|
|
|
- Ari Pranoto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Pengantar Datawarehouse Muhammad Subhan Lisensi Dokumen: Copyright IlmuKomputer.Com Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas untuk tujuan bukan komersial (nonprofit), dengan syarat tidak menghapus atau merubah atribut penulis dan pernyataan copyright yang disertakan dalam setiap dokumen. Tidak diperbolehkan melakukan penulisan ulang, kecuali mendapatkan ijin terlebih dahulu dari IlmuKomputer.Com. Pengertian Datawarehouse Datawarehouse adalah kumpulan macam-macam data yang subject oriented, integrated, time variant, dan nonvolatile. dalam mendukung proses pembuatan keputusan. Inmon and Hackathorn (1994). Datawarehouse sering diintegrasikan dengan berbagai sistem aplikasi untuk mendukung proses laporan dan analisis data dengan menyediakan data histori, yang menyediakan infrastruktur bagi EIS dan DSS.
2 Karakteristik Datawarehouse : subject oriented, integrated, time variant, non volatile Kenapa subject oriented? Datawarehouse diorganisasikan pada subjek-subjek utama, seperti pelanggan, barang/ produk, dan penjualan. Berfokus pada model dan analisis pada data untuk membuat keputusan, jadi bukan pada setiap proses transaksi atau bukan pada OLTP. Menghindari data yang tidak berguna dalam mengambil suatu keputusan. Kenapa integrated? Dibangun dengan menggabungkan/menyatukan data yang berbeda. relational databse, flat file, dan on-line transaction record. Menjamin konsistensi dalam penamaan, struktur pengkodean, dan struktur atribut diantara data satu sama lain. Datawarehouse time variant? Data disimpan untuk menyediakan informasi dari perspektif historical, data yang tahuntahun lalu/ 4-5 thn. Waktu adalah elemen kunci dari suatu datawarehouse/ pada saat pengcapture-an. Kenapa Non Volatile? Setiap kali proses perubahan, data akan di tampung dalam tiap-tiap waktu. Jadi tidak di perbaharui terus menerus. Datawarehouse tidak memerlukan pemrosesan transaksi dan recovery. Hanya ada dua operasi initial loading of data dan access of data.
3 Karakteristik Datawarehouse : subject oriented, integrated, time variant, non volatile Datawarehouse bukan hanya tempat penyimpanan data, Datawarehouse adalah Business Intelligence tools, tools to extract, merubah (transform) dan menerima data (load) ke penyimpanan (repository) serta mengelola dan menerima metadata. Sejarah / Evolution 1960, Dunia komputerisasi membuat aplikasi individu yang digunakan pada file utama. General mill mulai mengembangkan istilah dimensi dan fakta. 1970, IRI menyediakan database dimensi untuk pembeli eceran, tahun untuk memperbaiki, mengembangkan dan mencocokan dengan hardware yang dimiliki. 1983, DBMS diperkenalkan untuk mengambil keputusan. 1988, Barry dan Paul mempublikasikan karyanya tentang Arsitektur Bisnis dan Sistem Informasi 1990, memperkenalkan tool DBMS sebagai alat untuk datawarehouse sekarang, banyak bermunculan buku-buku datawarehouse dan aplikasiaplikasi datawarehouse.
4 Arsitektur Datawarehouse Maksudnya adalah bagaimana datawarehouse dibangun, arsitektur tidak ada yang benar dan salah tetapi suatu arsitektur dibangun tergantung situasi dan kondisi. Arsitektur datawarehouse akan berpengaruh pada penggunaan dan pemeliharaan. Lapisan-lapisan arsitektur datawarehouse : 1. Operational database layer / Lapisan basis data operasional a. Sumber data (source) untuk datawarehouse b. Data lengkap, Data hari ke hari c. Mempunyai nilai saat ini/ data berarti. d. Tingkat kemungkinan data besar. 2. Data Access Layer/ Lapisan Akses Data a. Tools untuk mengekstrak, mengubah dan mengambil(load) data. b. Meliputi karakteristik datawarehouse. 3. Metadata Layer / Lapisan Metadata a. File data tersimpan / Direktori b. Lebih detil dari direktori data sistem, maksudnya lebih mendalam dari file data yang tersedia sebelumnya. c. Ada pentunjuk untuk keseluruhan warehouse dan ada petunjuk data yang dapat diakses report khusus untuk di analisis. 4. Informational access layer (lapisan akses informasi) a. Akses data dan juga tool untuk laporan dan analisis. b. Tools Business Intelligence masuk ke tahap ini.
5 Kenapa dan Untuk apa Datawarehouse? Disini saya akan memberikan ilustrasi untuk datawarehouse. Datawarehouse itu dimiliki oleh perusahaan yang sudah besar, yang memiliki banyak cabang, data yang banyak dan tentunya struktur organisasi yang kompleks. Mari bayangkan sebuah perusahaan yang memiliki banyak transaksi, yang memiliki banyak cabang. Tentu data-data tersebut tersebar dilokasi yang berbeda, sistem operasi yang berbeda, bahkan di basisdata (database) yang berbeda. Nah, Lalu bagaimana seorang pimpinan/ manager mengambil sebuah keputusan? Tentu bagi sang pembuat keputusan hanya membutuhkan akses ke semua sumber data tersebut. Kalau melakukan query di setiap masing-masing cabang tentu tidak efisien dan tidak praktis. Atau bahkan data yang dimiliki oleh perusahaan adalah data-data terbaru, bukan datadata terdahulu dari perusahaan tersebut. Dari permasalahan ini, Datawarehouse hadir sebagai solusinya. Jika mengandalkan database OLTP untuk dilakukan query terlalu besar. Datawarehouse dibuat agar prosesnya lebih efisien. Dan selalu berkompetitif, maksudnya di zaman saat ini perusahaan sudah mengandalkan teknologi datawarehouse untuk pengambilan keputusan di perusahaan. Tujuan Akhir menggunakan Datawarehouse Menyediakan data organisasi yang mudah diakses oleh manager. Data yang berada di datawarehouse bersifat konsisten, dan merupakan kebenaran. Datawarehouse merupakan tempat, dimana data yang telah digunakan di publikasikan. Kualitas data di datawarehouse dapat diandalkan.
6 OLAP [On-Line Analitical Process] OLAP adalah operasi basis data (database) untuk mendapatkan dalam bentuk kesimpulan dengan menggunakan aggregasi sebagai mekanisme utama. Mekanisme berupa analisis dan pengambilan keputusan. OLTP [On-Line Transaction Process] Proses transaksi di suatu proses bisnis seperti penjualan, pemesanan dan pembayaran. Proses yang dilakukan rutin dari hari ke hari. Karakteristiknya dengan input/ data entry, update dan delete. Berfokus pada satu area bisnis saja, entah itu persediaan, penjualan atau bahkan sumber daya. Tugas utamanya terlihat dari hubungan tradisional ke DBMS. Saya akan memberikan contoh perbedaan fitur yang mendasar antara OLTP dan OLAP. User dan Orientasi Sistem : customer vs market. Data contents : sekarang, detil vs historical Design Database : ER Application vs Star Subject View : Sekarang, Lokal vs Perubahan dari setiap data, data terintegrasi. Pola Akses : Update vs hanya bisa membaca tetapi dengan bermacam sudut pandang.
7 OLTP OLAP users data entry manager perusahaan function transaksi setiap hari Pendukung keputusan db design aplikasi oriented subjek oriented data sekarang, terbaru, historical, ringkas, lengkap detail multidimensi terintegrasi usage repetitive ad-hoc access membaca,menulis dan membaca dengan rinci merubah <kompleks> unit of work pendek,transaksi yang query kompleks ringkas db size mega byte Terra byte size_record_access 10 jutaan size_user ribuan ratusan Cara mengembangkan datawarehouse, melalui beberapa metode pendekatan. Pendekatan Ralph Kimball Seorang pakar dibidang datawarehouse yang membuat metode perancangan datawarehouse yang disebut dengan perancangan bottom-up. Disebut bottom-up karena pertama-tama data pada kantor cabang diidentifikasi dan dibuat terlebih dahulu, untuk menyediakan kapabilitas laporan dan analisis untuk proses bisnus tertentu. Data cabang ini dapat dikombinasikan untuk membuat sebuah datawarehouse. Kelebihannya : o Nilai Bisnis dapat dikembalikan secepat data cabang yang pertama dibuat. o Model yang berdimensi o Mudah dimengerti.
8 Kekurangan : o Integrasi o Mapping dari pemodelan berdimensi ke sistem yang sudah ada. o Sulit untuk memastikan kekonsisten dimensi dari semua data cabang. Identify Subject Area Identify Measure Fact Table Identify Dimensions Implements Datawaarehouse Source Cleanse Data Pendekatan Bill Inmonn Bill Inmonn adalah orang yang menggagas pertama kali datawarehouse sebagai wadah/tempat (repository) untuk seluruh data perusahaan. Pendekatan perancangan Inmonn disebut dengan top-down, dimana datawarehouse dirancang menggunakan data model yang telah dinormalisasi. Keuntungan : o Perancangan top-down menghasilkan dimensional view yang konsisten untuk semua data, Karena semua data diload dari repository terpusat/ terintegrasi. o Top down sanggup menghadapi perubahan bisnus, membuat data dimensional cabang yang baru menjadi tugas yang mudah. Kekurangan : o Kesulitan dan biaya mendisain model data perusahaan.
9 o Feedback dari pengguna. o Durasi waktu yang cukup lama saat dimulainya projek hingga manfaat dari datawahouse itu sendiri. o Tidak fleksibel terhadap perubahan kebutuhan pada saat implementasi. Pendekatan Hybrid Suatu pendekatan yang menggunakan campuran dari pendekatan top down dan pendekatan bottom up.
10 Penyimpanan data dalam datawarehouse? Dimensional Data transaksi dipecah menjadi fakta terutama data transaksi yang numeric atau di rubah menjadi dimensi. Contohnya : Data pembayaran pada EF Course, faktanya seberapa banyak anggota yang melakukan pembayaran tepat waktu. Dimensinya, seperti kode anggota, tanggal, dan jenis kursus. Kelebihannya : o o Datawarehouse lebih mudah dimengerti oleh pengguna. Data yang dicari / ditampilkan dengan lebih cepat. Kekurangan : o Kurang mempertahankan integritas dari fakta dan dimensi jika sistem operasi yang digunakan berbeda-beda. o Kesulitan mengubah struktur datawarehouse, jika proses bisnis yang dilakukan perusahaan berubah.
11 Normalisasi Penyimpanan yang dilakukan berdasarkan aturan normalisasi data, dikelompokan berdasarkan katagori (pelanggan, produk, keuangan,dll). Keuntungan : Mudah untuk menambah informasi kedatabase. Kekurangan : Karena banyak table yang terlibat maka akan sulit bagi pengguna untuk menggabungkan data dari sumber yang berbeda. Kedua penyimpanan diatas dimensional dan normalisasi tidaklah berpisah secara utuh, melainkan satu sama lain saling berhubungan. Normalisasi adalah upaya untuk menghindari duplikasi data dalam sebuah tabel dengan melakukan pemisahan informasi dari sebuah entitas ke dalam banyak tabel, dan menghubungkan tabel-tabel tersebut dengan sebuah key yang biasa disebut dengan foreign key. Denormalisasi adalah informasi dari sebuah entitaas yang diletakan dalam sebuah table sehingga table tersebut memiliki banyak duplikasi data.
12 Evolusi perusahaan yang menggunakan Datawarehouse Pada awalnya perusahaan menerapkan datawarehouse yang sangat sederhana. Saat ini perkembangan datawarehouse semakin canggih dan kebutuhan perusahaan pun semakin meningkat. Tingkat- tingkat kebutuhan datawarehouse: Database operasional offline Tahap ini secara sederhana datawarehouse dibangun dengan menduplikasi data dari sistem operasional ke server lain. Sehingga saat membutuhkan data untuk membuat laporan, tidak akan berimbas pada sistem operasional. Datawarehouse Offline Tahapan bau dimana data dari sistem operasional ke suatu bentuk umum dan data dari datawarehouse di simpan dengan struktur yang dirancang untuk membuat laporan. Datawarehouse Realtime Tahap ini setiap kali melakukan proses bisnis, akan selalu terupdate di datawarehouse. Datawarehouse Terintegrasi Tahapan ini hampir sama seperti tahapan realtime, hanya saja setiap kali datawarehouse melakukan update maka secara otomatis akan memberikan data baru ke data sistem operasional.
13 KOMPONEN DATAWAREHOUSE Data Source Untuk membangun suatu datawarehouse yang baik data yang didapatkan harus teralokasi dengan baik. Ini melibatkan OLTP saat ini dimana informasi dari hari ke hari tentang bisnis yang berjalan, tentunya dengan data historis periode sebelumnya, yang mungkin telah dikumpulkan dalam beberapa bentuk sistem lain. Sering kali data yang terbentuk bukan terbentuk database relasional, sehingga membutuhkan banyak upaya untuk mengambil data yang diinginkan. Design Datawarehouse Proses perancangan datawarehouse sangat berhati-hati untuk memilih jenis query yang digunakan dalam datawarehouse. Tahapan ini sangat memerlukan pemahaman yang baik tentang skema database yang ingin dibuat, dan haruslah selalu aktif untuk berkomunikasi dengan pengguna. Desain adalah proses yang tidak dilakukan satu kali, melainkan berulang-ulang agar model yang dimiliki stabil. Tahap ini harus dilakukan secara berhati-hati karena model akan diisi dengan data yang jumlahnya sangat banyak, yang salah satunya dari beberapa model adalah model yang tak dapat diubah. Akuisi data Proses perpindahan data dari sumbernya (source) ke datawarehouse. Proses ini proses yang menggunakan banyak waktu dalam proyek datawarehouse, dan dilakukan dengan software yang dikenal dengan ETL (extract,transform,load) Tools. Sekarang sudah hamper lebih kurang 60 tool yang tersebar diranah maya.
14 Waktu yang dibutuhkan untuk akuisisi data bisa mencapai berbulan-bulan bahkan bertahun-tahun. Perubahan data tangkapan Pembaharuan data periodik datawarehouse dari sistem transaksi menjadi rumit karena harus diidentifikasi dari sumber data yang selalu up to date. Ini disebut dengan perubahan data capture. Ini merupakan tahapan khusus, dan sudah cukup banyak software yang beredar untuk mengatasinya. Seperti Replication Server, Publish/Subscribe, Triggers and Stored Procedures, dan Database log Analysis. Pembersihan Data Ini biasanya dilakukan dengan akuisisi data, kalau dalam ETL ini terdapat pada bagian T. Datawarehouse yang berisi data tidak benar tidak hanya tak berguna, tapi juga menyesatkan. Ide dibalik pembuatan datawarehouse adalah untuk memudahkan pengambilan keputusan, jika keputusan yang besar yang ditunjang oleh data yang tidak valid maka perusahaan mengalami resiko yang amat besar pula. Pembersihan data suatu proses rumit yang memvalidasi dan bila perlu mengoreksi data sebelum masuk kedalam datawarehouse. Pembersihan data dapat juga disebut sebagai data scrubbing atau penjamin kualitas data, proses ini harus dilakukan secara berhati-hati dan dilakukan keseluruhan terutama datawarehouse yang diambil dari perangkat yang sudah tua.
15 Data Aggregation Termasuk proses tansformasi, datawarehouse dirancang untuk menyimpanan yang amat detil dari tiap transaksi, untuk beberapa tingkat aggregate (ringkasan). Keuntungan jika data diringkas yaitu query khusus dalam datawarehouse berjalan lebih cepat. Kekurangannya adalah informasi yang didapat kurang, karena ringkasnya data yang ada pada datawarehouse. Ini harus berhati-hati karena keputusan tidak dapat dibatalkan tanpa membangun kembali datawarehouse dan mencocokan dengan datawarehouse lain (atau sumber data lain). Paling aman digunakan oleh perusahaan yang amat besar, yang mampu membangun datawarehouse tingkat detail yang tinggi dengan biaya yang besar pula. Metadata adalah istilah dari proses pengidentifikasian suatu atribut dan struktur dari sebuah data atau informasi. Metadata menjelaskan sebuah data itu sendiri
16 3 Model Datawarehouse Enterprise Datawarehouse Semua informasi yang dikumpulkan berupa subjek, yang mencakup seluruh organisasi perusahaan. Data Mart Sebagian data dari bagian perusahaan yang mempunyai nilai bagi pengguna. Ruang lingkupnya lebih spesifik, seperti data Penjualan atau marketing saja. Virtual Warehouse Memantau melalui data operasional pada database. Suatu ringkasan dari data yang fleksibel, mengurangi biaya untuk pengguna yang membutuhkan. Karena tersedianya data yang siap disajikan tidak hanya untuk beberapa pengguna didalam perusahaan, akan tetapi perusahaan lain yang membutuhkan data tersebut dapat mudah untuk memperolehnya.
17 Keuntungan Datawarehouse Datawarehouse menyediakan model data yang bervariasi, dan tidak bergantung pada satu sumber data saja. Hal ini memudahkan pimpinan perusahaan/manager membuat laporan dan menganalisa. Saat me-load data ke dalam datawarehouse, data yang tidak konsisten akan diketahui dan secepatnya dirubah. Mendukung proses pembuatan laporan, agar keputusan yang diambil adalah keputusan yang benar sesuai data. Keamanan informasi didalam datawarehouse terjamin, karena datawarehouse selalu digunakan dan dimonitor oleh pengguna datawarehouse tersebut. Dalam membuat laporan tidak membuat proses transaksi yang ada menjadi lambat, karena datawarehouse terpisah dengan database operasional. Datawarehouse menyediakan berbagai macam bentuk laporan yang terbaru. Kerugian Datawarehouse Datawarehouse tidak cocok untuk data yang tidak struktur. Data perlu di extract, diubah, dan di load ke datawarehouse, sehingga membutuhkan waktu (delay) kerja untuk datawarehouse yang belum terbentuk. Semakin lama masa hidup bisnis yang menggunakan datawarehouse, maka semakin banyak biaya yang dikeluarkan oleh perusahaan untuk memodifikasi teknologi datawarehouse atau perawatan berjalan datawarehouse. Jika data yang diambil lambat, maka data yang dimiliki di datawarehouse tidak berkulitas/ sehingga laporan tidak optimal.
18 Biografi Penulis Muhammad Subhan, I am Student in Binus University, Faculty Computer Science Major Information System, Spezialitation of Business Integence. SQL Server 05/08 my tools for developing my project. YM : subhan_ @yahoo.com Facebook : [email protected]
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Data Data adalah sebuah rekaman dari fakta-fakta, konsep-konsep, atau instruksiinstruksi pada media penyimpanan untuk komunikasi perolehan, dan pemrosesan dengan cara otomatis
http://www.brigidaarie.com Apa itu database? tempat penyimpanan data yang saling berhubungan secara logika Untuk apa database itu?? untuk mendapatkan suatu informasi yang diperlukan oleh suatu organisasi
DATA WAREHOUSE PERTEMUAN I S1 TEKNIK INFORMATIKA TITUS KRISTANTO, S.KOM
DATA WAREHOUSE PERTEMUAN I 22032013 S1 TEKNIK INFORMATIKA TITUS KRISTANTO, S.KOM METODE PEMBELAJARAN Kuliah Diskusi Presentasi Latihan Tugas Quiz UTS UAS BUKU ACUAN Apress Building A Data Warehouse With
[Data Warehouse] [6/C2 & 6/D2]
[Data Warehouse] [6/C2 & 6/D2] [ Chapter 2] Jenis dan Karakteristik Data Warehouse Dedy Alamsyah, S.Kom, M.Kom [NIDN : 0410047807] Jenis Data Warehouse 1. Functional Data Warehouse (Data Warehouse Fungsional)
DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING (OLAP)
DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING (OLAP) Overview Data Warehouse dan OLAP merupakan elemen penting yang mendukung decision support. Terutama bagi perusahaan perusahaan besar dengan database
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian Data Menurut (Inmon, 2005, p. 493) data merupakan kumpulan faktafakta, konsep-konsep dan instruksi-instruksi yang disimpan dalam media penyimpanan yang
[Data Warehouse] [6/C2 & 6/D2]
[Data Warehouse] [6/C2 & 6/D2] [ Chapter 3] Arsitektur dan Struktur Data Warehouse Dedy Alamsyah, S.Kom, M.Kom [NIDN : 0410047807] Arsitektur Data Warehouse Menurut Poe, arsitektur adalah sekumpulan atau
PERTEMUAN 14 DATA WAREHOUSE
PERTEMUAN 14 DATA WAREHOUSE Data Warehouse Definisi : Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis yang mendukung
Business Intelligence. Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Business Intelligence Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization DEFINISI DATA WAREHOUSE Data warehouse adalah database yang saling bereaksi yang dapat digunakan
DATAWAREHOUSE. Sukarsa:Pasca Elektro Unud. I Made Sukarsa
DATAWAREHOUSE I Made Sukarsa Evolusi Sistem Informasi Decision Support System database Database (I,U,D,R) ETL DW (Read) Masalah : integrasi /konsistensi OLTP Normalisasi/Den ormalisasi OLAP Denormalisasi
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI Dalam bab ini akan dijelaskan tentang beberapa konsep tentang supra desa, business intelligence, data warehouse, staging area, ETL, OLAP, ROLAP, Pentaho Data Integration, dan PHP.
BAB II LANDASAN TEORI. Data adalah sesuatu yang mewakilkan objek dan peristiwa yang memiliki arti
BAB II LANDASAN TEORI 2.1 Data Data adalah sesuatu yang mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi pemakai (Hoffer, Prescott dan McFadden,2007, p6). 2.2 Basis Data Basis
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika. Knowledge Discovery in Databases (KDD)
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika Knowledge Discovery in Databases (KDD) Knowledge Discovery in Databases (KDD) Definisi Knowledge Discovery
[Data Warehouse] [6/C2 & 6/D2]
[Data Warehouse] [6/C2 & 6/D2] [ Chapter 6] Pemodelan Data Warehouse Dedy Alamsyah, S.Kom, M.Kom [NIDN : 0410047807] Pemodelan Data Ada dua pendekatan yang diterima sebagai best practice untuk memodelkan
BAB II. LANDASAN TEORIse. Menurut McLeod dan Schell (2004, p405), data warehouse adalah sebuah
BAB II LANDASAN TEORIse 2.1 Data Warehouse Menurut McLeod dan Schell (2004, p405), data warehouse adalah sebuah tempat penyimpanan data dimana kapasitas penyimpanannya berskala besar; datanya diakumulasikan
Perancangan Basis Data
Modul ke: Perancangan Basis Data Fakultas FASILKOM DATA WAREHOUSE Program Studi Sistem Informasi www.mercubuana.ac.id Anita Ratnasari, S.Kom, M.Kom DATA WAREHOUSE Definisi Data Warehouse Salah satu efek
MEMBANGUN DATA WAREHOUSE
MEMBANGUN DATA WAREHOUSE A. Menentukan Bentuk Data Warehouse Data warehouse memiliki berbagai macam bentuk yang sering digunakan. Jadi sebelum membangun suatu data warehouse kita harus memutuskan bentuk
Datawarehouse dan OLAP (Overview) Diambil dari presentasi Jiawei Han
Datawarehouse dan OLAP (Overview) [email protected] Diambil dari presentasi Jiawei Han Apa Data warehouse? Database pendukung keputusan yang terpisah dengan database operasional Platform untuk konsolidasi
Data Warehouse dan Decision Support System. Arif Basofi
Data Warehouse dan Decision Support System Arif Basofi Referensi Data Warehouse, STMIK Global Informatika MDP. M. Syukri Mustafa,S.Si., MMSI, Sistem Basis Data II (Data Warehouse), 2008. Hanim MA, Data
6/26/2011. Menurut W.H. Inmon dan Richard D.H. Menurut Vidette Poe
Menurut W.H. Inmon dan Richard D.H. koleksi data yang mempunyai sifat berorientasi subjek,terintegrasi,time-variant, dan bersifat tetap dari koleksi data dalam mendukung proses pengambilan keputusan management
PROSES EXTRACT, TRANSFORM DAN LOAD PADA DATA WAREHOUSE
PROSES EXTRACT, TRANSFORM DAN LOAD PADA DATA WAREHOUSE Oktavian Abraham Lantang ABSTRAK Saat ini seiring dengan perkembangan teknologi informasi yang semakin pesat, ketergantungan proses bisnis suatu perusahaan
KARAKTERISTIK DATA WAREHOUSE
KARAKTERISTIK DATA WAREHOUSE Karakteristik data warehouse menurut Inmon, yaitu : 1. Subject Oriented (Berorientasi subject) Data warehouse berorientasi subject artinya data warehouse didesain untuk menganalisa
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Pembuatan data warehouse telah banyak dilakukan oleh perusahaanperusahaan industri yang berorientasi profit. Data warehouse diharapkan mampu
PERKEMBANGAN BASIS DATA SAAT INI
PERKEMBANGAN BASIS DATA SAAT INI Sejak tahun 1960-an penggunaan basis data sudah digunakan untuk bidang komersial, dimana pemrosesan file-nya masih berbasis manajemen file tradisional. Perkembangan komputer
BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan teori umum atau dasar yang digunakan, yaitu sebagai berikut:
BAB 2 LANDASAN TEORI 2.1 Teori Umum Berikut ini akan dijelaskan teori umum atau dasar yang digunakan, yaitu sebagai berikut: 2.1.1 Pengertian Data Menurut Hoffer & Venkataraman (2011: 5) menjelaskan bahwa
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi informasi selalu dituntut untuk dapat memenuhi berbagai kebutuhan di segala bidang kehidupan yang semakin lama semakin meningkat dan
INTRODUCTION OF DATA WAREHOUSE. Presented by HANIM M.A M. IRWAN AFANDI.
INTRODUCTION OF DATA WAREHOUSE 1 Presented by HANIM M.A M. IRWAN AFANDI. [email protected], [email protected], [email protected] 2 Acknowledgments S. Sudarshan (Comp. Science and Engineering Dept,
Pemodelan Data Warehouse
Pemodelan Data Warehouse Budi Susanto Teknik Informatika Universitas Kristen Duta Wacana Yogyakarta 10/31/11 budi susanto 1 Tujuan Memahami konsep dasar data warehouse Memahami pemodelan berbasis dimensi
PERANCANGAN DATA WAREHOUSE CALON MAHASISWA BARU POLITEKNIK NEGERI LHOKSEUMAWE
PERANCANGAN DATA WAREHOUSE CALON MAHASISWA BARU POLITEKNIK NEGERI LHOKSEUMAWE Nanang Prihatin 1 1 Dosen Politeknik Negeri Lhokseumawe ABSTRAK Bagi sebuah perguruan tinggi, penerimaan calon mahasiswa merupakan
BAB II KONSEP DATA WAREHOUSING
BAB II KONSEP DATA WAREHOUSING Komptensi yang diharapkan: Peserta pembelajaran memahami konsep-konsep, berbagai istilah, karakteristik, manfaat, tujuan, tugas-tugas data warehouseing. A. Pengertian Beberapa
ANALISA DATA TRANSAKSIONAL PADA E-COMMERCE DENGAN TEKNOLOGI OLAP (ON-LINE ANALYTICAL PROCESS)
ANALISA DATA TRANSAKSIONAL PADA E-COMMERCE DENGAN TEKNOLOGI OLAP (ON-LINE ANALYTICAL PROCESS) Budi Santosa 1), Dessyanto Boedi P 2), Markus Priharjanto 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran"
BAB II LANDASAN TEORI. Dasar-dasar teori tersebut akan digunakan sebagai landasan berpikir dalam
BAB II LANDASAN TEORI Dalam merancang dan membangun suatu sistem informasi, dasar-dasar teori yang akan digunakan sangatlah penting untuk diketahui terlebih dahulu. Dasar-dasar teori tersebut akan digunakan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Umum Teori umum adalah suatu pernyataan yang dianggap benar secara universal. Teori umum merupakan dasar untuk mengembangkan teori selanjutnya yang lebih khusus (spesifik).
BAB 2 LANDASAN TEORI. Database adalah suatu koleksi / kumpulan dari data yang persistent, yaitu ada
BAB 2 LANDASAN TEORI 2.1 Teori Database Database adalah suatu koleksi / kumpulan dari data yang persistent, yaitu ada yang berbeda satu dengan yang lainnya dan biasanya merupakan data yang bersifat sementara
FAST berarti sistem ditargetkan untuk memberikan response terhadap user dengan secepat mungkin, sesuai dengan analisis yang dilakukan.
OLAP OLAP (Online Analytical Processing), merupakan metode pendekatan untuk menyajikan jawaban dari permintaan proses analisis yang bersifat dimensional secara cepat. Pengertian OLAP itu sendiri dapat
OLAP - PERTEMUAN 8 OLAP
OLAP - PERTEMUAN 8 OLAP OLTP & OLAP (1) OLTP adalah singkatan dari On Line Transaction Processing. OLTP sering kita jumpai di sekitar kita seperti toko atau swalayan contohnya database pada sistem informasi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Sistem Informasi Sistem Informasi adalah suatu kumpulan dari komponen yang berinteraksi untuk menyelesaikan tugas bisnis. pendapat ini didukung dengan pendapat Satzinger, Jackson,
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Teori Umum 2.1.1 Pengertian Data Menurut Inmon (2005:493), data adalah sebuah rekaman dari fakta, konsep ataupun instruksi pada sebuah media penyimpanan untuk komunikasi, pengambilan
jumlah keluarga, dan jumlah rumah. Data diambil dari hasil sensus potensi desa yang dilakukan BPS tahun 1996, 1999, 2003, dan 2006.
1 Latar Belakang PENDAHULUAN Kemajuan teknologi komputer semakin memudahkan proses penyimpanan dan pengolahan data berukuran besar. Namun demikian, seringkali data yang sudah tersimpan belum dimanfaatkan
DATA WAREHOUSE KONSEP Konsep dasar data warehouse adalah perbedaan antara data dan informasi. Data terdiri dari fakta-fakta yang dapat diamati dan
DATA WAREHOUSE KONSEP Konsep dasar data warehouse adalah perbedaan antara data dan informasi. Data terdiri dari fakta-fakta yang dapat diamati dan direkam yang sering ditemukan dalam sistem operasional
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Warehouse Mohammed (2014) mengatakan bahwa data warehouse merupakan database relasional yang dirancang untuk melakukan query dan analisis. Data warehouse biasanya berisi
BAB 2 LANDASAN TEORI. bentuk yang dimengerti dan dapat digunakan.
BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian data Menurut Laudon (2006, p13), data adalah kumpulan fakta yang masih mentah yang menjelaskan aktivitas aktivitas yang terjadi dalam organisasi atau
Data Warehousing dan Decision Support
Bab 9 Data Warehousing dan Decision Support POKOK BAHASAN: Hubungan antara Data Warehouse dan Decision Support Model Data Multidimensi Online Analytical Processing (OLAP) Arsitektur Data Warehouse Implementasi
BAB I PENDAHULUAN. perusahaan atau organisasi dalam menentukan kebijakan-kebijakan strategis
BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini informasi merupakan hal yang sangat penting bagi suatu perusahaan atau organisasi dalam menentukan kebijakan-kebijakan strategis perusahaan terkait dengan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Piramida Sistem Informasi Pada kondisi sekarang ini, hampir seluruh pekerjaan yang ada telah disusun secara sistem. Sistem adalah suatu hal yang menghubungkan suatu hal dengan
Lecture s Structure. Desain Data Warehouse (I): Dimensional Modelling. Mendisain Sebuah Data Warehouse
Desain Data Warehouse (I): Dimensional Modelling Yudi Agusta, PhD Data Warehouse and Data Mining, Lecture 3 Copyright Yudi Agusta, PhD 2006 Lecture s Structure Merancang Sebuah Data Warehouse Skema Perancangan
BAB 2 LANDASAN TEORI. kebutuhan informasi suatu perusahaan. komputer secara sistematis. menggunakan database SQL Server 2000.
BAB 2 LANDASAN TEORI 2.1 Pengertian Database dan Data Warehouse 2.1.1 Pengertian Database Menurut Connolly dan Begg (2002, p14) database adalah kumpulan data yang berhubungan satu sama lain yang digunakan
Tugas Akhir (KI091391) Muhamad Adi Prasetyo
Tugas Akhir (KI091391) Muhamad Adi Prasetyo 5105100159 Prolog Sebuah Program Aplikasi Web yang dibuat untuk melaporkan kuantitas Proses Produksi Menggunakan Metode OLAP pada PT. Aneka Tuna Indonesia (ATI).
Sistem Pendukung Keputusan. Komponen SPK. Entin Martiana, S.Kom, M.Kom. Politeknik Elektronika Negeri Surabaya
Komponen SPK Entin Martiana, S.Kom, M.Kom Komponen-komponen dss Subsistem manajemen data Termasuk database, yang mengandung data yang relevan untuk berbagai situasi dan diatur oleh software yang disebut
MENGENAL DATA WAREHOUSE
MENGENAL DATA WAREHOUSE Kusumawardani [email protected] :: http://ilmuti.org/author/kusumawardani/ Abstrak Tentu setiap orang kenal dengan yang namanya data, karena segala aktifitas sudah pasti merangkum
DATA WAREHOUSE. Pertemuan ke-3
DATA WAREHOUSE Pertemuan ke-3 Intelligence Enterprise Pengertian Data Warehouse Sebuah tempat penyimpanan data yang lengkap dan konsisten yang berasal dari sumber-sumber yang berbeda dibuat untuk penggunanya
Basis Data Oracle - Business Intelligence System. Ramos Somya, M.Cs.
Basis Data Oracle - Business Intelligence System Ramos Somya, M.Cs. Menurut W.H. Inmon dan Richard D.H., data warehousing adalah koleksi data yang mempunyai sifat berorientasi subjek, terintegrasi, time-variant,
BAB 4 PERANCANGAN DAN IMPLEMENTASI
BAB 4 PERANCANGAN DAN IMPLEMENTASI 4.1 Arsitektur Data Warehouse Pelaksanaan perancangan data warehouse dimulai dari perumusan permasalahan yang dihadapi oleh perusahaan kemudian dilanjutkan dengan pencarian
BAB 2 LANDASAN TEORI. berarti dan penting di lingkungan pemakai. (Hoffer, Prescott, dan McFadden, 2002, p5).
BAB 2 LANDASAN TEORI 2.1 Data Data adalah sebuah representasi dari obyek - obyek dan kejadian - kejadian yang berarti dan penting di lingkungan pemakai. (Hoffer, Prescott, dan McFadden, 2002, p5). Data
PERANCANGAN DATA MART BAGIAN PENJUALAN MOTOR BEKAS(USED MOTOR CYCLE ) PADA CV. ATLAS MOTOR
PERANCANGAN DATA MART BAGIAN PENJUALAN MOTOR BEKAS(USED MOTOR CYCLE ) PADA CV. ATLAS MOTOR Randy Permana, S. Kom, M. Kom, Fakultas Ilmu Komputer Universitas Putra Indonesia YPTK Padang e-mail : [email protected]
DATA WAREHOUSE (The Building Blocks)
DATA WAREHOUSE (The Building Blocks) { 1. Review Definisi Data warehouse 2. Feature Data warehouse 3. Data warehouse Vs Data Mart 4. Komponen/Building Block Data warehouse 5. Pengenalan Metadata Pendahuluan
BAB 2 LANDAS AN TEORI
BAB 2 LANDAS AN TEORI 2.1 Data Warehouse Data warehouse adalah sebuah koleksi database yang terintegrasi, berorientasi subjek yang dirancang untuk mendukung fungsi DSS, dimana setiap unit data relevan
BAB 2 LANDASAN TEORI. subject-oriented, integrated, time-variant, and non-volatile collection of data in
BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian Data Warehouse Berdasarkan Connoly dan Begg (2005, p1151), Data Warehouse is a subject-oriented, integrated, time-variant, and non-volatile collection
Data Warehouse, Data Mart, OLAP, dan Data Mining CHAPTER 6
1 Data Warehouse, Data Mart, OLAP, dan Data Mining CHAPTER 6 Data Warehouse 2 Data warehouse adalah basis data yang menyimpan data sekarang dan data masa lalu yang berasal dari berbagai sistem operasional
PERANCANGAN DATA WAREHOUSE E-PROCUREMENT PADA INSTANSI PEMERINTAHAN
PERANCANGAN DATA WAREHOUSE E-PROCUREMENT PADA INSTANSI PEMERINTAHAN Luky Hidayat 1), Adhistya Erna Permanasari 2), Igi Ardiyanto 3) 1),2),3 ) Departemen Teknik Elektro dan Teknologi Informasi, Fakultas
Sistem Basis Data Lanjut DATA WAREHOUSE. Data Warehouse 1/20
DATA WAREHOUSE Data Warehouse 1/20 Outline Konsep dan Arsitektur Data Warehouse Alur Data Warehouse Teknologi dan Peralatan Data Warehouse Perancangan Data Warehouse Penggunaan Oracle pada Data Warehouse
Perkembangan Teknologi Database
Konsep Teknologi Informasi Perkembangan Teknologi Database ARIF BASOFI PENS 2016 Referensi 1. Fitrianingsih, Perkembangan Basis Data, Universitas Gunadarma. 2. Yulia Kahitela, Perkembangan Teknologi Database,
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teknologi Informasi Menurut Alter (2000, p42) teknologi informasi adalah perangkat keras dan piranti lunak yang digunakan dalam sistem informasi. Perangkat keras Mengarah pada
BAB II LANDASAN TEORI. Pengertian data warehouse menurut Inmon (2002, p31), a data warehouse is a
BAB II LANDASAN TEORI 2.1 Data Warehouse Pengertian data warehouse menurut Inmon (2002, p31), a data warehouse is a subject oriented, nonvolatile, time variant collection of data in support of management
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi...Volume..., Bulan 20..ISSN : PEMBANGUNAN INDEPENDENT DATA MART PADA OPTIK YUDA
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 PEMBANGUNAN INDEPENDENT DATA MART PADA OPTIK YUDA Dinar Priskawati 1, Dian Dharmayanti 2 Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur
BAB IV PERANCANGAN SISTEM
BAB IV PERANCANGAN SISTEM Pembahasan BAB IV mengenai proses perancangan data warehouse meliputi proses integrasi, pemodelan database dan dashboard interface. 4.1 Perencanaan Tahap perencanaan penelitian
DATAMULTIDIMENSI. DATAWAREHOUSE vs DATAMART FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO
DATAMULTIDIMENSI FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO DATAWAREHOUSE vs DATAMART DATAWAREHOUSE Perusahaan, melingkupi semua proses Gabungan datamart Data didapat dari proses Staging Merepresentasikan data
PERANCANGAN DATA WAREHOUSE PENGOLAHAN PERSEDIAAN BUKU PT. GRAMEDIA ASRI MEDIA MAKASSAR
PERANCANGAN DATA WAREHOUSE PENGOLAHAN PERSEDIAAN BUKU PT. GRAMEDIA ASRI MEDIA MAKASSAR Erick A. Lisangan 1, N. Tri Suswanto Saptadi 2 1 [email protected] 2 [email protected] Abstrak Proses dan
BAB 2 LANDASAN TEORI. each unit of data is relevant to some moment in time, atau kurang lebih dapat
7 BAB 2 LANDASAN TEORI 2.1 Pengertian Data Warehouse Menurut Inmon (2002, p389), A data warehouse is a collection of integrated, subject oriented database designed to support the DSS function, where each
Business Intelligence. Hendrik
Business Intelligence Hendrik } Fragmentasi sistem informasi secara vertical } Menghasilkan pengembangan sistem operasional yang berbasis aplikasi (pengguna) Sales Planning Stock Mngmt... Suppliers Debt
LANDASAN TEORI. Sebelum dikenal database, penyimpanan data menggunakan pendekatan
7 BAB 2 LANDASAN TEORI 2.1 Database Sebelum dikenal database, penyimpanan data menggunakan pendekatan berbasis file. Namun pendekatan ini memiliki kelemahan dalam pengaksesan data dari dua atau lebih file
BAB II TINJAUAN PUSTAKA. yang akan dibuat adalah sebagai berikut : Sistem Monitoring Pertumbuhan Balita Berbasis Web. Wahyuningsih
BAB II TINJAUAN PUSTAKA A. Telaah Penelitian Penelitian sebelumnya yang berhubungan dengan sistem informasi yang akan dibuat adalah sebagai berikut : Wahyuningsih (2011) telah melakukan penelitian yang
Achmad Yasid, S.Kom
Achmad Yasid, S.Kom http://achmadyasid.wordpress.com [email protected] 1. 2. 3. 4. 5. Review Definisi Data warehouse Feature Data warehouse Data warehouse Vs Data Mart Komponen/Building Block Data warehouse
ABSTRAK. Kata Kunci : Data Warehouse, Real Time Data Warehouse, Change Data Capture, Audit Log. vii
ABSTRAK Kebutuhan akan pengolahan informasi dari berbagai sumber untuk kemudian dijadikan dasar analisa pengambilan keputusan didalam perusahaan semakin besar. Data Warehouse merupakan teknologi dengan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian Data Warehouse Menurut Connolly (2010, p1197), data warehouse adalah sekumpulan data yang bersifat subject-oriented, terintegrasi, timevariant, dan
PERANCANGAN DATA WAREHOUSE PADA PERPUSTAKAAN UNIVERSITAS NASIONAL
PERANCANGAN DATA WAREHOUSE PADA PERPUSTAKAAN UNIVERSITAS NASIONAL Heni Jusuf 1, Ariana Azimah 2 Jurusan Sistem Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional Jl. Sawo Manila,
BAB 2 LANDASAN TEORI. fakta, dengan sendirinya, secara relatif tidak ada artinya. kumpulan fakta yang merepresentasikan suatu objek atau kejadian yang
BAB 2 LANDASAN TEORI 2.1 Teori-teori Umum 2.1.1 Pengertian Data Menurut Whitten et al. (2004, p23), data adalah fakta mentah mengenai orang, tempat, kejadian, dan hal-hal penting dalam organisasi. Tiap
ABSTRAK. Kata kunci: Change Data Capture, Real-Time, Data Warehouse, Database Management System, Binary Log. vii
ABSTRAK Perusahaan yang mengelola data dalam jumlah besar diharuskan memiliki sistem yang kuat yaitu sistem yang bersifat real time agar mampu mengelola data dalam jumlah besar yang bergerak dalam kurun
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Informasi merupakan sebuah elemen penting dalam kehidupan manusia yang semakin lama semakin maju. Dengan adanya informasi, kita bisa mengetahui beberapa hal
MANFAAT DATA WAREHOUSE PADA PT ABC
MANFAAT DATA WAREHOUSE PADA PT ABC Evaristus Didik M.; Dewi S.; Felisia L.; Winnie S. Information Systems Department, School of Information Systems, Binus University Jl. K.H. Syahdan No. 9, Palmerah, Jakarta
Adapun karakteristik umum yang dimiliki datawarehouse adalah :
1 Data Warehouse Data Warehouse adalah database yang didesain khusus untuk mengerjakan proses query, membuat laporan dan analisa. Data yang di simpan adalah data business history dari sebuah organisasi
BAB 2 LANDASAN TEORI. informasi yang mentah atau kumpulan dari fakta yang masih harus diproses agar
BAB 2 LANDASAN TEORI 2.1 Data, Informasi, dan Knowledge Pengertian data ada bermacam-macam, salah satunya adalah data merupakan informasi yang mentah atau kumpulan dari fakta yang masih harus diproses
BAB 2 LANDASAN TEORI. Menurut Nugroho (2004), Modern Database Management. serta vedio yang bermanfaat di lingkup pengguna.
BAB 2 LANDASAN TEORI 2.1 Teori Umum 2.1.1 Pengertian Data Warehouse Menurut Nugroho (2004), Modern Database Management Data adalah fakta tentang sesuatu di dunia nyata yang dapat direkam dan disimpan pada
Tugas. Data Warehouse. OLAP, Operasi OLAP, dan Jenis Rolap
Tugas Data Warehouse OLAP, Operasi OLAP, dan Jenis Rolap Renhard Soemargono 1562001 PROGRAM STUDI SISTEM INFORMASI FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS ATMA JAYA MAKASSAR 2017 OLAP (On-Line Analytical
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Data Warehouse 2.1.1 Definisi Database Menurut Thomas Connolly dan Carolyn Begg (2002, p14), Database is a shared collection of logically related data, and a description
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Teori Umum 2.1.1 Data Menurut Inmon (2002, p388), Data adalah sebuah rekaman dari fakta, konsep ataupun instruksi pada sebuah media peyimpanan untuk komunikasi, pengambilan maupun
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Sistem Informasi Menurut Inmon (2002, p388), data adalah suatu pencatatan dari sekelompok fakta, konsep, atau instruksi dalam suatu media penyimpanan untuk komunikasi,
BAB 2 LANDASAN TEORI
8 BAB 2 LANDASAN TEORI 2.1 Sistem Pelaporan Penjualan dan Customer Profitability 2.1.1 Definisi sistem Sistem pada dasarnya adalah sekelompok elemen yang erat hubungan satu dengan yang lainnya, yang menyatu
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1. 1 Latar Belakang Berbagai aspek ilmu pengetahuan dan teknologi selalu berkembang dan mengalami kemajuan, sesuai dengan perkembangan cara berpikir manusia dan perkembangan zaman. Salah
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Data Menurut Inmon (2006: 493), data adalah suatu pencatatan dari fakta-fakta, konsep, ataupun instruksi yang berada di dalam suatu media penyimpanan untuk berkomunikasi, pencarian
BAB 2 LANDASAN TEORI. Data merupakan bentuk jamak dari datum (Vardiansyah, 2008, p3). Dalam
BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Umum Data dan Informasi Data merupakan bentuk jamak dari datum (Vardiansyah, 2008, p3). Dalam penggunaan sehari-hari data merupakan sesuatu pernyataan
UNIVERSITAS BINA NUSANTARA. Fakultas Ilmu Komputer Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil tahun 2005/2006
UNIVERSITAS BINA NUSANTARA Fakultas Ilmu Komputer Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil tahun 2005/2006 ANALISIS DAN PERANCANGAN DATA WAREHOUSE PT. CIPTA TERAS ADI BUSANA
