Mining Association Rules dalam Basis Data yang Besar

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mining Association Rules dalam Basis Data yang Besar"

Transkripsi

1 Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep Dasar Contoh Algoritma Apriori Frequent Pattern Growth (FP Growth) 2 1

2 Pendahuluan Asosiasi atau korelasi hubungan dalam sekumpulan besar data. Pendorong : Jumlah data yang dikoleksi dan disimpan oleh industri yang semakin besar. Asosiasi hubungan yang ditemukan dapat menolong dalam pembuatan keputusan bisnis seperti desain katalog dan marketing Contoh umum : market basket analysis 3 Market Basket Analysis Cust. 1 : milk, bread, cereal Cust. 2 : milk, bread, Sugar, eggs Cust. 3 : milk, bread, butter Market Analis : Item mana yang sering dibeli bersamaan oleh customer saya? 4 2

3 Contoh Market Basket Analysis (MBA) Sales manager, ingin mengetahui kebiasaan membeli para customernya. Pertanyaan : kelompok atau item mana saja yang biasa dibeli oleh customer pada satu kali waktu belanja? MBA : diterapkan pada data retail transaksi customer. Hasil dapat digunakan untuk merencanakan strategi marketing atau advertising. 5 Contoh Penggunaan Hasil MBA Untuk menentukan layout toko. Item yang sering dibeli bersamaan ditempatkan berdekatan. Penggambaran pola dapat direpresentasikan dengan association rule. Ex. : computer => software Support = 2%, confidence = 60% 6 3

4 Contoh Penggunaan Hasil MBA Support dan confidence merupakan ukuran tingkat kemenarikan. Keduanya menunjukkan tingkat kegunaan dan keyakinan dari rule yang ada. Support 2% berarti2% dariseluruhtransaksiyang dianalisismenunjukkanbahwacomputer dansoftware dibeli bersamaan. Confidence 60% berarti 60% customer yang membeli computer juga membeli software. Pada umumnya, suatu association rule dianggap menarik jika memenuhi minimum support dan confidence threshold tertentuyang disetolehuser / domain expert. 7 Konsep Dasar : Istilah(1) Support({A,B}): banyaknyatransaksiyang mengandungitem A danitem B Minimum Support : digunakan untuk membatasi variasi itemset 8 4

5 Basic concept : Istilah(2) Confidence(A=>B): probabilitas(b A), dihitung sebagai sup({ A, B}) confidence ( A => B) = sup({ A}) Jikarule inimempunyaiconfidence 0.33, berartijikaa danb terjadidalamsatu transaksi, terdapat 33% kemungkinan bahwa B juga terjadi. 9 Basic concept : Istilah (3) K-itemset : suatu itemset yang berisi k item. Ex. {computer,software} adalah 2-itemset. Frekuensi kejadian / occurrence frequency of itemset : banyaknya transaksi yang berisi itemset. Sering disebut juga sebagai frequency, support count, atau count. Rule disebut strong jika memenuhi min support dan confidence threshold. 10 5

6 Konsep Dasar : Contoh Total transaksi : 1000 Hammer : 50 Nails : 80 Lumber : 20 Hammer + nails : 15 Nails + lumber : 10 Hammer + lumber : 10 Hammer, nails, lumber : 5 Support u/ hammer, nails : 1,5% (15/1000) Support u/ hammer, nails, lumber : 0,5% (5/1000) Confidence hammer nails : 30% (15/50) Confidence nails hammer : 19% (15/80) Confidence hammer, nails lumber : 33% (5/15) Confidence lumber hammer, nails : 25% (5/20) 11 Langkah Langkah dalam Association Rule Mining Temukan seluruh frequent itemset Harus memenuhi minimum support yang telah ditentukan sebelumnya. Generate association rules yang kuat dari frequent itemset Memenuhi confidence threshold 12 6

7 Frequent Patterns & Association Rules Transaction-idid Customer buys both Items bought 10 A, B, D 20 A, C, D 30 A, D, E 40 B, E, F 50 B, C, D, E, F Customer buys A Customer buys D sup({ A, B}) confidence ( A => B ) = sup({ A}) ItemsetX = {x 1,, x k } Find all the rules X Ywith minimum support and confidence support, s, probabilitythat a transaction contains X Y confidence, c, conditional probability that a transaction having X also contains Y Let sup min = 50%, conf min = 50% Jumlah Transaksi: 5 Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules (support, confidence): A D (60%, 100%) D A (60%, 75%) 13 Kekuatan dan Kelemahan AR Kekuatan: Result yang mudah dipahami dengan jelas Mendukung undirected DM Dapat dijalankan pada data yang variable length Kelemahan: Membutuhkan resource komputasi yang besarnya meningkatsecaraeksponensialsesuaiproblem yang ada Cukup sulit untuk menentukan itemset yang benar untuk dianalisis Tidak bisa menangani item yang jarang. 14 7

8 Algoritma Apriori & FP Growth Algoritma apriori : algoritma untuk menemukan frequent itemset dengan candidate generation. FP Growth : metode mining frequent itemset tanpa candidate generation. 15 Apriori: A Candidate Generation-and-Test Approach Prinsip apriori pruning:jika terdapat semua itemset yang jarang frekuensinya, superset dari itemset tersebut tidak perlu dibuat / dites! (Agrawal& 94, Mannila, et KDD 94) Metode: Awalnya, scan basis data sekali untuk mendapatkan 1-itemset yang sering muncul Membuat kandidat itemset dengan panjang (k+1) dari itemset k yan gsering muncul Tes kandidat tersebut terhadap basis data Berhenti saat tidak ada set atau kandidat yang sering muncul sudah tidak dapat dibuat lagi 16 8

9 Algoritma Apriori- Contoh Sup Database TDB min = 2 Itemset sup {A} 2 L Tid Items C A, C, D 20 B, C, E 30 A, B, C, E 40 B, E 1 st scan Itemset {B} 3 {C} 3 {D} 1 {E} 3 C 2 C 2 {A, B} 1 L 2 Itemset sup 2 nd scan {A, C} 2 {B, C} 2 {B, E} 3 {C, E} 2 C 3 Itemset 3 rd scan L 3 {B, C, E} sup {A, C} 2 {A, E} 1 {B, C} 2 {B, E} 3 {C, E} 2 Itemset sup {B, C, E} 2 Itemset sup {A} 2 {B} 3 {C} 3 {E} 3 Itemset {A, B} {A, C} {A, E} {B, C} {B, E} {C, E} 17 Algoritma Apriori Pseudo-code: C k : Candidate itemset of size k L k : frequent itemset of size k L 1 = {frequent items}; for (k= 1; L k!= ; k++) do begin C k+1 = candidates generated from L k ; for each transaction t in database do increment the count of all candidates in C k+1 that are contained in t L k+1 = candidates in C k+1 with min_support end return k L k ; 18 9

10 Detil penting dari Apriori Bagaimana untuk menghasilkan kandidat? Langkah 1: self-joining L k Langkah 2: pruning Bagaimana cara menghitung support dari para kandidat? Contoh dari cara menghasilkan kandidat L 3 ={abc, abd, acd, ace, bcd} Self-joining: L 3 *L 3 abcdfrom abcand abd acdefrom acdand ace Pruning: acdeis removed because adeis not in L 3 C 4 ={abcd} 19 Mining Frequent Patterns Without Candidate Generation Menumbuhkan pola pola yang panjang dari yang pendek dengan item lokal yang sering muncul abc adalah pola yang sering muncul Mengambil semua transaksi yg mengandung abc : DB abc d adalah pola lokal yang sering muncul di DB abc abcd adalah sebuah pola yang sering muncul 20 10

11 Konstruksi FP-treedari sebuah Basis Data Transaksi TID Items bought (ordered) frequent items 100 {f, a, c, d, g, i, m, p} {f, c, a, m, p} 200 {a, b, c, f, l, m, o} {f, c, a, b, m} 300 {b, f, h, j, o, w} {f, b} 400 {b, c, k, s, p} {c, b, p} 500 {a, f, c, e, l, p, m, n} {f, c, a, m, p} Header Table 1. Scan DB sekali, temukan 1- itemset yang sering muncul (pola satu item) 2. Urutkan item yang sering muncul dalam urutan menurun, f-list 3. Scan DB lagi, konstruksi FPtree Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 min_support = 3 {} f:4 c:1 c:3 a:3 b:1 b:1 p:1 m:2 b:1 F-list=f-c-a-b-m-p 21 p:2 m:1 Menenukan Pola Pola yang Memiliki P dari DB Kondisional P Dimulai dari item yang sering muncul dari FP-tree Runut FP-tree dengan mengikuti setiap link dari setiap item yang sering muncul p Akumulasi setiap transformed prefix path dari item p untuk membentuk basis pola p Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 DM-MA/S1IF/FIT/UKM/2010 {} f:4 c:1 c:3 a:3 b:1 b:1 p:1 m:2 p:2 b:1 m:1 Conditional pattern bases item cond. pattern base c f:3 a fc:3 b fca:1, f:1, c:1 m fca:2, fcab:1 p fcam:2, cb:

12 Dari basis Pola Kondisional ke FP-trees Kondisional Untuk setiap basis pola Akumulasi count dari setiap item dalam basis Konstruksi FP-tree untuk item yang sering muncul dari basis pola Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 m:2 c:3 a:3 {} f:4 c:1 b:1 p:2 m:1 b:1 b:1 p:1 m-conditional pattern base: fca:2, fcab:1 {} f:3 c:3 a:3 m-conditional FP-tree 23 All frequent patterns relate to m m, fm, cm, am, fcm, fam, cam, fcam Keuntungan dari FP-tree Structure Lengkap Menyimpan informasi yang lengkap dari mining pola yang sering muncul Tidak pernah memutus sebuah pola yang panjang dari setiap transaksi Padat Mengurangi info yang tidak relevan item yang jarang muncul hilang Item disusun denga urutan menurun: semakin sering muncul, semakin mungkin dibagi dengan yang lain Tidak pernah lebih besar dari DB asal (tidak menghitung nodelinks dan hitungan field) Untuk DB jenis Connect-4, rasio kompresi sampai lebih dari

13 Latihan Diberikan: Min_sup = 60% Min_conf = 80% Transaction-idid T100 T200 T300 T400 T500 Items bought K, A, B, D A, C, D, B, E C, A, B, E B, E B, A, D Carilahsemuaitemsetfrequent denganaprioridanfp-growth, bandingkan efisiensi keduanya Daftarkan semua strong association rules yang memenuhi: x transaksi, buys( X, item1) buys( X, item2) buys( X, item3) 25 13

Cust. 1 : milk, bread, cereal. Cust. 2 : milk, bread, Sugar, eggs. Cust. 3 : milk, bread, butter

Cust. 1 : milk, bread, cereal. Cust. 2 : milk, bread, Sugar, eggs. Cust. 3 : milk, bread, butter Mining Association Rules in Large Databases S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Basic Concept

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ASSOCIATION RULES PADA TEXT MINING Budi Susanto versi 1.2 Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami algoritma Apriori dan FP-Growth

Lebih terperinci

PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FP-TREE DAN FP-GROWTH PADA DATA TRANSAKSI PENJUALAN OBAT

PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FP-TREE DAN FP-GROWTH PADA DATA TRANSAKSI PENJUALAN OBAT PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FP-TREE DAN FP-GROWTH PADA DATA TRANSAKSI PENJUALAN OBAT Yuyun Dwi Lestari Program Studi Teknik Informatika, Sekolah Tinggi Teknik Harapan Jl. H. M. Jhoni No.

Lebih terperinci

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Irene Edria Devina / 13515038 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ASSOCIATION RULES PADA TEXT MINING Budi Susanto versi 1.4 Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami algoritma Apriori dan FP-Growth

Lebih terperinci

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset David Samuel/NIM :13506081 1) 1) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference

Lebih terperinci

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS Fitriyani Fakultas Teknik, Universitas BSI Bandung Jalan Sekolah Internasional No. 1-6, Bandung 40282, Indonesia

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

ANALISA PENCARIAN FREQUENT ITEMSETS MENGGUNAKAN ALGORITMA FP-MAX

ANALISA PENCARIAN FREQUENT ITEMSETS MENGGUNAKAN ALGORITMA FP-MAX ANALISA PENCARIAN FREQUENT ITEMSETS MENGGUNAKAN ALGORITMA FP-MAX Suhatati Tjandra Dosen Teknik Informatika Sekolah Tinggi Teknik Surabaya e-mail : tati@stts.edu ABSTRAK Association rule mining merupakan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia perdagangan di Indonesia, khususnya pada industri grosir dan retail semakin ramai dan menuntut adanya inovasi tinggi. Ritel merupakan mata rantai

Lebih terperinci

PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI

PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI Prediksi Kebutuhan Penomoran Pada Jaringan Telekomunikasi. (Muztafid Khilmi) PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI Mustafid Khilmi 1) Achmad Affandi 2) 1)

Lebih terperinci

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

PENGGALIAN FREQUENT CLOSED ITEMSETS DENGAN MULTIPLE MINIMUM SUPPORT PADA BASISDATA RETAIL

PENGGALIAN FREQUENT CLOSED ITEMSETS DENGAN MULTIPLE MINIMUM SUPPORT PADA BASISDATA RETAIL Vol. 5, No. 4, Juli 010 ISSN 016-0544 PENGGALIAN FREQUENT CLOSED ITEMSETS DENGAN MULTIPLE MINIMUM SUPPORT PADA BASISDATA RETAIL Endah Purwanti Program Studi Sistem Informasi, Fakultas Sains dan Teknologi,

Lebih terperinci

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3)

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #7: Association Rules Mining (Bagian 1) Gunawan Jurusan Teknik Informatika Link Analysis (Superset) Tujuan: Mencari hubungan antara

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

IMPLEMENTASI ALGORITMA-ALGORITMA ASSOCIATION RULES SEBAGAI BAGIAN DARI PENGEMBANGAN DATA MINING ALGORITHMS COLLECTION

IMPLEMENTASI ALGORITMA-ALGORITMA ASSOCIATION RULES SEBAGAI BAGIAN DARI PENGEMBANGAN DATA MINING ALGORITHMS COLLECTION IMPLEMENTASI ALGORITMA-ALGORITMA ASSOCIATION RULES SEBAGAI BAGIAN DARI PENGEMBANGAN DATA MINING ALGORITHMS COLLECTION Yova Ruldeviyani 1), Muhammad Fahrian 2) Fakultas Ilmu Komputer - Universitas Indonesia

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris.

Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris. Penerapan Algoritma Apriori dan Algoritma FP-Growth Dalam Menemukan Hubungan Data Nilai Ijazah Matematika dan Bahasa Inggris Dengan Nilai Mata Pelajaran Pemrograman dan Web Programming (Studi Kasus SMK

Lebih terperinci

PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP

PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP Teguh Pradana 1) 1) Program Studi/Prodi Teknik Informatika, STMIK Yadika, email: INTI_PERSADA_SOFTWARE@yahoo.co.id Abstrak: Perkembangan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA)

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) Nur Rohman Ardani 1), Nur Fitrina 2) 1) Magister Teknik Informatika STMIK AMIKOM Yogyakarta 2) Teknik

Lebih terperinci

Association Rule. Ali Ridho Barakbah

Association Rule. Ali Ridho Barakbah Association Rule Ali Ridho Barakbah Assocation rule? Mencari suatu kaidah keterhubungan dari data Diusulkan oleh Agrawal, Imielinski, and Swami (1993) Contoh Dalam suatu supermarket kita ingin mengetahui

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Data, Informasi dan Knowledge Data merupakan fakta yang dikumpulkan, disimpan, dan diproses boleh sebuah sistem informasi. Selain deskripsi dari sebuah fakta, data

Lebih terperinci

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE Dewi Sibagariang 1), Karina Auliasari 2) 1.2) Jurusan Teknik Informatika, Institut Teknologi Nasional Malang Jalan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER

ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER F.X. Arunanto, Syaiful Isman Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember

Lebih terperinci

ANALISIS DAN IMPLEMENTASI ALGORITMA CT-APRIORI UNTUK ASOSIASI TRANSAKSI BARANG

ANALISIS DAN IMPLEMENTASI ALGORITMA CT-APRIORI UNTUK ASOSIASI TRANSAKSI BARANG ISSN : 2355-9365 e-proceeding of Engineering : Vol.3, No.3 December 2016 Page 5304 ANALISIS DAN IMPLEMENTASI ALGORITMA CT-APRIORI UNTUK ASOSIASI TRANSAKSI BARANG Abstrak ANALYSIS AND IMPLEMENTATION OF

Lebih terperinci

Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang

Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Tia Arifatul Maulida Fakultas Ilmu Komputer, Universitas Dian Nuswantoro,

Lebih terperinci

PENGGALIAN TOP-K CLOSED FREQUENT ITEMSETS BERBASIS ALGORITMA PEMETAAN TRANSAKSI

PENGGALIAN TOP-K CLOSED FREQUENT ITEMSETS BERBASIS ALGORITMA PEMETAAN TRANSAKSI Program Studi MMT-ITS, Surabaya 2 Agustus 28 PENGGALIAN TOP-K CLOSED FREQUENT ITEMSETS BERBASIS ALGORITMA PEMETAAN TRANSAKSI Ngurah Agus Sanjaya ER dan Arif Djunaidy Program Magister Bidang Keahlian Teknik

Lebih terperinci

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING Narwati Dosen Fakultas Teknologi Informasi Abstrak Jumlah data yang sangat besar pada suatu perusahaan atau dalam suatu transaksi bisnis, merupakan suatu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan dan persaingan dalam dunia bisnis perdagangan serta kemajuan teknologi informasi merupakan suatu hal yang saling terkait, dalam ketatnya persaingan pasar

Lebih terperinci

Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung

Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung Model Rule: Multilevel And Multidimension Association Rule untuk Analisa Market Basket Pada PT. Maha Agung Gregorius Satia Budhi 1, Yulia 2, Budiwati Abadi 3 1 Universitas Kristen Petra Surabaya, greg@petra.ac.id

Lebih terperinci

Perbaikan Struktur Weighted Tree dengan Metode Partisi Fuzzy dalam Pembangkitan Frequent Itemset

Perbaikan Struktur Weighted Tree dengan Metode Partisi Fuzzy dalam Pembangkitan Frequent Itemset T E S I S Perbaikan Struktur Weighted Tree dengan Metode Partisi Fuzzy dalam Pembangkitan Frequent Itemset Oleh: Budi Dwi S (5106201001) Pembimbing Daniel O. Siahaan.S.Kom. M.Sc, PD.Eng Akhmad Saikhu,

Lebih terperinci

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Perkembangan teknologi informasi yang sangat pesat yang terjadi dewasa ini menuntut manusia untuk mampu beradaptasi dengan perkembangan tersebut. Upaya adaptasi yang dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan

BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan BAB II TINJAUAN PUSTAKA 2.1 Decision Support System Turban mendefinisikan Decision Support System sebagai sekumpulan prosedur berbasis model untuk data pemrosesan dan penilaian guna membantu para pengambilan

Lebih terperinci

TINJAUAN PUSTAKA Data Mining

TINJAUAN PUSTAKA Data Mining 25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan

Lebih terperinci

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret)

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) Miranda Nur Qolbi Aprilina 1, Wiranto 2,Widodo 3 1,2 Program Studi Informatika,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam periode enam tahun terakhir (tahun 2007 2012), jumlah gerai ritel modern di Indonesia mengalami pertumbuhan rata-rata 17,57% per tahun. Pada tahun 2007, jumlah

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ

SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ Pahridila Lintang 1),Muhammad Iqbal 2), Ade Pujianto 3) 1), 2, 3) Teknik Informatika STMIK AMIKOM Yogyakarta Jl Ring

Lebih terperinci

PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH

PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A Swalayan USING ASSOCIATION RULE BY FP-GROWTH ALGORITHM Ardi Wijaksono

Lebih terperinci

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART)

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) Rizka Nurul Arifin Program Studi Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula

Lebih terperinci

FREQUENT ITEMSET MINING MENGGUNAKAN ALGORITMA PIE

FREQUENT ITEMSET MINING MENGGUNAKAN ALGORITMA PIE FREQUENT ITEMSET MINING MENGGUNAKAN ALGORITMA PIE Suhatati Tjandra Dosen Teknik Informatika Sekolah Tinggi Teknik Surabaya e-mail: tati@stts.edu ABSTRAK Frequent itemset mining adalah algoritma yang digunakan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo)

Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo) IJCCS, Vol.10, No.1, January 2016, pp.71~80 ISSN: 1978-1520 71 Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo) Annisa Mauliani * 1, Sri Hartati

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Mining Data mining adalah eksplorasi dan analisis data dalam jumlah besar untuk menemukan pola yang berarti dan beraturan. Tujuan data mining adalah untuk meningkatkan pemasaran,

Lebih terperinci

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN Supardi 1, Dian Eka Ratnawati, Wayan Firdaus Mahmudy Universitas Brawijaya Malang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI Bab ini berisi penjelasan tentang definisi, teori dan konsep yang digunakan penulis untuk mamahami cara yang benar untuk mendapatkan pola sekuensial (sequential patterns) dengan

Lebih terperinci

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN A M I UNTUK R U D D PENETAPAN I N POLA SERTFIKASI GURU Program Pascasarjana rusan Teknik Elektro Program Studi Telematika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini membahas tentang landasan teori yang medukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Data Mining Data mining adalah kegiatan menemukan

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM PERANGKAT LUNAK DATA BASE Amroni, S.Kom, M.Kom

PENERAPAN ALGORITMA APRIORI DALAM PERANGKAT LUNAK DATA BASE Amroni, S.Kom, M.Kom PENERAPAN ALGORITMA APRIORI DALAM PERANGKAT LUNAK DATA BASE Amroni, S.Kom, M.Kom amroni69@yahoo.com Abstrak Banyak teori dan pendekatan yang dikembangkan untuk memperoleh hasil penemuan kaidah asosiasi

Lebih terperinci

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA Gregorius Satia Budhi 1, Andreas Handojo, Christine Oktavina Wirawan 1,, Jurusan Teknik

Lebih terperinci

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK Wiwit Agus Triyanto Fakultas Teknik, Program Studi Sistem Informasi Universitas Muria Kudus Email: at.wiwit@yahoo.co.id ABSTRAK Rekomendasi

Lebih terperinci

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA Gregorius Satia Budhi 1, Andreas Handojo, Christine Oktavina Wirawan 1,, Jurusan Teknik

Lebih terperinci

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy (Studi Kasus di PT. Telkom Cabang Wonogiri ) Moch. Yusuf

Lebih terperinci

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT.

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. PHAPROS SEMARANG Frismadani Anggita Priyana 1, Acun Kardianawati 2 1,2

Lebih terperinci

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT. ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.X) ANALYSIS AND IMPLEMENTATION OF FP-GROWTH ALGORITHM IN SMART

Lebih terperinci

Association Rule Dengan FP-Tree dan FP Growth

Association Rule Dengan FP-Tree dan FP Growth Association Rule Dengan FP-Tree dan FP Growth Sistem Informasi FT UPI YAI Jesa Ariawan, MTI Latar Belakang Algoritma Association Rule dengan Apriori kurang baik bila terdapat banyak pola kombinasi data

Lebih terperinci

Journal of Informatics and Telecommunication Engineering. Analisa Algoritma Data Mining Eclat Dan Hui Miner

Journal of Informatics and Telecommunication Engineering. Analisa Algoritma Data Mining Eclat Dan Hui Miner JITE, Vol. 1(1) Juli (2017) p-issn : 2549-6247 e-issn : 2549-6255 Journal of Informatics and Telecommunication Engineering Available online http://ojs.uma.ac.id/index.php/jite Analisa Algoritma Data Mining

Lebih terperinci

Penelitian ini melakukan pencarian

Penelitian ini melakukan pencarian 7 Penelitian ini melakukan pencarian () berdasarkan urutan proses dalam bagan alir minimal non-redundant association rules mining yang ditampilkan pada Gambar 3. Penelitian ini menggunakan hasil praproses

Lebih terperinci

PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET

PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET Vol. 5, No. 3, Januari 2010 ISSN 0216-0544 PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET * Budi Dwi Satoto, ** Daniel O Siahaan, *** Akhmad Saikhu * Jurusan

Lebih terperinci

PENINGKATAN PERFORMA ALGORITMA APRIORI UNTUK ATURAN ASOSIASI DATA MINING

PENINGKATAN PERFORMA ALGORITMA APRIORI UNTUK ATURAN ASOSIASI DATA MINING PENINGKATAN PERFORMA ALGORITMA APRIORI UNTUK ATURAN ASOSIASI DATA MINING Andreas Chandra Teknik Informatika STMIK AMIKOM Yogyakarta Jl Ring road Utara, Condongcatur, Sleman, Yogyakarta 55281 Email : andreaschaandra@yahoo.com

Lebih terperinci

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH Dessy Chaerunnissa 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas

Lebih terperinci

BAB III ANALISA DAN DESAIN SISTEM

BAB III ANALISA DAN DESAIN SISTEM 36 BAB III ANALISA DAN DESAIN SISTEM Tahapan ini merupakan tahapan utama dalam penelitian, dalam tahapan pengembangan sistem metode yang akan dipakai adalah Rapid Application Development dan tahapan Data

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu (Sensuse dan Gunadi, 2012). Pola-pola

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA Domma Lingga Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

LEMBAR PENGESAHAN Batam, 21 Februari 2011 Pembimbing, Mir atul K. Mufida, S. ST NIK

LEMBAR PENGESAHAN Batam, 21 Februari 2011 Pembimbing, Mir atul K. Mufida, S. ST NIK LEMBAR PENGESAHAN Pembimbing, Mir atul K. Mufida, S. ST NIK. 109057 LEMBAR PERNYATAAN Dengan ini, saya: NIM : 3310801010 Nama : Maria Magdalena adalah mahasiswa Teknik Informatika Politeknik Negeri Batam

Lebih terperinci

Belajar Mudah Algoritma Data Mining : Apriori

Belajar Mudah Algoritma Data Mining : Apriori Belajar Mudah Algoritma Data Mining : Apriori Algoritma apriori merupakan salah satu algoritma klasik data mining. Algoritma apriori digunakan agar komputer dapat mempelajari aturan asosiasi. Tabel 1 di

Lebih terperinci

APLIKASI DATA MINING MENGGUNAKAN ATURAN ASOSIASI DENGAN METODE APRIORI UNTUK ANALISIS KERANJANG PASAR PADA DATA TRANSAKSI PENJUALAN APOTEK

APLIKASI DATA MINING MENGGUNAKAN ATURAN ASOSIASI DENGAN METODE APRIORI UNTUK ANALISIS KERANJANG PASAR PADA DATA TRANSAKSI PENJUALAN APOTEK APLIKASI DATA MINING MENGGUNAKAN ATURAN ASOSIASI DENGAN METODE APRIORI UNTUK ANALISIS KERANJANG PASAR PADA DATA TRANSAKSI PENJUALAN APOTEK Leni Meiwati Jurusan Sistem Informasi Fakultas Ilmu Komputer dan

Lebih terperinci

ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A

ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A PENENTUAN LOKASI BARANG PADA A Swalayan MENGGUNAKAN ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DETERMINING LOCATION OF GOODS IN A Swalayan USING ASSOCIATION RULE BY FP-GROWTH ALGORITHM Ardi Wijaksono

Lebih terperinci

RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang)

RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) Naufal Farras Hilmy 1, Banni Satria Andoko 2 Program Studi Teknik

Lebih terperinci

BAB 3 ANALISIS HIPOTESIS

BAB 3 ANALISIS HIPOTESIS BAB 3 ANALISIS HIPOTESIS Pada bagian ini dibahas mengenai analisis hipotesis sequential pattern dapat dimanfaatkan sebagai node ordering dalam mengkonstruksi struktur BN. Analisis dimulai dengan melakukan

Lebih terperinci

ASSOCIATION RULE. Rachmat Selamet. Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. H. Juanda 96 Bandung 40132

ASSOCIATION RULE. Rachmat Selamet. Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. H. Juanda 96 Bandung 40132 Media Informatika Vol. 7 No. 1 (2008) ASSOCIATION RULE Rachmat Selamet Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. H. Juanda 96 Bandung 40132 Abstrak E-mail : if25005@students.itb.ac.id

Lebih terperinci

Perancangan dan Pembuatan Modul Data Mining Market Basket Analysis pada Odoo dengan Studi Kasus Supermarket X

Perancangan dan Pembuatan Modul Data Mining Market Basket Analysis pada Odoo dengan Studi Kasus Supermarket X Perancangan dan Pembuatan Modul Data Mining Market Basket Analysis pada Odoo dengan Studi Kasus Supermarket X Stefani Natalia Hendratha 1, Yulia 2, Gregorius Satia Budhi 3 Program Studi Teknik Informatika,

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

PENGGALIAN TOP-K FREQUENT CLOSED CONSTRAINED GRADIENT ITEMSETS TANPA BATASAN MINIMUM SUPPORT PADA BASIS DATA RETAIL

PENGGALIAN TOP-K FREQUENT CLOSED CONSTRAINED GRADIENT ITEMSETS TANPA BATASAN MINIMUM SUPPORT PADA BASIS DATA RETAIL PENGGALIAN TOP-K FREQUENT CLOSED CONSTRAINED GRADIENT ITEMSETS TANPA BATASAN MINIMUM SUPPORT PADA BASIS DATA RETAIL Dhiani Tresna Absari 1), Arif Djunaidy 2) Fakultas Teknologi Informasi Institut Teknologi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data mining bertujuan untuk menemukan pola-pola yang valid, baru, mempunyai nilai guna, dan mudah dipahami dari data yang ada. Jenis pola yang dihasilkan ditentukan

Lebih terperinci

1 BAB I 2 PENDAHULUAN

1 BAB I 2 PENDAHULUAN 1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

PENGEMBANGAN APLIKASI PENGGALIAN TOP-K FREQUENT CLOSED CONSTRAINED GRADIENT ITEMSETS PADA BASIS DATA RETAIL

PENGEMBANGAN APLIKASI PENGGALIAN TOP-K FREQUENT CLOSED CONSTRAINED GRADIENT ITEMSETS PADA BASIS DATA RETAIL PENGEMBANGAN APLIKASI PENGGALIAN TOP-K FREQUENT CLOSED CONSTRAINED GRADIENT ITEMSETS PADA BASIS DATA RETAIL Dhiani Tresna Absari dan Arif Djunaidy Fakultas Teknologi Informasi, Institut Teknologi Sepuluh

Lebih terperinci

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

PENERAPAN ASSOCIATION RULE PADA DATA PERSEDIAAN BAHAN BAKU DI PRO AB CHICKEN JAMBI

PENERAPAN ASSOCIATION RULE PADA DATA PERSEDIAAN BAHAN BAKU DI PRO AB CHICKEN JAMBI PENERAPAN ASSOCIATION RULE PADA DATA PERSEDIAAN BAHAN BAKU DI PRO AB CHICKEN JAMBI Reny Wahyuning Astuti M.Kom 1),Lucy Simorangkir M.Kom 2), Hendra Wijaya 3) 1), 2)&3) Teknik Informatika, STMIK Nurdin

Lebih terperinci

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis ANDREAS HANDOJO, GREGORIUS SATIA BUDHI, HENDRA RUSLY Jurusan Teknik Informatika Universitas

Lebih terperinci

REKOMENDASI PAKET PEMBELIAN BARANG PADA TOKO ONLINE DENGAN COLLABORATIVE FILTERING

REKOMENDASI PAKET PEMBELIAN BARANG PADA TOKO ONLINE DENGAN COLLABORATIVE FILTERING REKOMENDASI PAKET PEMBELIAN BARANG PADA TOKO ONLINE DENGAN COLLABORATIVE FILTERING Devi Dwi Purwanto Sistem Informasi, Sekolah Tinggi Teknik Surabaya devi@stts.edu ABSTRACT Currently there are many case

Lebih terperinci

PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK )

PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK ) PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK ) SARJON DEFIT Fakultas Ilmu Komputer Universitas Putra Indonesia YPTK E-mail :

Lebih terperinci

PENGEMBANGAN ALGORTIMA APRIORI UNTUK PENGAMBILAN KEPUTUSAN THE DEVELOPMENT APRIORI ALGORITHM FOR DECISION- MAKING

PENGEMBANGAN ALGORTIMA APRIORI UNTUK PENGAMBILAN KEPUTUSAN THE DEVELOPMENT APRIORI ALGORITHM FOR DECISION- MAKING JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol. 4 No. 2, Desember 2015 : 110-121 PENGEMBANGAN ALGORTIMA APRIORI UNTUK PENGAMBILAN KEPUTUSAN THE DEVELOPMENT APRIORI ALGORITHM FOR DECISION- MAKING 1 Lismardiana,

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Penelitian ini menggunakan beberapa sumber pustaka yang berhubungan dengan kasus yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup

Lebih terperinci