Mining Association Rules dalam Basis Data yang Besar

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mining Association Rules dalam Basis Data yang Besar"

Transkripsi

1 Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep Dasar Contoh Algoritma Apriori Frequent Pattern Growth (FP Growth) 2 1

2 Pendahuluan Asosiasi atau korelasi hubungan dalam sekumpulan besar data. Pendorong : Jumlah data yang dikoleksi dan disimpan oleh industri yang semakin besar. Asosiasi hubungan yang ditemukan dapat menolong dalam pembuatan keputusan bisnis seperti desain katalog dan marketing Contoh umum : market basket analysis 3 Market Basket Analysis Cust. 1 : milk, bread, cereal Cust. 2 : milk, bread, Sugar, eggs Cust. 3 : milk, bread, butter Market Analis : Item mana yang sering dibeli bersamaan oleh customer saya? 4 2

3 Contoh Market Basket Analysis (MBA) Sales manager, ingin mengetahui kebiasaan membeli para customernya. Pertanyaan : kelompok atau item mana saja yang biasa dibeli oleh customer pada satu kali waktu belanja? MBA : diterapkan pada data retail transaksi customer. Hasil dapat digunakan untuk merencanakan strategi marketing atau advertising. 5 Contoh Penggunaan Hasil MBA Untuk menentukan layout toko. Item yang sering dibeli bersamaan ditempatkan berdekatan. Penggambaran pola dapat direpresentasikan dengan association rule. Ex. : computer => software Support = 2%, confidence = 60% 6 3

4 Contoh Penggunaan Hasil MBA Support dan confidence merupakan ukuran tingkat kemenarikan. Keduanya menunjukkan tingkat kegunaan dan keyakinan dari rule yang ada. Support 2% berarti2% dariseluruhtransaksiyang dianalisismenunjukkanbahwacomputer dansoftware dibeli bersamaan. Confidence 60% berarti 60% customer yang membeli computer juga membeli software. Pada umumnya, suatu association rule dianggap menarik jika memenuhi minimum support dan confidence threshold tertentuyang disetolehuser / domain expert. 7 Konsep Dasar : Istilah(1) Support({A,B}): banyaknyatransaksiyang mengandungitem A danitem B Minimum Support : digunakan untuk membatasi variasi itemset 8 4

5 Basic concept : Istilah(2) Confidence(A=>B): probabilitas(b A), dihitung sebagai sup({ A, B}) confidence ( A => B) = sup({ A}) Jikarule inimempunyaiconfidence 0.33, berartijikaa danb terjadidalamsatu transaksi, terdapat 33% kemungkinan bahwa B juga terjadi. 9 Basic concept : Istilah (3) K-itemset : suatu itemset yang berisi k item. Ex. {computer,software} adalah 2-itemset. Frekuensi kejadian / occurrence frequency of itemset : banyaknya transaksi yang berisi itemset. Sering disebut juga sebagai frequency, support count, atau count. Rule disebut strong jika memenuhi min support dan confidence threshold. 10 5

6 Konsep Dasar : Contoh Total transaksi : 1000 Hammer : 50 Nails : 80 Lumber : 20 Hammer + nails : 15 Nails + lumber : 10 Hammer + lumber : 10 Hammer, nails, lumber : 5 Support u/ hammer, nails : 1,5% (15/1000) Support u/ hammer, nails, lumber : 0,5% (5/1000) Confidence hammer nails : 30% (15/50) Confidence nails hammer : 19% (15/80) Confidence hammer, nails lumber : 33% (5/15) Confidence lumber hammer, nails : 25% (5/20) 11 Langkah Langkah dalam Association Rule Mining Temukan seluruh frequent itemset Harus memenuhi minimum support yang telah ditentukan sebelumnya. Generate association rules yang kuat dari frequent itemset Memenuhi confidence threshold 12 6

7 Frequent Patterns & Association Rules Transaction-idid Customer buys both Items bought 10 A, B, D 20 A, C, D 30 A, D, E 40 B, E, F 50 B, C, D, E, F Customer buys A Customer buys D sup({ A, B}) confidence ( A => B ) = sup({ A}) ItemsetX = {x 1,, x k } Find all the rules X Ywith minimum support and confidence support, s, probabilitythat a transaction contains X Y confidence, c, conditional probability that a transaction having X also contains Y Let sup min = 50%, conf min = 50% Jumlah Transaksi: 5 Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules (support, confidence): A D (60%, 100%) D A (60%, 75%) 13 Kekuatan dan Kelemahan AR Kekuatan: Result yang mudah dipahami dengan jelas Mendukung undirected DM Dapat dijalankan pada data yang variable length Kelemahan: Membutuhkan resource komputasi yang besarnya meningkatsecaraeksponensialsesuaiproblem yang ada Cukup sulit untuk menentukan itemset yang benar untuk dianalisis Tidak bisa menangani item yang jarang. 14 7

8 Algoritma Apriori & FP Growth Algoritma apriori : algoritma untuk menemukan frequent itemset dengan candidate generation. FP Growth : metode mining frequent itemset tanpa candidate generation. 15 Apriori: A Candidate Generation-and-Test Approach Prinsip apriori pruning:jika terdapat semua itemset yang jarang frekuensinya, superset dari itemset tersebut tidak perlu dibuat / dites! (Agrawal& 94, Mannila, et KDD 94) Metode: Awalnya, scan basis data sekali untuk mendapatkan 1-itemset yang sering muncul Membuat kandidat itemset dengan panjang (k+1) dari itemset k yan gsering muncul Tes kandidat tersebut terhadap basis data Berhenti saat tidak ada set atau kandidat yang sering muncul sudah tidak dapat dibuat lagi 16 8

9 Algoritma Apriori- Contoh Sup Database TDB min = 2 Itemset sup {A} 2 L Tid Items C A, C, D 20 B, C, E 30 A, B, C, E 40 B, E 1 st scan Itemset {B} 3 {C} 3 {D} 1 {E} 3 C 2 C 2 {A, B} 1 L 2 Itemset sup 2 nd scan {A, C} 2 {B, C} 2 {B, E} 3 {C, E} 2 C 3 Itemset 3 rd scan L 3 {B, C, E} sup {A, C} 2 {A, E} 1 {B, C} 2 {B, E} 3 {C, E} 2 Itemset sup {B, C, E} 2 Itemset sup {A} 2 {B} 3 {C} 3 {E} 3 Itemset {A, B} {A, C} {A, E} {B, C} {B, E} {C, E} 17 Algoritma Apriori Pseudo-code: C k : Candidate itemset of size k L k : frequent itemset of size k L 1 = {frequent items}; for (k= 1; L k!= ; k++) do begin C k+1 = candidates generated from L k ; for each transaction t in database do increment the count of all candidates in C k+1 that are contained in t L k+1 = candidates in C k+1 with min_support end return k L k ; 18 9

10 Detil penting dari Apriori Bagaimana untuk menghasilkan kandidat? Langkah 1: self-joining L k Langkah 2: pruning Bagaimana cara menghitung support dari para kandidat? Contoh dari cara menghasilkan kandidat L 3 ={abc, abd, acd, ace, bcd} Self-joining: L 3 *L 3 abcdfrom abcand abd acdefrom acdand ace Pruning: acdeis removed because adeis not in L 3 C 4 ={abcd} 19 Mining Frequent Patterns Without Candidate Generation Menumbuhkan pola pola yang panjang dari yang pendek dengan item lokal yang sering muncul abc adalah pola yang sering muncul Mengambil semua transaksi yg mengandung abc : DB abc d adalah pola lokal yang sering muncul di DB abc abcd adalah sebuah pola yang sering muncul 20 10

11 Konstruksi FP-treedari sebuah Basis Data Transaksi TID Items bought (ordered) frequent items 100 {f, a, c, d, g, i, m, p} {f, c, a, m, p} 200 {a, b, c, f, l, m, o} {f, c, a, b, m} 300 {b, f, h, j, o, w} {f, b} 400 {b, c, k, s, p} {c, b, p} 500 {a, f, c, e, l, p, m, n} {f, c, a, m, p} Header Table 1. Scan DB sekali, temukan 1- itemset yang sering muncul (pola satu item) 2. Urutkan item yang sering muncul dalam urutan menurun, f-list 3. Scan DB lagi, konstruksi FPtree Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 min_support = 3 {} f:4 c:1 c:3 a:3 b:1 b:1 p:1 m:2 b:1 F-list=f-c-a-b-m-p 21 p:2 m:1 Menenukan Pola Pola yang Memiliki P dari DB Kondisional P Dimulai dari item yang sering muncul dari FP-tree Runut FP-tree dengan mengikuti setiap link dari setiap item yang sering muncul p Akumulasi setiap transformed prefix path dari item p untuk membentuk basis pola p Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 DM-MA/S1IF/FIT/UKM/2010 {} f:4 c:1 c:3 a:3 b:1 b:1 p:1 m:2 p:2 b:1 m:1 Conditional pattern bases item cond. pattern base c f:3 a fc:3 b fca:1, f:1, c:1 m fca:2, fcab:1 p fcam:2, cb:

12 Dari basis Pola Kondisional ke FP-trees Kondisional Untuk setiap basis pola Akumulasi count dari setiap item dalam basis Konstruksi FP-tree untuk item yang sering muncul dari basis pola Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 m:2 c:3 a:3 {} f:4 c:1 b:1 p:2 m:1 b:1 b:1 p:1 m-conditional pattern base: fca:2, fcab:1 {} f:3 c:3 a:3 m-conditional FP-tree 23 All frequent patterns relate to m m, fm, cm, am, fcm, fam, cam, fcam Keuntungan dari FP-tree Structure Lengkap Menyimpan informasi yang lengkap dari mining pola yang sering muncul Tidak pernah memutus sebuah pola yang panjang dari setiap transaksi Padat Mengurangi info yang tidak relevan item yang jarang muncul hilang Item disusun denga urutan menurun: semakin sering muncul, semakin mungkin dibagi dengan yang lain Tidak pernah lebih besar dari DB asal (tidak menghitung nodelinks dan hitungan field) Untuk DB jenis Connect-4, rasio kompresi sampai lebih dari

13 Latihan Diberikan: Min_sup = 60% Min_conf = 80% Transaction-idid T100 T200 T300 T400 T500 Items bought K, A, B, D A, C, D, B, E C, A, B, E B, E B, A, D Carilahsemuaitemsetfrequent denganaprioridanfp-growth, bandingkan efisiensi keduanya Daftarkan semua strong association rules yang memenuhi: x transaksi, buys( X, item1) buys( X, item2) buys( X, item3) 25 13

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Irene Edria Devina / 13515038 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ASSOCIATION RULES PADA TEXT MINING Budi Susanto versi 1.4 Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami algoritma Apriori dan FP-Growth

Lebih terperinci

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset David Samuel/NIM :13506081 1) 1) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference

Lebih terperinci

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS Fitriyani Fakultas Teknik, Universitas BSI Bandung Jalan Sekolah Internasional No. 1-6, Bandung 40282, Indonesia

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3)

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #7: Association Rules Mining (Bagian 1) Gunawan Jurusan Teknik Informatika Link Analysis (Superset) Tujuan: Mencari hubungan antara

Lebih terperinci

PENGGALIAN FREQUENT CLOSED ITEMSETS DENGAN MULTIPLE MINIMUM SUPPORT PADA BASISDATA RETAIL

PENGGALIAN FREQUENT CLOSED ITEMSETS DENGAN MULTIPLE MINIMUM SUPPORT PADA BASISDATA RETAIL Vol. 5, No. 4, Juli 010 ISSN 016-0544 PENGGALIAN FREQUENT CLOSED ITEMSETS DENGAN MULTIPLE MINIMUM SUPPORT PADA BASISDATA RETAIL Endah Purwanti Program Studi Sistem Informasi, Fakultas Sains dan Teknologi,

Lebih terperinci

IMPLEMENTASI ALGORITMA-ALGORITMA ASSOCIATION RULES SEBAGAI BAGIAN DARI PENGEMBANGAN DATA MINING ALGORITHMS COLLECTION

IMPLEMENTASI ALGORITMA-ALGORITMA ASSOCIATION RULES SEBAGAI BAGIAN DARI PENGEMBANGAN DATA MINING ALGORITHMS COLLECTION IMPLEMENTASI ALGORITMA-ALGORITMA ASSOCIATION RULES SEBAGAI BAGIAN DARI PENGEMBANGAN DATA MINING ALGORITHMS COLLECTION Yova Ruldeviyani 1), Muhammad Fahrian 2) Fakultas Ilmu Komputer - Universitas Indonesia

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA)

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) Nur Rohman Ardani 1), Nur Fitrina 2) 1) Magister Teknik Informatika STMIK AMIKOM Yogyakarta 2) Teknik

Lebih terperinci

PENGGALIAN TOP-K CLOSED FREQUENT ITEMSETS BERBASIS ALGORITMA PEMETAAN TRANSAKSI

PENGGALIAN TOP-K CLOSED FREQUENT ITEMSETS BERBASIS ALGORITMA PEMETAAN TRANSAKSI Program Studi MMT-ITS, Surabaya 2 Agustus 28 PENGGALIAN TOP-K CLOSED FREQUENT ITEMSETS BERBASIS ALGORITMA PEMETAAN TRANSAKSI Ngurah Agus Sanjaya ER dan Arif Djunaidy Program Magister Bidang Keahlian Teknik

Lebih terperinci

Association Rule. Ali Ridho Barakbah

Association Rule. Ali Ridho Barakbah Association Rule Ali Ridho Barakbah Assocation rule? Mencari suatu kaidah keterhubungan dari data Diusulkan oleh Agrawal, Imielinski, and Swami (1993) Contoh Dalam suatu supermarket kita ingin mengetahui

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER

ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER F.X. Arunanto, Syaiful Isman Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

TINJAUAN PUSTAKA Data Mining

TINJAUAN PUSTAKA Data Mining 25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan

Lebih terperinci

Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung

Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung Gregorius Satia Budhi 1, Yulia 2, Budiwati Abadi 3 1 Universitas Kristen Petra Surabaya, greg@petra.ac.id

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Perkembangan teknologi informasi yang sangat pesat yang terjadi dewasa ini menuntut manusia untuk mampu beradaptasi dengan perkembangan tersebut. Upaya adaptasi yang dilakukan

Lebih terperinci

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer

Lebih terperinci

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING Narwati Dosen Fakultas Teknologi Informasi Abstrak Jumlah data yang sangat besar pada suatu perusahaan atau dalam suatu transaksi bisnis, merupakan suatu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Mining Data mining adalah eksplorasi dan analisis data dalam jumlah besar untuk menemukan pola yang berarti dan beraturan. Tujuan data mining adalah untuk meningkatkan pemasaran,

Lebih terperinci

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret)

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) Miranda Nur Qolbi Aprilina 1, Wiranto 2,Widodo 3 1,2 Program Studi Informatika,

Lebih terperinci

Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo)

Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo) IJCCS, Vol.10, No.1, January 2016, pp.71~80 ISSN: 1978-1520 71 Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo) Annisa Mauliani * 1, Sri Hartati

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM PERANGKAT LUNAK DATA BASE Amroni, S.Kom, M.Kom

PENERAPAN ALGORITMA APRIORI DALAM PERANGKAT LUNAK DATA BASE Amroni, S.Kom, M.Kom PENERAPAN ALGORITMA APRIORI DALAM PERANGKAT LUNAK DATA BASE Amroni, S.Kom, M.Kom amroni69@yahoo.com Abstrak Banyak teori dan pendekatan yang dikembangkan untuk memperoleh hasil penemuan kaidah asosiasi

Lebih terperinci

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART)

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) Rizka Nurul Arifin Program Studi Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula

Lebih terperinci

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN Supardi 1, Dian Eka Ratnawati, Wayan Firdaus Mahmudy Universitas Brawijaya Malang

Lebih terperinci

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN A M I UNTUK R U D D PENETAPAN I N POLA SERTFIKASI GURU Program Pascasarjana rusan Teknik Elektro Program Studi Telematika

Lebih terperinci

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT.

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. PHAPROS SEMARANG Frismadani Anggita Priyana 1, Acun Kardianawati 2 1,2

Lebih terperinci

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK Wiwit Agus Triyanto Fakultas Teknik, Program Studi Sistem Informasi Universitas Muria Kudus Email: at.wiwit@yahoo.co.id ABSTRAK Rekomendasi

Lebih terperinci

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy (Studi Kasus di PT. Telkom Cabang Wonogiri ) Moch. Yusuf

Lebih terperinci

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT. ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.X) ANALYSIS AND IMPLEMENTATION OF FP-GROWTH ALGORITHM IN SMART

Lebih terperinci

PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET

PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET Vol. 5, No. 3, Januari 2010 ISSN 0216-0544 PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET * Budi Dwi Satoto, ** Daniel O Siahaan, *** Akhmad Saikhu * Jurusan

Lebih terperinci

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA Gregorius Satia Budhi 1, Andreas Handojo, Christine Oktavina Wirawan 1,, Jurusan Teknik

Lebih terperinci

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH Dessy Chaerunnissa 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

Belajar Mudah Algoritma Data Mining : Apriori

Belajar Mudah Algoritma Data Mining : Apriori Belajar Mudah Algoritma Data Mining : Apriori Algoritma apriori merupakan salah satu algoritma klasik data mining. Algoritma apriori digunakan agar komputer dapat mempelajari aturan asosiasi. Tabel 1 di

Lebih terperinci

APLIKASI DATA MINING MENGGUNAKAN ATURAN ASOSIASI DENGAN METODE APRIORI UNTUK ANALISIS KERANJANG PASAR PADA DATA TRANSAKSI PENJUALAN APOTEK

APLIKASI DATA MINING MENGGUNAKAN ATURAN ASOSIASI DENGAN METODE APRIORI UNTUK ANALISIS KERANJANG PASAR PADA DATA TRANSAKSI PENJUALAN APOTEK APLIKASI DATA MINING MENGGUNAKAN ATURAN ASOSIASI DENGAN METODE APRIORI UNTUK ANALISIS KERANJANG PASAR PADA DATA TRANSAKSI PENJUALAN APOTEK Leni Meiwati Jurusan Sistem Informasi Fakultas Ilmu Komputer dan

Lebih terperinci

BAB 3 ANALISIS HIPOTESIS

BAB 3 ANALISIS HIPOTESIS BAB 3 ANALISIS HIPOTESIS Pada bagian ini dibahas mengenai analisis hipotesis sequential pattern dapat dimanfaatkan sebagai node ordering dalam mengkonstruksi struktur BN. Analisis dimulai dengan melakukan

Lebih terperinci

LEMBAR PENGESAHAN Batam, 21 Februari 2011 Pembimbing, Mir atul K. Mufida, S. ST NIK

LEMBAR PENGESAHAN Batam, 21 Februari 2011 Pembimbing, Mir atul K. Mufida, S. ST NIK LEMBAR PENGESAHAN Pembimbing, Mir atul K. Mufida, S. ST NIK. 109057 LEMBAR PERNYATAAN Dengan ini, saya: NIM : 3310801010 Nama : Maria Magdalena adalah mahasiswa Teknik Informatika Politeknik Negeri Batam

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data mining bertujuan untuk menemukan pola-pola yang valid, baru, mempunyai nilai guna, dan mudah dipahami dari data yang ada. Jenis pola yang dihasilkan ditentukan

Lebih terperinci

1 BAB I 2 PENDAHULUAN

1 BAB I 2 PENDAHULUAN 1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis ANDREAS HANDOJO, GREGORIUS SATIA BUDHI, HENDRA RUSLY Jurusan Teknik Informatika Universitas

Lebih terperinci

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi

Lebih terperinci

REKOMENDASI PAKET PEMBELIAN BARANG PADA TOKO ONLINE DENGAN COLLABORATIVE FILTERING

REKOMENDASI PAKET PEMBELIAN BARANG PADA TOKO ONLINE DENGAN COLLABORATIVE FILTERING REKOMENDASI PAKET PEMBELIAN BARANG PADA TOKO ONLINE DENGAN COLLABORATIVE FILTERING Devi Dwi Purwanto Sistem Informasi, Sekolah Tinggi Teknik Surabaya devi@stts.edu ABSTRACT Currently there are many case

Lebih terperinci

PENGEMBANGAN ALGORTIMA APRIORI UNTUK PENGAMBILAN KEPUTUSAN THE DEVELOPMENT APRIORI ALGORITHM FOR DECISION- MAKING

PENGEMBANGAN ALGORTIMA APRIORI UNTUK PENGAMBILAN KEPUTUSAN THE DEVELOPMENT APRIORI ALGORITHM FOR DECISION- MAKING JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol. 4 No. 2, Desember 2015 : 110-121 PENGEMBANGAN ALGORTIMA APRIORI UNTUK PENGAMBILAN KEPUTUSAN THE DEVELOPMENT APRIORI ALGORITHM FOR DECISION- MAKING 1 Lismardiana,

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENGOLAH DATA IMPOR EKSPOR IKAN DENGAN MENGGUNAKAN METODE ASSOCIATION RULE

PENERAPAN DATA MINING UNTUK MENGOLAH DATA IMPOR EKSPOR IKAN DENGAN MENGGUNAKAN METODE ASSOCIATION RULE PENERAPAN DATA MINING UNTUK MENGOLAH DATA IMPOR EKSPOR IKAN DENGAN MENGGUNAKAN METODE ASSOCIATION RULE Ratih Puspasari1), Irma Yanti Buluran2) 1), 2) Manajemen Informatika Universitas Potensi Utama Sistem

Lebih terperinci

Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth

Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth 26 JURNAL GENERIC - Erwin. Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth Erwin *, Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Universitas Sriwijaya Abstrak Algoritma yang umum digunakan

Lebih terperinci

ABSTRACT Market basket analysis is a way to know the shopping habits of people in one place on goods purchased. Market basket analysis to produce an a

ABSTRACT Market basket analysis is a way to know the shopping habits of people in one place on goods purchased. Market basket analysis to produce an a ANALISIS KERANJANG PASAR MENGGUNAKAN ALGORTIMA PREDICTIVE APRIORI UNTUK MENEMUKAN ATURAN ASOSIASI DI APOTEK SEHAT JAYA NINDITYA KHARISMA, METTY MUSTIKASARI Undergraduate Program, Information Systems Gunadarma

Lebih terperinci

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI Candra Irawan Amak Yunus 1 Sistem Informasi, Universitas

Lebih terperinci

SEQUENTIAL PATTERN MINING DENGAN SPADE UNTUK PREDIKSI PEMBELIAN SPARE PART DAN AKSESORIS KOMPUTER PADA KEDATANGAN KEMBALI KONSUMEN

SEQUENTIAL PATTERN MINING DENGAN SPADE UNTUK PREDIKSI PEMBELIAN SPARE PART DAN AKSESORIS KOMPUTER PADA KEDATANGAN KEMBALI KONSUMEN SEQUENTIAL PATTERN MINING DENGAN SPADE UNTUK PREDIKSI PEMBELIAN SPARE PART DAN AKSESORIS KOMPUTER PADA KEDATANGAN KEMBALI KONSUMEN Riqky Juliastio dan Gunawan Teknologi Informasi Sekolah Tinggi Teknik

Lebih terperinci

ANALISA POLA DATA PENYAKIT RUMAH SAKIT DENGAN MENERAPKAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI

ANALISA POLA DATA PENYAKIT RUMAH SAKIT DENGAN MENERAPKAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI Seminar Nasional Informatika ANALISA POLA DATA PENYAKIT RUMAH SAKIT DENGAN MENERAPKAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI Harris Kurniawan, Fujiati, Alfa Saleh STMIK Potensi Utama Jl.

Lebih terperinci

ABSTRAK. Kata Kunci : data mining, market basket analysis, algoritma Apriori, algoritma Fuzzy c-covering, association rules

ABSTRAK. Kata Kunci : data mining, market basket analysis, algoritma Apriori, algoritma Fuzzy c-covering, association rules ABSTRAK Sebagai salah satu aplikasi data mining, market basket analysis umumnya dilakukan dengan menggunakan algoritma Apriori. Algoritma ini mencari asosiasi antar item dengan hanya menghitung berapa

Lebih terperinci

ALGORITMA ATURAN ASOSIASI APRIORI-TID DENGAN METODE KLASTERISASI HIERARKI AGLOMERATIF. Tri Khairul I.A 1 ABSTRAK

ALGORITMA ATURAN ASOSIASI APRIORI-TID DENGAN METODE KLASTERISASI HIERARKI AGLOMERATIF. Tri Khairul I.A 1 ABSTRAK ALGORITMA ATURAN ASOSIASI APRIORI-TID DENGAN METODE KLASTERISASI HIERARKI AGLOMERATIF. Pendahuluan Tri Khairul I.A. Jurusan Matematika FMIPA Universitas Hasanuddin Makassar 905 e-mail: narutolik@linuxmail.org

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data BAB IV HASIL DAN PEMBAHASAN A. Pengumpulan Data Sumber data utama yang digunakan dalam penelitian ini berasal dari data transaksi 3 bulan terakhir yaitu bulan Maret, April, Mei tahun 2012 di swalayan XYZ

Lebih terperinci

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Lutfi Mukaromah 1, Kusumaningtyas 2, Apriliani Galih Saputri 3, Harleni Vionita 4, Rendi Susilo 5,Tri Astuti 6, Lusi Dwi Oktaviana

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA)

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Seminar Nasional Teknologi Informasi dan Multimedia 2016 APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Sugiyatno 1), Adhika Pramita Widyasari 2) 1),

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Yuli Asriningtias, Rodhyah Mardhiyah Program Studi Teknik Informatika Fakultas Bisnis & Teknologi Informasi, Universitas Teknologi

Lebih terperinci

Keywords : Data Mining, FP-Growth, Market Basket Analysis, Association Analysis

Keywords : Data Mining, FP-Growth, Market Basket Analysis, Association Analysis Judul : Penerapan Data Mining Pada Sistem Penjualan Peralatan Dan Aksesoris Komputer Berbasis Web Menggunakan Metode Market Basket Analysis Dengan Algoritma FP-Growth Nama : I Putu Ari Ratna Pratama Nim

Lebih terperinci

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS)

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) Tujuan Praktikum 1. Mahasiswa dapat mengetahui salah satu metode asosiasi dalam data mining. 2. Memberikan pemahaman mengenai prosedurmarket

Lebih terperinci

PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI

PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI Fana Wiza Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Lancang Kuning

Lebih terperinci

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG Mohamad Fauzy 1, Kemas Rahmat Saleh W 2, Ibnu Asror 3 123 Fakultas Informatika Telkom University

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI APLIKASI ANALISIS KERANJANG PASAR DENGAN METODE FUZZY C-COVERING

PERANCANGAN DAN IMPLEMENTASI APLIKASI ANALISIS KERANJANG PASAR DENGAN METODE FUZZY C-COVERING PERANCANGAN DAN IMPLEMENTASI APLIKASI ANALISIS KERANJANG PASAR DENGAN METODE FUZZY C-COVERING KOMPETENSI RPL SKRIPSI NI KADEK DONI JULIARI NIM. 0708605037 PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN ILMU

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam 12 BAB II TINJAUAN PUSTAKA Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam melakukan penelitian data mining dengan metode asosiasi menggunakan algoritma apriori yang terdiri dari state

Lebih terperinci

Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan ( Studi Kasus Kampus STMIK Triguna Dharma)

Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan ( Studi Kasus Kampus STMIK Triguna Dharma) ISSN : 1978-6603 Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan ( Studi Kasus Kampus STMIK Triguna Dharma) Ali Ikhwan *1, Dicky Nofriansyah #2, Sriani #3 *1

Lebih terperinci

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI Gunawan 1, Fandi Halim 2, Tony Saputra Debataraja 3, Julianus Efrata Peranginangin 4

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA CT-Pro PADA KOMODITAS EKSPOR DAN IMPOR SKRIPSI ELISA SEMPA ARIHTA KABAN

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA CT-Pro PADA KOMODITAS EKSPOR DAN IMPOR SKRIPSI ELISA SEMPA ARIHTA KABAN PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA CT-Pro PADA KOMODITAS EKSPOR DAN IMPOR SKRIPSI ELISA SEMPA ARIHTA KABAN 101421012 PROGRAM STUDI EKSTENSI S1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Pola pengaksesan pengguna terhadap sebuah situs web biasanya tergambarkan dalam sebuah pola sekuensial. Pola sekuensial mengindikasikan bahwa transaksi biasanya terjadi secara

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Banyaknya persaingan dalam dunia bisnis khususnya dalam industri penjualan, menuntut para pengembang untuk menemukan suatu strategi yang dapat meningkatkan

Lebih terperinci

Pembuatan Perangkat Lunak Data Mining Untuk Penggalian Kaidah Asosiasi Menggunakan Metode Apriori

Pembuatan Perangkat Lunak Data Mining Untuk Penggalian Kaidah Asosiasi Menggunakan Metode Apriori Pembuatan Perangkat Lunak Data Mining Untuk Penggalian Kaidah Asosiasi Menggunakan Metode Apriori Leo Willyanto Santoso Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra

Lebih terperinci

PEMBANGKITAN KAIDAH ASOSIASI DARI TOP-K FREQUENT CLOSED ITEMSET YANG DIDASARKAN PADA STRUKTUR DATA BERBASIS LATTICE

PEMBANGKITAN KAIDAH ASOSIASI DARI TOP-K FREQUENT CLOSED ITEMSET YANG DIDASARKAN PADA STRUKTUR DATA BERBASIS LATTICE PEMBANGKITAN KAIDAH ASOSIASI DARI TOP-K FREQUENT CLOSED ITEMSET YANG DIDASARKAN PADA STRUKTUR DATA BERBASIS LATTICE Dian Puspita Hapsari dan Arif Djunaidy Fakultas Teknologi Informasi, Institut Teknologi

Lebih terperinci

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL Seminar Nasional Sistem Informasi Indonesia, 2-4 Desember 2013 ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL A.A. Gede Bagus Ariana 1), I Made Dwi Putra Asana 2) 1 STMIK STIKOM

Lebih terperinci

PEMBUATAN PERANGKAT LUNAK DATA MINING UNTUK PENGGALIAN KAIDAH ASOSIASI MENGGUNAKAN METODE APRIORI

PEMBUATAN PERANGKAT LUNAK DATA MINING UNTUK PENGGALIAN KAIDAH ASOSIASI MENGGUNAKAN METODE APRIORI PEMBUATAN PERANGKAT LUNAK DATA MINING UNTUK PENGGALIAN KAIDAH ASOSIASI MENGGUNAKAN. (Leo Willyanto S.) PEMBUATAN PERANGKAT LUNAK DATA MINING UNTUK PENGGALIAN KAIDAH ASOSIASI MENGGUNAKAN METODE APRIORI

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi BAB II TINJAUAN PUSTAKA 2.1. Pengertian Data Data belum dapat dika/takan mempunyai makna penting atau informasi bagi penerima sebelum dilakukan pengolahan data. Data adalah fakta yang dapat dicatat dan

Lebih terperinci

PENDEKATAN ATURAN ASOSIASI UNTUK ANALISIS PERGERAKAN SAHAM

PENDEKATAN ATURAN ASOSIASI UNTUK ANALISIS PERGERAKAN SAHAM PENDEKATAN ATURAN ASOSIASI UNTUK ANALISIS PERGERAKAN SAHAM Azhari 1, Anshori 2 1,2 Intellegent System Research Group, Computer Sciences, FMIPA UGM arisn@ugm.ac.id Abstract Financial analysis of listed

Lebih terperinci

ERROR-TOLERANT FASCICLES UNTUK COLLABORATIVE FILTERING ABSTRAK

ERROR-TOLERANT FASCICLES UNTUK COLLABORATIVE FILTERING ABSTRAK ERROR-TOLERANT FASCICLES UNTUK COLLABORATIVE FILTERING Gunawan, Herman Budianto, Dody Soegiharto, dan Indra Maryati Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya gunawan@stts.edu, herman@stts.edu,

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%)

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%) ASSOCIATION RULE (ALGORITMA A PRIORI) Algoritma A Priori termasuk jenis aturan asosiasi pada data mining. Selain a priori, yang termasuk pada golongan ini adalah metode generalized rule induction dan algoritma

Lebih terperinci

Aplikasi Data Mining dengan Menggunakan Teknik ARM untuk Pengolahan Informasi Rendemen Obat

Aplikasi Data Mining dengan Menggunakan Teknik ARM untuk Pengolahan Informasi Rendemen Obat Aplikasi Data Mining dengan Menggunakan Teknik ARM untuk Pengolahan Informasi Rendemen Obat Wiwin Suwarningsih Pusat Penelitian Informatika, LIPI wiwin@informatika.lipi.go.id Abstrak Rendemen obat merupakan

Lebih terperinci