BAB I PENDAHULUAN. 1.1 Latar Belakang

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. 1.1 Latar Belakang"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi, animasi, romance dan lainnya. Peminjam baik anggota maupun non anggota sebelum mereka memutuskan untuk meminjam buku, terlebih dahulu mereka ingin mengetahui beberapa informasi mengenai buku tersebut, seperti ketersediaan buku, pengaran, penerbit, tahun terbit dan rak penyimpanan buku selain itu dengan begitu banyaknya judul, varian, kategori yang ada pada perpustakaan terkadang peminjam mengalami kesulitan atau kebingungan ketika akan meminjam, sehingga membutuhkan beberapa alternative buku lain untuk dipinjam. Oleh karena itu selain memerlukan informasi tentang masing-masing buku diperlukan pula suatu fitur tambahan berupa recommender system, fitur recommender ini dapat diterapkan dengan menerapkan salah satu teknik data mining yaitu association rules, salah satu pengaplikasiannya adalah market basket analysis. Mengacu pada penelitian [4] tujuan market basket analysis adaah untuk menemukan bagaimana menemukan item yang dibeli oleh pelanggan dalam supermarket atau toko saling berhubungan.. Penelitian ini merupakan pengembangan penelitian sebelumnya yang mengacu pada [8] yaitu Pembangunan Fitur Book Recommender System Menggunakan Algoritma Apriori Studi Kasus Pada Sistem Informasi Perpustakaan Universitas Widyatama, dan disebutkan bahwa kelemahan metode apriori adalah runtime waktu ketika proses pruning memakan waktu yang lama sehingga algoritma yang digunakan pada penelitian ini adalah Frequent Pattern Growth guna untuk menguji keakuratan algoritma fp-growth yang akan diterapkan pada aplikasi yang akan dibangun dari awal, dan penelitian ini diberi judul, Penerapan Market Basket Analysis pada Book I-1

2 I-2 Recommender System Menggunakan Algoritma Frequent Pattern Growth dengan studi kasus di perpustakaan Universitas Widyatama. Berdasarkan [1], algoritma FP-growth adalah salah satu alternatif algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sebuah kumpulan data berdasarkan data history transaksi beberapa waktu sebelumnya. FP-growth menggunakan pendekatan yang berbeda dari paradigma yang digunakan pada algoritma Apriori. Berbeda dengan paradigma Apriori yang memerlukan langkah candidate generation, yaitu dengan melakukan scanning database secara berulang-ulang untuk memenuhi syarat minimum untuk support dan syarat minimum untuk confidence sedangkan menggunakan algoritma FP-growth, dapat dilakukan pencarian frequent itemset tanpa harus melalui candidate generation. Fp growth menggunakan struktur data FP-Tree sehingga cara kerja dari algoritma ini adalah melalui scan database yang dilakukan hanyadua kali Aplikasi yang akan dirancang nantinya adalah aplikasi finder book yang dilengkapi dengan fitur tambahan book recommender. Aplikasi ini akan membantu memberikan informasi detail mengenai buku yang dicarikan pada keyword serta diharapkan para pengunjung perpustakaan memperoleh alternatif judul buku untuk dipinjam secara bersamaan. Selain itu hasil penelitian ini bermanfaat bagi pustakawan untuk mengatur tata letak buku karena tata letak buku mempengaruhi seseorang untuk melakukan peminjaman. 1.2 Rumusan Masalah Dari latar belakang di atas dapat dirumuskan beberapa masalah yaitu : 1. Bagaimana membangun suatu aplikasi yang dapat merekomendasikan pilihan buku kepada pengunjung untuk dipinjam berdasarkan transaksi sebelumnya? 2. Apakah struktur data pada data transaksi tersebut sesuai untuk dilakukan penerapan algoritma FP-Growth? 3. Bagaimana cara mengkonstruksikan rekomendasi buku berdasarkan frequent itemset?

3 I Batasan Masalah Agar pembahasan mencapai sasaran sesuai dengan yang diharapkan maka dalam penelitian ini perlu dibatasi ruang lingkup pembahasan yang meliputi: 1. Aplikasi yang dibangun merupakan mesin pencarian buku dengan fitur tambahan book recommender, dan bukan merupakan pengembangan aplikasi yang sudah ada. 2. Rekomendasi buku tidak mencakup rekomendasi jurnal, tugas akhir, skripsi dan thesis. 3. Data transaksi yang digunakan adalah data transaksi peminjaman yang dilakukan oleh mahasiswa Universitas Widyatama yang diperoleh dari data transaksi peminjaman 1.4 Tujuan Penelitian Tujuan dari penelitian ini, antara lain : 1. Membangun aplikasi yang dapat merekomendasikan pilihan buku dengan judul lain kepada pengunjung berdasarkan transaksi peminjaman perpustakaan Universitas Widyatama 2. Melakukan analisis terhadap struktur data flat file dari transaksi Perpustakaan Universitas Widyatama apakah sesuai untuk dilakukan penerapan algoritma Fp-Growth. 3. Membangun sistem pencarian buku yang dapat merekomendasikan buku berdasarkan hasil algoritma FP-Growth berupa frequent itemset. 1.5 Metodologi Metode yang digunakan untuk membangun sistem adalah metode terstruktur, sedangkan metode penelitian yang digunakan adalah CRISP-DM[ (CRoss - Industry Standard Proses for Data Mining) yaitu standar proses dalam data mining yang dapat diaplikasikan dalam berbagai sektor industri. Metode CRISP-DM ini memiliki enam tahapan dalam pengembangan data mining (Chapman, 2000) yaitu

4 I-4 1. Business Understanding Tahap pertama adalah memahami tujuan dan kebutuhan dari sudut pandang bisnis, kemudian menterjemakan pengetahuan ini ke dalam pendefinisian masalah dalam data mining. Selanjutnya akan ditentukan rencana dan strategi untuk mencapai tujuan tersebut. 2. Data Understanding Tahap ini dimulai dengan pengumpulan data yang kemudian akan dilanjutkan dengan proses untuk mendapatkan pemahaman yang mendalam tentang data, mengidentifikasi masalah kualitas data, atau untuk mendeteksi adanya bagian yang menarik dari data yang dapat digunakan untuk hipotesa untuk informasi yang tersembunyi. 3. Data Preparation Tahap ini meliputi semua kegiatan untuk membangun dataset akhir (data yang akan diproses pada tahap pemodelan/modeling) dari data mentah. Tahap ini dapat diulang beberapa kali. Pada tahap ini juga mencakup pemilihan tabel, record, dan atributatribut data, termasuh proses pembersihan dan transformasi data untuk kemudian dijadikan masukan dalam tahap pemodelan (modeling). 4. Modeling Dalam tahap ini akan dilakukan pemilihan dan penerapan berbagai teknik pemodelan dan beberapa parameternya akan disesuaikan untuk mendapatkan nilai yang optimal. Secara khusus, ada beberapa teknik berbeda yang dapat diterapkan untuk masalah data mining yang sama. Di pihak lain ada teknik pemodelan yang membutuhan format data khusus. Sehingga pada tahap ini masih memungkinan kembali ke tahap sebelumnya. 5. Evaluation Pada tahap ini, model sudah terbentuk dan diharapkan memiliki kualitas baik jika dilihat dari sudut pandang analisa data. Pada tahap ini akan dilakukan evaluasi terhadap keefektifan dan kualitas model sebelum digunakan dan menentukan apakah model dapat mencapat tujuan yang ditetapkan pada fase awal (Business Understanding).

5 I-5 Kunci dari tahap ini adalah menentukan apakah ada masalah bisnis yang belum dipertimbangkan. Di akhir dari tahap ini harus ditentukan penggunaan hasil proses data mining. 6. Deployment Pada tahap ini, pengetahuan atau informasi yang telah diperoleh akan diatur dan dipresentasikan dalam bentuk khusus sehingga dapat digunakan oleh pengguna. Tahap deployment dapat berupa pembuatan laporan sederhana atau mengimplementasikan proses data mining yang berulang dalam perusahaan. Dalam banyak kasus, tahap deployment melibatkan konsumen, di samping analis data, karena sangat penting bagi konsumen untuk memahami tindakan apa yang harus dilakukan untuk menggunakan model yang telah dibuat. Gambar 1.1 Siklus CRISP-DM Menurut Chapman

6 I Sistematika Penulisan BAB I Pendahuluan, pada bab ini akan dibahasa rumusan masalah penelitian, batasan masalah, tujuan penelitian, dan metode penelitian. BAB II Tinjauan Pustaka, pada bab ini berisi teori-teori pendukung penelitian, yang meliputi metode penelitian, algoritma yang digunakan dan teori pendukung lainnya yang berhubungan dengan perancangan sistem. BAB III Analisis Sistem, pada bab ini berisi tentang analisis sistem yang sedang berjalan serta tahapan-tahapan penelitian yang dimulai dari business understanding dan data understanding. BAB IV Perancangan Sistem, pada bab ini akan membahas tahapan data preparation dan modeling aplikasi yang akan dibuat. Bab ini akan membahas alur sistem yang akan dibuat dan implementasi antar muka. BAB V Implementasi dan Pengujian Sistem pada bab ini akan membahas pengujian algoritma yang telah diterapkan pada fitur book recommender. BAB VI Kesimpulan dan Saran, pada bab ini akan dibahas hasil temuan dari penelitian serta saran untuk pengembangan sistem selanjutnya.

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada bab ini dilakukan pendefinisian permasalahan dari penelitian yang akan dilakukan. Dalam Cross Industry Standard Process for Data Mining[3], tahapan ini

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kartika Kosmetik merupakan toko penjualan produk kosmetik yang paling besar didaerah Rancaekek. Produk utama yang dijual di Kartika Kosmetik adalah produk-produk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI LEMBAR PENGESAHAN... i SURAT PERNYATAAN... ii ABSTRACT... iii ABSTRAKSI... iv KATA PENGANTAR... v DAFTAR ISTILAH... vii DAFTAR ISI... ix DAFTAR TABEL... xii DAFTAR GAMBAR... xiv DAFTAR SIMBOL...

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data mining bertujuan untuk menemukan pola-pola yang valid, baru, mempunyai nilai guna, dan mudah dipahami dari data yang ada. Jenis pola yang dihasilkan ditentukan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Ketersediaan data sudah bukan hal yang sulit diperoleh lagi dewasa ini apalagi ditunjang dengan banyaknya kegiatan yang sudah dilakukan secara komputerisasi.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Penelitian ini menggunakan beberapa sumber pustaka yang berhubungan dengan kasus yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini membahas tentang landasan teori yang medukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Data Mining Data mining adalah kegiatan menemukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Studi Sebelum melakukan penelitian penulis terlebih dahulu melakukan tinjauan pustaka dari penelitian lain dan penelitian tentang prediksi penjurusan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Association rules mining merupakan teknik data mining untuk menentukan hubungan diantara data atau bagaimana suatu kelompok data mempengaruhi suatu kelompok data lain

Lebih terperinci

IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA ECLAT

IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA ECLAT IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA ECLAT Syafina Dwi Arinda 1, Sulastri 2 1,2 Fakultas Teknologi Informasi, Universitas Stikubank Semarang e-mail: 1 syafinadwi96@gmail.com, 2 sulastri@unisbank.ac.id

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia perdagangan di Indonesia, khususnya pada industri grosir dan retail semakin ramai dan menuntut adanya inovasi tinggi. Ritel merupakan mata rantai

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan dan persaingan dalam dunia bisnis perdagangan serta kemajuan teknologi informasi merupakan suatu hal yang saling terkait, dalam ketatnya persaingan pasar

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN Pada bab ini berisi tentang latar belakang pembuatan dari aplikasi penentuan rekomendasi pencarian buku perpustakaan menggunakan algoritma fp-growth, rumusan masalah, tujuan, batasan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam periode enam tahun terakhir (tahun 2007 2012), jumlah gerai ritel modern di Indonesia mengalami pertumbuhan rata-rata 17,57% per tahun. Pada tahun 2007, jumlah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari kebutuhan akan informasi yang akurat sangat dibutuhkan dalam perkembangan masyarakat saat ini dan waktu mendatang. Namun kebutuhan informasi

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu (Sensuse dan Gunadi, 2012). Pola-pola

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Pelaku bisnis saat ini dituntut selalu inovatif untuk dapat bersaing dengan kompetitor. Bisnis retail seperti Apotek merupakan bisnis dengan persaingan yang sangat

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

BAB II TINJAUAN STUDI DAN LANDASAN TEORI

BAB II TINJAUAN STUDI DAN LANDASAN TEORI BAB II TINJAUAN STUDI DAN LANDASAN TEORI 2.1 Tinjauan Studi Penelitian mengenai penerapan metode market basket analysis bukan merupakan hal asing, sebab telah banyak dilakukan oleh peneliti sebelumnya.

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN 3.1 Gambaran Umum Bank XYZ Bank XYZ adalah salah satu bank swasta di Indonesia dan merupakan bank terbesar kelima se-indonesia. Selain menggeluti di bidang jasa keuangan,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 25 BAB III METODE PENELITIAN 3.1 Desain Penelitian Penelitian ini menggunakan jenis penelitian eksperimen, dengan tahapan penelitian sebagai berikut: 1. Pengumpulan Data Pengumpulan data merupakan langkah

Lebih terperinci

BAB I PENDAHULUAN. sisanya 21 persen berada di pulau lain (Djumenda, 2016).

BAB I PENDAHULUAN. sisanya 21 persen berada di pulau lain (Djumenda, 2016). BAB I PENDAHULUAN 1.1 Latar Belakang Jumlah toko di Indonesia merupakan yang terbesar kedua di dunia. Jumlah toko tradisional dan modern di Indonesia mencapai 2,5 juta toko. Untuk penyebaran toko, mayoritas

Lebih terperinci

BAB I PENDAHULUAN. Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi. masyarakat khususnya di daerah perumahan. Bagi sebagian besar

BAB I PENDAHULUAN. Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi. masyarakat khususnya di daerah perumahan. Bagi sebagian besar BAB I PENDAHULUAN 1.1 LATAR BELAKANG Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi masyarakat khususnya di daerah perumahan. Bagi sebagian besar masyarakat kota, mereka lebih cenderung

Lebih terperinci

Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya

Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya nizar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Memahami definisi, proses serta teknik data mining. Pengenalan

Lebih terperinci

ANALISA DATA MINING MENGGUNAKAN METODE CRISP - DM TERHADAP TRANSAKSI PEMBELIAN ASURANSI PADA BANK XYZ

ANALISA DATA MINING MENGGUNAKAN METODE CRISP - DM TERHADAP TRANSAKSI PEMBELIAN ASURANSI PADA BANK XYZ ANALISA DATA MINING MENGGUNAKAN METODE CRISP - DM TERHADAP TRANSAKSI PEMBELIAN ASURANSI PADA BANK XYZ Laporan Tugas Akhir Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer O

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

BAB III 3. METODOLOGI PENELITIAN

BAB III 3. METODOLOGI PENELITIAN BAB III 3. METODOLOGI PENELITIAN Bab ini akan menjelaskan mengenai pemilihan metodologi yang akan dipakai dalam penelitian nanti, serta objek dari penelitan. 3.1 Metode Data mining Proses data mining digunakan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Berbagai penemuan terbaru di dalam pengumpulan dan penyimpanan data telah memungkinkan berbagai organisasi untuk mengumpulkan berbagai data (data pembelian, data nasabah,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK DI PT. FOCUS GAYA GRAHA MENGGUNAKAN METODE ASSOCIATION RULE Aprisal Budiana Teknik Informatika - Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung

Lebih terperinci

SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ

SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ Pahridila Lintang 1),Muhammad Iqbal 2), Ade Pujianto 3) 1), 2, 3) Teknik Informatika STMIK AMIKOM Yogyakarta Jl Ring

Lebih terperinci

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita

Lebih terperinci

TechnoXplore ISSN : X Jurnal Ilmu Komputer & Teknologi Informasi Vol 1 No : 2, Oktober 2016

TechnoXplore ISSN : X Jurnal Ilmu Komputer & Teknologi Informasi Vol 1 No : 2, Oktober 2016 Penerapan Data Mining Pada Data Transaksi Superstore Untuk Mengetahui Kemungkinan Pelanggan Membeli Product Category Dan Product Container Secara Bersamaan Dengan Teknik Asosiasi Menggunakan Algoritma

Lebih terperinci

BAB V KESIMPULAN DAN SARAN. keranjang belanja (Market basket analysis) dalam penerapan cross selling pada

BAB V KESIMPULAN DAN SARAN. keranjang belanja (Market basket analysis) dalam penerapan cross selling pada BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan Kesimpulan yang dapat diambil dari rancang bangun sistem analisis keranjang belanja (Market basket analysis) dalam penerapan cross selling pada Apotek K24 Kalibutuh

Lebih terperinci

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3)

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #7: Association Rules Mining (Bagian 1) Gunawan Jurusan Teknik Informatika Link Analysis (Superset) Tujuan: Mencari hubungan antara

Lebih terperinci

PENERAPAN DATA MINING UNTUK ANALISIS POLA PEMBELIAN PRODUK MENGGUNAKAN ALGORITMA APRIORI PADA DATA TRANSAKSI PENJUALAN

PENERAPAN DATA MINING UNTUK ANALISIS POLA PEMBELIAN PRODUK MENGGUNAKAN ALGORITMA APRIORI PADA DATA TRANSAKSI PENJUALAN PENERAPAN DATA MINING UNTUK ANALISIS POLA PEMBELIAN PRODUK MENGGUNAKAN ALGORITMA APRIORI PADA DATA TRANSAKSI PENJUALAN (Studi Kasus : Koperasi Guru Banjar (KGB)) Karina Nursyafani Adhi, Acep Irham Gufroni,

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris.

Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris. Penerapan Algoritma Apriori dan Algoritma FP-Growth Dalam Menemukan Hubungan Data Nilai Ijazah Matematika dan Bahasa Inggris Dengan Nilai Mata Pelajaran Pemrograman dan Web Programming (Studi Kasus SMK

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ASSOCIATION RULES PADA TEXT MINING Budi Susanto versi 1.2 Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami algoritma Apriori dan FP-Growth

Lebih terperinci

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK Wiwit Agus Triyanto Fakultas Teknik, Program Studi Sistem Informasi Universitas Muria Kudus Email: at.wiwit@yahoo.co.id ABSTRAK Rekomendasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Menurut analisa dari Ketua Umum Asosiasi Pengusaha Ritel Indonesia (Aprindo), menyatakan total penjualan ritel tahun 2015 sebesar Rp 181 triliun dan meningkat

Lebih terperinci

PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP

PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP Teguh Pradana 1) 1) Program Studi/Prodi Teknik Informatika, STMIK Yadika, email: INTI_PERSADA_SOFTWARE@yahoo.co.id Abstrak: Perkembangan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi komputasi dan media penyimpanan telah memungkinkan manusia untuk mengumpulkan dan menyimpan data dari berbagai sumber dengan jumlah yang

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Identifikasi Masalah Masalah Umum

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Identifikasi Masalah Masalah Umum BAB I PENDAHULUAN 1.1 Latar Belakang Masalah 1.1.1 Identifikasi Masalah 1.1.1.1. Masalah Umum Situasi kondisi perekonomian yang ada pada saat ini menunjukkan adanya perkembangan dunia usaha semakin pesat

Lebih terperinci

Rancang Bangun Fitur Rekomendasi Buku Menggunakan Algoritma PrefixSpan pada Sistem Peminjaman Buku Berbasis Web di Perpustakaan Universitas Ciputra

Rancang Bangun Fitur Rekomendasi Buku Menggunakan Algoritma PrefixSpan pada Sistem Peminjaman Buku Berbasis Web di Perpustakaan Universitas Ciputra Rancang Bangun Fitur Rekomendasi Buku Menggunakan Algoritma PrefixSpan pada Sistem Peminjaman Buku Berbasis Web di Perpustakaan Universitas Ciputra Lenny Universitas Ciputra UC Town, Citraland Surabaya

Lebih terperinci

Bandung, November Penulis

Bandung, November Penulis KATA PENGANTAR Assalamu alaikum Warrohmatullahi Wabarokatuh. Alhamdulillahirabbil alamin. Puji syukur penulis panjatkan kehadirat Allah SWT yang telah memberikan rahmat dan hidayahnya sehingga pada akhirnya

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION Vol. 5, No., Maret 26, ISSN : 289-9 5 PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION Yepi Septiana, Dian Dharmayanti2 Teknik Informatika - Universitas Komputer

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Yuli Asriningtias, Rodhyah Mardhiyah Program Studi Teknik Informatika Fakultas Bisnis & Teknologi Informasi, Universitas Teknologi

Lebih terperinci

Cross Industry Standard Process for Data Mining (CRISP-DM) Nama : Siti Maskuroh NIM : A Kel : A

Cross Industry Standard Process for Data Mining (CRISP-DM) Nama : Siti Maskuroh NIM : A Kel : A Cross Industry Standard Process for Data Mining (CRISP-DM) Nama : Siti Maskuroh NIM : A11.2011.06038 Kel : A11.4812 CRISP-DM CRISP - DM adalah metodologi data mining komprehensif dan Model proses untuk

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA Domma Lingga Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

Mining Association Rules dalam Basis Data yang Besar

Mining Association Rules dalam Basis Data yang Besar Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada era globalisasi saat ini, perkembangan teknologi tidak dapat dihindarkan dalam kehidupan manusia. Perkembangan teknologi yang ada, memiliki

Lebih terperinci

PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro)

PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro) JURNAL TEKNIK INFORMATIKA VOL 9 NO. 2, OKTOBER 2016 120 PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro) Dewi

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI

IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI Ristianingrum 1, Sulastri 2 1,2 Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Stikubank e-mail: 1 ristiia.rum@gmail.com,

Lebih terperinci

PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH

PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A Swalayan USING ASSOCIATION RULE BY FP-GROWTH ALGORITHM Ardi Wijaksono

Lebih terperinci

RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang)

RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) Naufal Farras Hilmy 1, Banni Satria Andoko 2 Program Studi Teknik

Lebih terperinci

SKRIPSI HALAMAN JUDUL METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH

SKRIPSI HALAMAN JUDUL METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH SKRIPSI HALAMAN JUDUL METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH METHOD OF ASSOCIATION RULE IN ANALYZING CONSUMER SPENDING

Lebih terperinci

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 Uma Mazida, 2 Ricardus Anggi Pramunendar, M.Cs Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah Proses yang menggunakan

Lebih terperinci

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi

Lebih terperinci

BAB I PENDAHULUAN. mahasiswa yang seringkali meminjam buku harus mencari sendiri dirak rak

BAB I PENDAHULUAN. mahasiswa yang seringkali meminjam buku harus mencari sendiri dirak rak BAB I PENDAHULUAN I.1 Latar Belakang Perpustakaan merupakan salah satu fasilitas penyedia informasi,sumber ilmu pengetahuan,dan sarana penunjang proses kegiatan belajar bagi pengguna untuk mendapatkan

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

BAB I PENDAHULUAN. Penjualan cake dan bakery pada Zahara Bakery yang selalu laris, membuat

BAB I PENDAHULUAN. Penjualan cake dan bakery pada Zahara Bakery yang selalu laris, membuat BAB I PENDAHULUAN I.1. Latar Belakang Penjualan cake dan bakery pada Zahara Bakery yang selalu laris, membuat karyawan Zahara Bakery harus mempersiapkan penjualan sesuai dengan tingkat kebutuhan konsumen

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Objek Penelitian Pada Penelitian ini objek yang akan di ambil adalah sebuah swalayan Indomaret Indraprasta Semarang, dengan mengambil data transaksi penjualan barang

Lebih terperinci

ANALISIS DATA POLA PEMBELIAN KONSUMEN DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN SUPERMARKET PAMELLA YOGYAKARTA 1.

ANALISIS DATA POLA PEMBELIAN KONSUMEN DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN SUPERMARKET PAMELLA YOGYAKARTA 1. ANALISIS DATA POLA PEMBELIAN KONSUMEN DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN SUPERMARKET PAMELLA YOGYAKARTA M. Didik R. Wahyudi 1) Fusna Failasufa 2) 1) 2) Teknik Informatika FST UIN Sunan Kalijaga

Lebih terperinci

ANALISA POLA TRANSAKSI OBAT MENGGUNAKAN ALGORITMA APRIORI Shalsabilla Luthfi Dewati ABSTRAK

ANALISA POLA TRANSAKSI OBAT MENGGUNAKAN ALGORITMA APRIORI Shalsabilla Luthfi Dewati ABSTRAK ANALISA POLA TRANSAKSI OBAT MENGGUNAKAN ALGORITMA APRIORI Shalsabilla Luthfi Dewati ABSTRAK Poliklinik merupakan salah satu bentuk pelayanan masyarakat dalam bidang kesehatan. Pada umumnya poliklinik hanya

Lebih terperinci

PENENTUAN STRATEGI MARKETING PENJUALAN PRODUK DENGAN ALGORITMA APRIORI

PENENTUAN STRATEGI MARKETING PENJUALAN PRODUK DENGAN ALGORITMA APRIORI Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2017, pp. 50~56 50 PENENTUAN STRATEGI MARKETING PENJUALAN PRODUK DENGAN ALGORITMA APRIORI Mohammad Badrul 1 1 STMIK Nusa Mandiri Jakarta e-mail:mohammad.mbl@nusamandiri.ac.id

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference

Lebih terperinci

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM)

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) Nurani 1, Hamdan Gani 2 1 nurani_nanni@yahoo.com, 2 hamdan.gani.inbox@gmail.com

Lebih terperinci

PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan

PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 49 BUSINESS DAN DATA UNDERSTANDING DALAM RANGKA PEMBENTUKAN MODEL TATA LETAK DAN TATA RUANG PASAR TRADISIONAL DALAM RANGKA MENINGKATKAN LABA PENJUALAN MENGGUNAKAN METODE ASSOCIATION RULE DAN DECISION TREE

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Recommender System Berdasarkan [6], Recommender System merupakan bagian dari Sistem Pengolahan Informasi yang dimaksudkan untuk mempresentasikan informasi yang mungkin diminati

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Islam adalah agama yang memiliki dua pegangan yang sangat terpercaya, yaitu Al-Qur an dan Hadis. Hadis merupakan sumber ajaran dan hukum Islam kedua setelah dan

Lebih terperinci

2.1 Penelitian Terkait

2.1 Penelitian Terkait BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terkait Penelitian yang dilakukan oleh Dinda Setiawati Devi dengan menggunakan metode Apriori untuk analisa keranjang pasar untuk 100 data transaksi dan 55 jenis

Lebih terperinci

ABSTRAK. Kata kunci: Market Basket Analysis, Cross-selling. Universitas Kristen Maranatha

ABSTRAK. Kata kunci: Market Basket Analysis, Cross-selling. Universitas Kristen Maranatha ABSTRAK Salah satu strategi pemasaran yang dapat digunakan untuk meningkatkan volume penjualan suatu produk adalah cross selling. Penentuan cross selling produk dapat dilakukan dengan menerapkan Analisis

Lebih terperinci

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

dengan harga jual yang lebih rendah. Sedangkan diskon atau potongan harga adalah pengurangan harga langsung dari suatu produk yang dilakukan dalam

dengan harga jual yang lebih rendah. Sedangkan diskon atau potongan harga adalah pengurangan harga langsung dari suatu produk yang dilakukan dalam BAB I PENDAHULUAN 1.1. Latar Belakang Masalah CV. Amigo Mangesthi Utomo merupakan sebuah perusahaan perseorangan yang bergerak dalam bidang retail sepatu dan pakaian sejak tahun 1976. Pada tahun 2013,

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Banyaknya persaingan dalam dunia bisnis khususnya dalam industri penjualan, menuntut para pengembang untuk menemukan suatu strategi yang dapat meningkatkan

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Mining Data mining adalah eksplorasi dan analisis data dalam jumlah besar untuk menemukan pola yang berarti dan beraturan. Tujuan data mining adalah untuk meningkatkan pemasaran,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Data Mining Istilah data mining memiliki beberapa padanan, seperti knowledge discovery ataupun pattern recognition. Kedua istilah tersebut sebenarnya memiliki ketepatannnya masing-masing.

Lebih terperinci

Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak

Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak DATA MINING MELIHAT POLA HUBUNGAN NILAI TES MASUK MAHASISWA TERHADAP DATA KELULUSAN MAHASISWA UNTUK MEMBANTU PERGURUAN TINGGI DALAM MENGAMBIL KEBIJAKAN DALAM RANGKA PENINGKATAN MUTU PERGURUAN TINGGI Timor

Lebih terperinci

Penentuan Pola Kunjungan Wisatawan Ke Berbagai Objek Wisata Di Pulau Ambon Menggunakan Frequent Pattern Growth

Penentuan Pola Kunjungan Wisatawan Ke Berbagai Objek Wisata Di Pulau Ambon Menggunakan Frequent Pattern Growth KINETIK, Vol.1, No.1, Mei 2016, Hal. 101-141 ISSN : 2503-2259, E-ISSN : 2503-2267 101 Penentuan Pola Kunjungan Wisatawan Ke Berbagai Objek Wisata Di Pulau Ambon Menggunakan Frequent Pattern Growth 1 Muhammad

Lebih terperinci

1 BAB I 2 PENDAHULUAN

1 BAB I 2 PENDAHULUAN 1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah

Lebih terperinci

BAB I PENDAHULUAN. baik. Maka para pengelola harus mencermati pola-pola pembelian yang dilakukan

BAB I PENDAHULUAN. baik. Maka para pengelola harus mencermati pola-pola pembelian yang dilakukan BAB I PENDAHULUAN I.1. Latar Belakang Jumlah pasar swalayan yang terus berkembang membuat para pengelolaswalayan juga dituntut untuk menerapkan strategi pemasaran yang lebih baik. Maka para pengelola harus

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data BAB IV HASIL DAN PEMBAHASAN A. Pengumpulan Data Sumber data utama yang digunakan dalam penelitian ini berasal dari data transaksi 3 bulan terakhir yaitu bulan Maret, April, Mei tahun 2012 di swalayan XYZ

Lebih terperinci