan, sedangkan unsure yang bersifat radioaktif disebut unsure radioaktif.unsur radioaktif

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 200 Mata Pelajaran : Fisika Kelas : XII IPA Alokasi Waktu : 20 menit

Lebih terperinci

Penulis koresponden. Alamat

Penulis koresponden. Alamat Analisis Radiasi Sinar Gamma (γ) Yang Dipancarkan Pesawat Televisi Di Warung Internet (Warnet) Game On Line Jumardin *1, Sri Suryani 1, dan Dahlang Tahir 2 1 Jurusan Fisika, FMIPA UNNHAS, Kampus UNHAS

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Radiasi merupakan suatu bentuk energi. Ada dua tipe radiasi yaitu radiasi partikulasi dan radiasi elektromagnetik. Radiasi partikulasi adalah radiasi yang melibatkan

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kesehatan merupakan salah satu hal yang sangat penting dalam kehidupan manusia, bahkan bisa dikatakan tanpa kesehatan yang baik segala yang dilakukan tidak akan maksimal.

Lebih terperinci

ANALISIS DOSIS YANG DITERIMA PASIEN PADA PEMERIKSAAN RENOGRAF

ANALISIS DOSIS YANG DITERIMA PASIEN PADA PEMERIKSAAN RENOGRAF ANALISIS DOSIS YANG DITERIMA PASIEN PADA PEMERIKSAAN RENOGRAF KRISTIYANTI, WIRANTO BUDI SANTOSO, ISTOFA PUSAT REKAYASA PERANGKAT NUKLIR Abstrak ANALISIS DOSIS YANG DITERIMA PASIEN PADA PEMERIKSAAN RENOGRAF.

Lebih terperinci

VII. PELURUHAN GAMMA. Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi

VII. PELURUHAN GAMMA. Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi VII. PELURUHAN GAMMA Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi 7.1. PELURUHAN GAMMA TUJUAN INSTRUKSIONAL KHUSUS: Setelah mempelajari Sub-pokok

Lebih terperinci

PELURUHAN RADIOAKTIF

PELURUHAN RADIOAKTIF PELURUHAN RADIOAKTIF Inti-inti yang tidak stabil akan meluruh (bertransformasi) menuju konfigurasi yang baru yang mantap (stabil). Dalam proses peluruhan akan terpancar sinar alfa, sinar beta, atau sinar

Lebih terperinci

ANALISIS WAKTU PELURUHAN TERHADAP PERSYARATAN DOSIS RADIOISOTOP UNTUK PEMERIKSAAN GONDOK

ANALISIS WAKTU PELURUHAN TERHADAP PERSYARATAN DOSIS RADIOISOTOP UNTUK PEMERIKSAAN GONDOK ANALISIS WAKTU PELURUHAN TERHADAP PERSYARATAN DOSIS RADIOISOTOP UNTUK PEMERIKSAAN GONDOK Kristiyanti 1, Wahyuni Z Imran 1, Lely Yuniarsari 1 1 Pusat Rekayasa Perangkat Nuklir BATAN ABSTRAK ANALISIS WAKTU

Lebih terperinci

PELURUHAN SINAR GAMMA

PELURUHAN SINAR GAMMA PELURUHAN SINAR GAMMA Pendahuluan Radioaktivitas disebut juga peluruhan radioaktif, yaitu peristiwa terurainya beberapa inti atom tertentu secara spontan yang diikuti dengan pancaran partikel alfa (inti

Lebih terperinci

BAB 1 PENDAHULUAN. radionuklida, pembedahan (surgery) maupun kemoterapi. Penggunaan radiasi

BAB 1 PENDAHULUAN. radionuklida, pembedahan (surgery) maupun kemoterapi. Penggunaan radiasi BAB 1 PENDAHULUAN 1.1. Latar Belakang Radioterapi merupakan salah satu jenis terapi untuk penyakit tumor atau kanker, pengobatan kanker dilakukan dengan menggunakan radiasi pengion atau radionuklida, pembedahan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Keselamatan radiasi merupakan suatu cabang ilmu pengetahuan yang mempelajari masalah kesehatan manusia maupun lingkungan yang berkaitan dengan pemberian perlindungan kepada seseorang

Lebih terperinci

VIII. DOSIMETRI RADIASI, SAFETY, DAN REGULASI

VIII. DOSIMETRI RADIASI, SAFETY, DAN REGULASI VIII. DOSIMETRI RADIASI, SAFETY, DAN REGULASI Dosimetri radiasi Radiasi dapat menyebabkan efek deleteleus dalam sistem kehidupan. Maka ini penting untuk memperkirakan efek ini dalam manusia untuk prosedur

Lebih terperinci

KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif

KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif KIMIA INTI DAN RADIOKIMIA Stabilitas Nuklir dan Peluruhan Radioaktif Oleh : Arif Novan Fitria Dewi N. Wijo Kongko K. Y. S. Ruwanti Dewi C. N. 12030234001/KA12 12030234226/KA12 12030234018/KB12 12030234216/KB12

Lebih terperinci

Mata Pelajaran : FISIKA

Mata Pelajaran : FISIKA Mata Pelajaran : FISIKA Kelas/ Program : XII IPA Waktu : 90 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! 1. Hasil pengukuran tebal meja menggunakan

Lebih terperinci

BAB I Jenis Radiasi dan Interaksinya dengan Materi

BAB I Jenis Radiasi dan Interaksinya dengan Materi BAB I Jenis Radiasi dan Interaksinya dengan Materi Radiasi adalah pancaran energi yang berasal dari proses transformasi atom atau inti atom yang tidak stabil. Ketidak-stabilan atom dan inti atom mungkin

Lebih terperinci

Radiasi 22/12/2014. Radiasi Sumengen Sutomo

Radiasi 22/12/2014. Radiasi Sumengen Sutomo 1 Outline Sumber Partikel Elektromagnetik Dosis dan Efek Biologis 2 Manusia ekpose radiasi bumi dan matahari Jenis radiasi Partikel Elektromagnetik 3 Sumber 4 Bahan Radioaktif Di luar Tubuh Alam: I131,

Lebih terperinci

PEMANTAUAN DOSIS PERORANGAN DI PUSAT TEKNOLOGI NUKLIR BAHAN DAN RADIOMETRI - BATAN BANDUNG

PEMANTAUAN DOSIS PERORANGAN DI PUSAT TEKNOLOGI NUKLIR BAHAN DAN RADIOMETRI - BATAN BANDUNG PEMANTAUAN PERORANGAN DI PUSAT TEKLOGI NUKLIR BAHAN DAN RADIOMETRI - BATAN BANDUNG Afida Ikawati, Irma Dwi Rahayu, Rini Heroe Oetami Pusat Teknologi Nuklir Bahan dan Radiometri, BATAN Jl. Tamansari No.71

Lebih terperinci

BAB I PENDAHULUAN. utama kematian akibat keganasan di dunia, kira-kira sepertiga dari seluruh kematian akibat

BAB I PENDAHULUAN. utama kematian akibat keganasan di dunia, kira-kira sepertiga dari seluruh kematian akibat BAB I PENDAHULUAN 1.1 Latar Belakang Kanker adalah sel yang pertumbuhan dan penyebarannya tidak terkontrol. Pertumbuhannya menyebar ke sekitar jaringan dan dapat bermetasis pada tempat yang jauh. Penyakit

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kanker merupakan suatu penyakit dimana pembelahan sel tidak terkendali dan akan mengganggu sel sehat disekitarnya. Jika tidak dibunuh, kanker dapat menyebar ke bagian

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Kelompok besaran berikut yang merupakan besaran

Lebih terperinci

RADIOKIMIA Tipe peluruhan inti

RADIOKIMIA Tipe peluruhan inti LABORATORIUM KIMIA FISIK Departemen Kimia Fakultas MIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Tipe peluruhan inti Drs. Iqmal Tahir, M.Si., Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 UJI COBA MATA PELAJARAN KELAS/PROGRAM ISIKA SMA www.rizky-catatanku.blogspot.com PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 : FISIKA : XII (Dua belas )/IPA HARI/TANGGAL :.2012

Lebih terperinci

KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 01/Ka-BAPETEN/V-99 TENTANG KETENTUAN KESELAMATAN KERJA TERHADAP RADIASI

KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 01/Ka-BAPETEN/V-99 TENTANG KETENTUAN KESELAMATAN KERJA TERHADAP RADIASI KEPUUSAN KEPALA BADAN PENGAWAS ENAGA NUKLIR NOOR 01/KaBAPEEN/V99 ENANG KEENUAN KESELAAAN KERJA ERADAP RADIASI KEPALA BADAN PENGAWAS ENAGA NUKLIR, enimbang : a. bahwa pemanfaatan zat radioaktif dan/atau

Lebih terperinci

BORON NEUTRON CAPTURE THERAPY (BNCT)

BORON NEUTRON CAPTURE THERAPY (BNCT) BAB 3 BORON NEUTRON CAPTURE THERAPY (BNCT) Boron Neutron Capture Therapy (BNCT), merupakan terapi kanker dengan memanfaatkan reaksi penangkapan neutron termal oleh isotop boron-10 yang kemudian menghasilkan

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Fisika

SMA / MA IPA Mata Pelajaran : Fisika Latihan Soal UN 2010 Paket 2 Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPA Mata Pelajaran : Fisika Dalam UN berlaku Petunjuk Umum seperti ini : 1. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional PDL.PR.TY.PPR.00.D03.BP 1 BAB I : Pendahuluan BAB II : Prinsip dasar deteksi dan pengukuran radiasi A. Besaran Ukur Radiasi B. Penggunaan C.

Lebih terperinci

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si.

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si. PENEMUAN RADIOAKTIVITAS Sulistyani, M.Si. Email: sulistyani@uny.ac.id APA ITU KIMIA INTI? Kimia inti adalah ilmu yang mempelajari struktur inti atom dan pengaruhnya terhadap kestabilan inti serta reaksi-reaksi

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMA / MA 2011 Program IPA Mata Ujian : Fisika Jumlah Soal : 20 1. Gas helium (A r = gram/mol) sebanyak 20 gram dan bersuhu 27 C berada dalam wadah yang volumenya 1,25 liter. Jika tetapan

Lebih terperinci

DOSIS SERAP DI SEKITAR BATAS DISTRIBUSI BORON

DOSIS SERAP DI SEKITAR BATAS DISTRIBUSI BORON BAB 4 DOSIS SERAP DI SEKITAR BATAS DISTRIBUSI BORON Metode perhitungan dosis serap pada bab 3 dapat digunakan untuk melihat sebaran energi serap di sekitar batas daerah yang mengandung boron dan daerah

Lebih terperinci

RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si.

RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si. Departemen Kimia - FMIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Kinetika dan waktu paro peluruhan Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Intensitas spesifik Fluks energi Luminositas Bintang sebagai benda hitam (black body) Kompetensi Dasar: Memahami konsep pancaran benda hitam

Intensitas spesifik Fluks energi Luminositas Bintang sebagai benda hitam (black body) Kompetensi Dasar: Memahami konsep pancaran benda hitam RADIASI BENDA HITAM Intensitas spesifik Fluks energi Luminositas Bintang sebagai benda hitam (black body) Kompetensi Dasar: Memahami konsep pancaran benda hitam Teori Benda Hitam Jika suatu benda disinari

Lebih terperinci

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut!

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! SOAL UJIAN SEKOLAH 2016 PAKET A 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! 2 cm 3 cm 0 5 10 Dari gambar dapat disimpulkan bahwa diameter

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

PEMBUATAN KURVA ISODOSIS PAPARAN RADIASI DI RUANG PEMERIKSAAN INSTALASI RADIOLOGI RSUD KABUPATEN KOLAKA - SULAWESI TENGGARA

PEMBUATAN KURVA ISODOSIS PAPARAN RADIASI DI RUANG PEMERIKSAAN INSTALASI RADIOLOGI RSUD KABUPATEN KOLAKA - SULAWESI TENGGARA Berkala Fisika ISSN : 1410-9662 Vol. 15, No. 4, Oktober 2012, hal 123-132 PEMBUATAN KURVA ISODOSIS PAPARAN RADIASI DI RUANG PEMERIKSAAN INSTALASI RADIOLOGI RSUD KABUPATEN KOLAKA - SULAWESI TENGGARA Syahria

Lebih terperinci

PRA RANCANGAN KONTAINER TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF SUMBER TERBUNGKUS 192 Ir

PRA RANCANGAN KONTAINER TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF SUMBER TERBUNGKUS 192 Ir ABSTRAK PRA RANCANGAN KONTAINER TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF SUMBER TERBUNGKUS 192 Ir Suhartono, Suparno, Suryantoro Pusat Teknologi Limbah Radioaktif-BATAN PRARANCANGAN KONTAINER TEMPAT PENYIMPANAN

Lebih terperinci

BAB II DASAR TEORI Sinar-X

BAB II DASAR TEORI Sinar-X BAB II DASAR TEORI 2.1. Sinar-X Sinar-X adalah gelombang elektromagnetik dengan panjang gelombang antara 10-9 sampai 10-8 m (0,1-100 Å). Berarti sinar-x ini mempunyai panjang gelombang yang jauh lebih

Lebih terperinci

PENDAHULUAN. A. Latar Belakang. tindakan tertentu, maupun terapetik. Di antara prosedur-prosedur tersebut, ada

PENDAHULUAN. A. Latar Belakang. tindakan tertentu, maupun terapetik. Di antara prosedur-prosedur tersebut, ada BAB I PENDAHULUAN PENDAHULUAN A. Latar Belakang Penggunaan terbanyak radiasi pengion buatan manusia adalah di dunia medis. Radiasi pengion tersebut digunakan dalam penegakan diagnosis, panduan tindakan

Lebih terperinci

Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi. PERCOBAAN R2 EKSPERIMEN RADIASI β DAN γ Dosen Pembina : Drs. R. Arif Wibowo, M.

Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi. PERCOBAAN R2 EKSPERIMEN RADIASI β DAN γ Dosen Pembina : Drs. R. Arif Wibowo, M. Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R2 EKSPERIMEN RADIASI β DAN γ Dosen Pembina : Drs. R. Arif Wibowo, M.Si Septia Kholimatussa diah* (891325), Mirza Andiana D.P.*

Lebih terperinci

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII 1. Tumbukan dan peluruhan partikel relativistik Bagian A. Proton dan antiproton Sebuah antiproton dengan energi kinetik = 1,00 GeV menabrak proton

Lebih terperinci

Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral)

Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral) FISIKA INTI A. INTI ATOM Inti Atom = Nukleon Inti Atom terdiri dari Proton dan Neutron Lambang Unsur X X = nama unsur Z = nomor atom (menunjukkan banyaknya proton dalam inti) A = nomor massa ( menunjukkan

Lebih terperinci

DAFTAR ISI. BAB I. PENDAHULUAN.. 01 A. Latar Belakang 01 Tujuan Instruksional Umum. 02 Tujuan Instruksional Khusus 02

DAFTAR ISI. BAB I. PENDAHULUAN.. 01 A. Latar Belakang 01 Tujuan Instruksional Umum. 02 Tujuan Instruksional Khusus 02 DAFTAR ISI BAB I. PENDAHULUAN.. 01 A. Latar Belakang 01 Tujuan Instruksional Umum. 02 Tujuan Instruksional Khusus 02 BAB II FILOSOFI KESELAMATAN RADIASI DAN ALARA... 03 A. Perkembangan Sistem Pembatasan

Lebih terperinci

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan

Lebih terperinci

Radioaktivitas dan Reaksi Nuklir. Rida SNM

Radioaktivitas dan Reaksi Nuklir. Rida SNM Radioaktivitas dan Reaksi Nuklir Rida SNM rida@uny.ac.id Outline Sesi 1 Radioaktivitas Sesi 2 Peluruhan Inti 1 Radioaktivitas Tujuan Perkuliahan: Partikel pembentuk atom dan inti atom Bagaimana inti terikat

Lebih terperinci

PERCOBAAN PEMBELOKAN RADIASI SINAR BETA OLEH MEDAN MAGNET

PERCOBAAN PEMBELOKAN RADIASI SINAR BETA OLEH MEDAN MAGNET PANDUAN PENGGUNAAN KIT ATOM-INTI Oleh : Sukardiyono dan Yusman Wiyatmo Disampaikan pada Pelatihan Kepala Laboratorium Fisika SMA Kabupaten Kebumen dan Purworejo 11 Agustuas 2012 PERCOBAAN PEMBELOKAN RADIASI

Lebih terperinci

PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co

PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co PENENTUAN KARAKTERISASI CERROBEND SEBAGAI WEDGE FILTER PADA PESAWAT TELETERAPI 60 Co M. Azam, K. Sofjan Firdausi, Sisca Silvani Jurusan Fisika, FMIPA,Universitas diponegoro ABSTRACT Wedge filter usually

Lebih terperinci

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT FISIKA MODERN Radiasi Benda Hitam 1. Suatu benda hitam pada suhu 27 0 C memancarkan energi sekitar 100 J/s. Benda hitam tersebut dipanasi sehingga suhunya menjadi 327 0 C.

Lebih terperinci

MATERI APLIKASI TEKNOLOG NUKLIR FISIKA INTI TINJAUAN UMUM PLTN PRINSIP KERJA REAKTOR NUKLIR BAGIAN2 REAKTOR NUKLIR KONSEP KESELAMATAN NUKLIR TEKNIK

MATERI APLIKASI TEKNOLOG NUKLIR FISIKA INTI TINJAUAN UMUM PLTN PRINSIP KERJA REAKTOR NUKLIR BAGIAN2 REAKTOR NUKLIR KONSEP KESELAMATAN NUKLIR TEKNIK MATERI APLIKASI TEKNOLOG NUKLIR FISIKA INTI TINJAUAN UMUM PLTN PRINSIP KERJA REAKTOR NUKLIR BAGIAN2 REAKTOR NUKLIR KONSEP KESELAMATAN NUKLIR TEKNIK GAUGING LOGGING PERUNUT POLIMERISASI STERILISASI PENGAWETAN

Lebih terperinci

ANALISIS DOSIS RADIASI PADA KOLAM AIR IRADIATOR GAMMA 2 MCi MENGGUNAKAN MCNP

ANALISIS DOSIS RADIASI PADA KOLAM AIR IRADIATOR GAMMA 2 MCi MENGGUNAKAN MCNP ANALISIS DOSIS RADIASI PADA KOLAM AIR IRADIATOR GAMMA 2 MCi MENGGUNAKAN MCNP Kristiyanti, Edy Karyanta Pusat Rekayasa Fasilitas Nuklir - BATAN Email : kristiyantiwst@yahoo.com ABSTRAK ANALISIS DOSIS RADIASI

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN

DAFTAR ISI BAB I PENDAHULUAN DAFTAR ISI BAB I PENDAHULUAN 3 BAB II STRUKTUR DAN INTI ATOM 5 A Struktur Atom 6 B Inti atom 9 1. Identifikasi Inti Atom (Nuklida) 9 2. Kestabilan Inti Atom 11 Latihan 13 Rangkuman Bab II. 14 BAB III PELURUHAN

Lebih terperinci

RADIOKIMIA Pendahuluan Struktur Inti

RADIOKIMIA Pendahuluan Struktur Inti LABORATORIUM KIMIA FISIK Departemen Kimia Fakultas MIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Pendahuluan Struktur Inti Drs. Iqmal Tahir, M.Si., Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Soal Prediksi dan Try Out UJIAN NASIONAL TAHUN PELAJARAN 2011/2012. Disusun Sesuai Indikator Kisi-Kisi UN Fisika SMA

Soal Prediksi dan Try Out UJIAN NASIONAL TAHUN PELAJARAN 2011/2012. Disusun Sesuai Indikator Kisi-Kisi UN Fisika SMA Soal Prediksi dan Try Out UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 Disusun Sesuai Indikator Kisi-Kisi UN 2012 Fisika SMA Written by : Team STMIK Jakarta Distributed by : Pak Anang 1. Gambar berikut ini

Lebih terperinci

BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT

BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT Penyusun: Eri Hiswara BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT Penyusun: Eri Hiswara BUKU PINTAR PROTEKSI DAN KESELAMATAN

Lebih terperinci

PEMBAHASAN SOAL PRA UAN SOAL PAKET 2

PEMBAHASAN SOAL PRA UAN SOAL PAKET 2 PEMBAHASAN SOAL PRA UAN SOAL PAKET 2 Soal No 1 Pada jangka sorong, satuan yang digunakan umumnya adalah cm. Perhatikan nilai yang ditunjukkan skala utama dan skala nonius. Nilai yang ditunjukkan oleh skala

Lebih terperinci

SPEKTROSKOPI-γ (GAMMA)

SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) Veetha Adiyani Pardede M0209054, Program Studi Fisika FMIPA UNS Jl. Ir. Sutami 36 A, Kentingan, Surakarta, Jawa Tengah email: veetha_adiyani@yahoo.com ABSTRAK

Lebih terperinci

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS 1 - Dengan menyebut nama Allah yang Maha Pengasih lagi Maha Penyayang - " Dan Kami ciptakan besi yang padanya terdapat kekuatan yang hebat dan

Lebih terperinci

SUB POKOK BAHASAN. I. Dosis Radiasi & Satuan Pengukur. Dosis Radiasi

SUB POKOK BAHASAN. I. Dosis Radiasi & Satuan Pengukur. Dosis Radiasi SUB POKOK BAHASAN Drh. Deni Noviana, PhD Drh. M. Fakhrul Ulum Dosis radiasi dansatuan pengukur Alat pengukuran radiasi Efek Biologis Radiasi Ionisasi : interaksi radiasi sinar X dengan jaringan biologis

Lebih terperinci

PREDIKSI UN FISIKA V (m.s -1 ) 20

PREDIKSI UN FISIKA V (m.s -1 ) 20 PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Pengertian a. Tempat Kerja Tempat kerja adalah tiap ruangan atau lapangan terbuka atau tertutup, bergerak atau tetap, dimana tenaga kerja bekerja, atau yang

Lebih terperinci

SPEKTROSKOPI-γ (GAMMA)

SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) Veetha Adiyani Pardede M2954, Program Studi Fisika FMIPA UNS Jl. Ir. Sutami 36 A, Kentingan, Surakarta, Jawa Tengah email: veetha_adiyani@yahoo.com ABSTRAK Aras-aras inti dipelajari

Lebih terperinci

MANUSIA DAN RADIASI oleh : Sugata Pikatan

MANUSIA DAN RADIASI oleh : Sugata Pikatan Kristal no.6/juni/1992 1 MANUSIA DAN RADIASI oleh : Sugata Pikatan Sudah sering kita mendengar istilah radiasi di media massa. Pada umumnya kata ini dikaitkan dengan kegiatan-kegiatan di reaktor nuklir.

Lebih terperinci

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini.

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1 Diameter maksimum dari pengukuran benda di atas adalah. A. 2,199 cm B. 2,275 cm C. 2,285 cm D. 2,320 cm E. 2,375 cm 2.

Lebih terperinci

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Diameter minimum benda sebesar. A. 9,775 cm B. 9,778 cm C. 9,782 cm D. 9,785 cm E. 9,788 cm 2. Sebuah

Lebih terperinci

Fisika EBTANAS Tahun 1994

Fisika EBTANAS Tahun 1994 Fisika EBTANAS Tahun 1994 EBTANAS-94-01 Diantara kelompok besaran di bawah ini yang hanya terdiri dari besaran turunan saja adalah A. kuat arus, massa, gaya B. suhu, massa, volume C. waktu, momentum, percepatan

Lebih terperinci

LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI

LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI A. Materi Pembelajaran : Struktur Inti LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI B. Indikator Pembelajaran : 1. Mengidentifikasi karakterisrik kestabilan inti atom 2. Menjelaskan pengertian isotop,isobar

Lebih terperinci

1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah.

1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1 A. 5, 22 mm B. 5, 72 mm C. 6, 22 mm D. 6, 70 mm E. 6,72 mm 5 25 20 2. Dua buah vektor masing-masing 5 N dan 12 N. Resultan kedua

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

PREDIKSI DOSIS PEMBATAS UNTUK PEKERJA RADIASI DI INSTALASI ELEMEN BAKAR EKSPERIMENTAL

PREDIKSI DOSIS PEMBATAS UNTUK PEKERJA RADIASI DI INSTALASI ELEMEN BAKAR EKSPERIMENTAL No.05 / Tahun III April 2010 ISSN 1979-2409 PREDIKSI DOSIS PEMBATAS UNTUK PEKERJA RADIASI DI INSTALASI ELEMEN BAKAR EKSPERIMENTAL Suliyanto, Budi Prayitno Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK

Lebih terperinci

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu 1 Muatan Listrik Contoh klassik: Penggaris digosok-gosok pada kain kering tarik-menarik dengan

Lebih terperinci

O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I

O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I CAHAYA O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I PETA KONSEP Cahaya Dualisme Cahaya Kelajuan Cahaya

Lebih terperinci

INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI

INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI suatu emisi (pancaran) dan perambatan energi melalui materi atau ruang dalam bentuk gelombang elektromagnetik atau partikel 2 3 Peluruhan zat

Lebih terperinci

C17 FISIKA SMA/MA IPA

C17 FISIKA SMA/MA IPA 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. Diameter minimum dari pengukuran benda di bawahadalah. A. 2,085 cm B. 2,275 cm C. 2,285 cm D. 2,290 cm E. 2,305 cm 1 2. Seorang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sinar-X Sinar-X dapat diproduksi dengan jalan menembaki target logam dengan elektron cepat dalam tabung sinar katoda. Elektron sebagai proyektil dihasilkan dari filament panas

Lebih terperinci

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N 1. Sebuah lempeng besi tipis, tebalnya diukur dengan menggunakan mikrometer skrup. Skala bacaan hasil pengukurannya ditunjukkan pada gambar berikut. Hasilnya adalah... A. 3,11 mm B. 3,15 mm C. 3,61 mm

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini.

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1 Diameter minimum dari pengukuran benda di atas A. 5,685 cm B. 5,690 cm C. 5,695 cm D. 5,699 cm E. 5,700 cm 2. Sebuah partikel

Lebih terperinci

KUMPULAN SOAL FISIKA KELAS XII

KUMPULAN SOAL FISIKA KELAS XII KUMPULAN SOAL FISIKA KELAS XII Nada-Nada Pipa Organa dan Dawai Soal No. 1 Sebuah pipa organa yang terbuka kedua ujungnya memiliki nada dasar dengan frekuensi sebesar 300 Hz. Tentukan besar frekuensi dari

Lebih terperinci

PENELITIAN DAN NUKLIR ABSTRAK PEKERJA BKTPB 1,27. msv. BEM. merupakan. tahun. ABSTRACTT. for radiation. carried out. on radiation.

PENELITIAN DAN NUKLIR ABSTRAK PEKERJA BKTPB 1,27. msv. BEM. merupakan. tahun. ABSTRACTT. for radiation. carried out. on radiation. PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLIR Yogyakarta, 26 September 2012 EVALUASI PENERIMAAN DOSIS RADIASI EKSTERNA PEKERJA RADIASI DI PTAPB-BATAN YOGYAKARTA TAHUN 2011 Fajar Panuntun, Suparno Pusat Teknologi

Lebih terperinci

BAB FISIKA INTI DAN RADIOAKTIVITAS

BAB FISIKA INTI DAN RADIOAKTIVITAS BAB FISIKA INTI DAN RADIOAKTIVITAS Cnth. Jumlah prtn, neutrn dan electrn dalam suatu atm.. 5 Tentukan Jumlah prtn, neutrn dan electrn dalam suatu atm. Fe Dari Lambang nuklida 5 Fe,maka Z dan A 5.. Jumlah

Lebih terperinci

UN SMA IPA Fisika 2015

UN SMA IPA Fisika 2015 UN SMA IPA Fisika 2015 Latihan Soal - Persiapan UN SMA Doc. Name: UNSMAIPA2015FIS999 Doc. Version : 2015-10 halaman 1 01. Gambar berikut adalah pengukuran waktu dari pemenang lomba balap motor dengan menggunakan

Lebih terperinci

2. Dari reaksi : akan dihasilkan netron dan unsur dengan nomor massa... A. 6

2. Dari reaksi : akan dihasilkan netron dan unsur dengan nomor massa... A. 6 KIMIA INTI 1. Setelah disimpan selama 40 hari, suatu unsur radioaktif masih bersisa sebanyak 0,25 % dari jumlah semula. Waktu paruh unsur tersebut adalah... 20 hari 8 hari 16 hari 5 hari 10 hari SMU/Ebtanas/Kimia/Tahun

Lebih terperinci