Journal of Control and Network Systems

Ukuran: px
Mulai penontonan dengan halaman:

Download "Journal of Control and Network Systems"

Transkripsi

1 JCONES Vol 3, No 2 (2014) Journal of Control and Network Systems Situs Jurnal : J RANCANG BANGUN SISTEM NAVIGASI PADA DIFFERENTIAL STEERING MOBILE ROBOT Yanuhar Prabowo 1) Helmy Widiyantara 2) Pauladie Susanto 3) S1 Sistem Komputer STIMIK STIKOM Surabaya Jl. Raya Kedung Baruk 93 Surabaya, )yanuhar.prabowo@gmail.com, 2)helmywid@stikom.edu, 3)pauladie@stikom.edu Abstract: Several sub-systems establish a system has function perfectly as planned. The system helps people to monitor gas consists of sub-systems that are equipped with gas sensors and other sensors. This study analyzed the design of navigation system on the differential steering mobile robot, that is a robot moving (mobile robots) that programmed to move towards a certain point coordinates. This Mobile Robot System is a sub-system which supports the Gas Monitoring system. This study uses the method of analysis of literature study of the theories in the book and internet. Based on the theories and these data, we design hardware, testing hardware, software manufacture, integrating all sub-systems into a mobile robot system, testing the overall functionality. Modules, components used in the design of mobile robots, among others: microcontrollers ATmega128; DT-AVR ATmega1280 CPU MODULE; Differential Mover Robot; DAGU Rover 5 4WD; CMPS10 Tilt Compensated Magnetic Compass; Rotary Encoder; DC motors; Motor controllers; and Liquid Cristal Display ( LCD ). Designing program that are used in the planning of the mobile robots, among others, for the purpose of determining the direction of the coordinates using the application of the theory of trigonometry, the distance to the determination of the coordinates of the destination using the application of the theory of Pythagoras. The research was successfuly with insignificant error. The average of total error for (x) was 2.42 % (negative direction) and (y) was 0,79% (positive direction). Keyword: microcontroller, navigation system, trigonometry, Pythagoras, differential steering mobile robot. Pengembangan robot menjadi mobile robot. Mobile robot dapat dikendalikan secara otomatis maupun manual disesuaikan dengan kebutuhan.mobile robotyang digunakan untuk melakukan monitoring. Monitoring di tempat-tempat yang lolos dari pantauan alat manual dan manusia.mobile robot untukmonitoring gas.dalammonitoring ini diperlukan alat untuk mendeteksi gas secara menyeluruh, melakukan mapping pada area tertentu dan menghindari halangan dalam perjalanannya menuju tujuan yang diinginkan. Oleh karena itu dibutuhkan sebuah mobile robot yang dilengkapi dengan sensor gas dan sensor-sensor lainnya. Sebelumnya jenismobile robotini menggunakan teknologi line tracer untuk mendeteksi jalur pergerakan. Mobile robot berjalan sesuai jalur yang telah disediakan, sehingga tidak efisien dikarenakan harus membuat jalur khusus.untuk membuat lebih efisien, mobile robot dirancang dengan navigasi otomatis.mobile robot yang digunakan pada monitoring gas harus memiliki kemampuan untuk bernavigasi dengan baik dan presisi agar robot dapat sampai pada tujuan yang diinginkan. JCONES Vol 3, No 2 (2014) Hal: 107

2 Mobile robot yang memiliki kemampuan untuk bernavigasi didukung dengan sistem pengatur kemudi yang dapat untuk manuver, diantaranya adalah penggerak diferensial (differential steering). Selain memiliki sistem pengatur kemudi, mobile robot juga dilengkapi oleh sistem navigasi yang menunjukkan pemetaan lokasi.pada umumnya GPS digunakan untuk pemetaan di luar ruangan.sedangkan di dalam ruangan penggunaan GPS banyak kendala. Oleh karena pemetaan di dalam ruangan dilakukan dengan penggunaan kombinasi sensor yaitu sensor kompas dan rotary encoder. Kekurangsempurnaan jenis mobile robotterdahulu (penggunaan line tracer), akan dirancang penyempurnaannya dengan teknologi navigasi otomatis. METODE PENELITIAN Studi kepustakaan berupa data-data literatur dari masing-masing komponen, informasi dari internet, dan konsep-konsep teoretis dari buku-buku penunjang. Dari data-data yang diperoleh maka dilakukan perencanaan rangkaian perangkat keras.dalam perangkat keras ini, dilakukan pengujian perangkat keras dengan programprogram yang telah dibuat, pembuatan perangkat lunak adalah tahap selanjutnya.terakhir adalah penggabungan perangkat keras dengan kerja perangkat lunak yang telah selesai dibuat. Blok Diagram Sistem Dua proses utama yang dijalankan, yaitu proses penentuan arah hadap robot terhadap arah koordinat tujuan dan proses penentuan jarak tempuh pada robot dalam menuju koordinat tujuan. Dimana pertamatama input koordinat didownload kedalam mikrokontroler bersama dengan program untuk menjalankan mobile robot. Setelah mendapatkan input koordinat yang berupa koordinat mana saja yang harus ditempuh oleh robot, robot akan melakukan penentuan arah hadap robot terhadap koordinat tujuan. Proses penentuan arah ini dilakukan dengan mengambil data pada sensor kompas digital yang kemudian diteruskan dengan perhitungan rumus Trigonometri. Sehingga setelah proses ini dilakukan mobile robotakan mendapatkan data tentang arah tujuan robot dan mampu menyesuaikan arah hadap robot semula menjadi arah hadap robot terhadap koordinat tujuan. Setelah robot menghadap pada arah hadap yang benar, dilakukan proses penentuan jarak tempuh menuju koordinat tujuan. Proses ini dilakukan menggunakan perhitungan rumus Phytagoras dan melakukan update pada rotary encoder. Sehingga setelah proses ini dilakukan robot mampu mengetahui jarak yang harus di tempuh untuk menuju koordinat tujuan dan robot mempunyai kemampuan untuk berhenti saat jarak yang dilalui oleh robot dusah memenuhi jarak tempuh yang harus dilalui. Pada gambar 1 adalah diagram blok keseluruhan dari sistem ini. Input Data koordinat tujuan (X,Y) Perhitungan rumus arah dan jarak dari koordinat awal dan tujuan Robot Microcontroller Rotary Encoder Sensor Kompas Driver Motor Gambar 1 Blok diagram keseluruhan dari sistem Differential Steering Mobile Robot Salah satu jenis mobile robot yang umum digunakan, terutama untuk dioperasikan dalam ruangan adalah dengan pengemudian atau sistem penggerak diferensial (differential drive).alasan utamanya karena relative dan lebih fleksibel dalam melakukan maneuver serta kemudahan dalam pengontrolannya. Arsitektur dari differential drive dapat dilihat pada gambar 2. JCONES Vol 3, No 2 (2014) Hal: 108

3 Gambar 2 Posisi dan orientasi mobile robot dalam sistem koordinat cartesian Kecepatan linier mobile robot pada masing-masing roda kanan dan kiri berturutturut adalah V R dan V L. Kecepatan rotasi masing-masing roda dengan jari-jari r adalah ω R dan ω L sesuai dengan persamaan 1 dan 2 berikut: ω R (t) = V R (t) (1) r ω L (t) = V L (t) (2) r Ketika robot melakukan gerakan memutar (berotasi) sesaat dengan panjang jari-jari R diukur dari pusat rotasi dan titik pusar kedua titik maka kecepatan rotasi disetiap titik robot tersebut selali sama (robot adalah sistem mekanis yang rigid), sehingga persamaan3 dan4 berikut ini berlaku untuk menghitung kecepatan rotasi dari robot tersebut: ω(t) = ω(t) = V R R+L/2 (3) V L R L/2 (4) Berdasarkan persamaan 3 dan 4 kecepatan rotasi robot tersebut dapat dihitung hanya berdasarkan informasi dari kedua kecepatan linier roda robot tersebut: ω(t) = V R t V L t L Sedangkan jari-jari dapat dicari dengan: (5) R = L (V R +V L ) 2 (V R V L ) (6) Dari persamaan6, jari-jari lintasan lingkaran sesaat berbanding terbalik dengan selisih kedua kecepatan roda robot.semakin kecil selisih kedua kecepatan roda maka jarijari lingkaran sesaat yang dibentuk oleh lintasan robot tersebut semakin panjang dan sebaliknya. Sedangkan jika kecepatan linier roda kiri maka R =, atau secara praktis robot akan bergerak membentuk lintasan yang lurus. Agar robot dapat berotasi pada pusat sumbunya (R=0) maka berdasarkan persamaan 6, kecepatan kedua roda tersebut harus berlawanan. Berdasarkan persamaan 5 dan 6, maka kecepatan linier robot dapat dihitung dengan menggunakan persamaan 7 berikut: R = V R (t)+v L (t) (7) 2 Agar lebih sederhana, persamaan 5 dan 7 dapat dikumpulkan dalam bentuk persamaan matrik vektor sebagaimana berikut: V(t) ω(t) = 1/2 1/2 1/L 1/L V R t V L (t) (8) Persamaan8 pada dasarnya memperlihatkan relasi antara kecepatan linier roda-roda robot terhadap kecepatan linier dan angular robot, sedangkan persamaan 9 berikut akan memperlihatkan relasi sebaliknya. V R t V L (t) 1/2 1/2 = 1/L 1/L V(t) ω(t) (9) Dengan mengetahui kecepatan linier dan angular robot setiap saat, maka kecepatan pada setiap sumbu kartesian dapat dicari dengan cara memproyeksikan vektor kecepatan robot pada sumbu-sumbu tersebut.(utomo, 2007) Mobile robot tipe penggerak diferensial memiliki 2 buah roda penggerak yang terpisah (kanan dan kiri).kedua roda ini digerakkan oleh motor DC yang ditempatkan pada satu sumbu secara terpisah.sehingga kedua roda ini berfungsi sebagai penggerak sekaligus sebagai kemudi mobile robot.sehingga tingkat keluwesan JCONES Vol 3, No 2 (2014) Hal: 109

4 robot dan kemampuan manuver mobile robot tipe penggerak diferensial jauh lebih baik. Jika kedua roda didorong dalam arah yang sama dan kecepatan sama pula, robot akan bergerak dalam garis lurus. Jika tidak, tergantung pada kecepatan rotasi dan arahnya, pusat rotasi bisa jatuh di mana saja di garis yang menghubungkan dua roda.karena arah robot tergantung pada kecepatan dan arah putaran dari dua roda yang digerakkan. Jika kedua roda berputar dengan kecepatan yang sama dalam arah yang berlawanan, robot akan berputar di titik pusat sumbu.(hartanti, 2011) Perancangan Perangkat Keras Perancangan perangkat keras pada sistem ini dilakukan berdasarkan blok diagram sistem keseluruhan yang terdapat pada Gambar1. Dalam blok diagram pada gambar1, mikrokontroler yang bertugas sebagai pemroses akan mendapatkan data input dari sensor kompas digital dan rotary encoder. Sensor kompas akan memberikan data berupa sudut arah mata angin dalam bentuk digital. Sedangkan rotary encoder akan memberikan data berupa pulse sebagai penghitung jarak tempuh robot. Kemudian mikrokontrol mengolah data tersebut, dalam hal ini pengolahan data pada mikrokontrol menggunakan rumus perhitungan arah dan jarak.hasil dari rumus tersebut adalah agar robot dapat mengetahui arah dan jarak tempuh yang harus dilalui untuk mencapai koordinat tujuan. Berikut adalah gambar blok diagram perangkat keras secara keseluruhan : Sensor Kompas (CMPS10) Atmega 128 Motor Driver Motor (Jalan Robot) Rotary Encoder Gambar 3Blok diagram perangkat keras keseluruhan PerancanganMinimum System Pada sistem ini dibuat piranti pengendali menggunakan microcontroller keluaran AVR, yaitu ATMega128. Untuk mengaktifkan atau menjalankan microcontroller ini diperlukan rangkaian minimum sistem. Rangkaian minimum sistem tersebut terdiri rangkaian reset dan rangkaian osilator. Dalam perancangannya ini memerlukan beberapa komponen pendukung seperti kristal, resistor dan kapasitor. Rangkaian minimum sistem dibuat untuk mendukung kerja dari microcontroller ATmega dimana microcontroller tidak bisa berdiri sendiri alias harus ada rangakaian dan komponen pendukung seperti halnya rangakaian catu daya, kristal dan lain sebagaianya yang biasanya disebut minimumsistem. Modul Kompas Digital CMPS10 Modul kompas digital ini berfungsi sebagai penunjuk sudut arah mata angin pada mobile robot dalam mencari koordinat tujuan yang akan dicapai. Mode yang digunakan pada untuk komunikasi antara JCONES Vol 3, No 2 (2014) Hal: 110

5 kompas dengan mikrokontroller adalah komunikasi serial. Rotary Encoder rotary encoder ini berfungsi sebagai penghitung jarak tempuh mobile robot dalam perjalanan menuju koordinat tujuan, sehingga mobile robot dapat berhenti tepat pada koordinat tujuan. Dalam tugas akhir ini menggunakan encoder quadrature optic dari chassis robot Dagu Rover 5 yang memberikan 1000 pulsa dari tiap 3 putaran dari poros output. Perancangan Perangkat Lunak Perancangan perangkat lunak bertujuan untuk mengirimkan data dari pembacaan sensor kompas ke minimum sistem melalui komunikasi serial dan juga melakukan pengolahan data dengan melalui proses perhitungan rumus arah dan jarak pada minimum sistem. Minimum sistem memperoleh data dari sensor kompas yaitu berupa data derajat arah mata angin pada mobile robot yang dapat digunakan untuk menentukan arah hadap robot terhadap koordinat tujuan robot dan dari rotary encoder yaitu berupa pulse yang dapat digunakan untuk penentuan jarak tempuh mobile robot, serta mengatur kecepatan putar roda melalui PWM yang dikirimkan ke driver motor. Perancangan perangkat lunak terbagi dalam beberapa program antara lain : program penentuan arah tujuan robot, program penentuan jarak tempuh tujuan robot. Diagram alir perangkat lunak secara umum dapat dilihat pada Gambar 4. start Inisialisasi program Jumlah koordinat yang dimasukan!= Total koordinat yang dilalui Ya Penentuan arah tujuan robot Penentuan jarak tempuh robot selesai Tidak Gambar 4 Diagram alir program secara umum Pada gambar 3.6 diagram alir program secara umum pada mikrokontrol dimulai dengan inisialisasi program keseluruhan yang telah diunduh pada mikrokontrol kemudian setelah itu melakukan pengecekan data koordinat tujuan yang akan dilalui oleh robot. Setelah dilakukan pengecekan koordinat tujuan maka robot akan memasuki subproses penentuan arah tujuan robot, pada subproses ini menggunakan implementasi dari rumus trigonometri yang berfungsi untuk menentukan arah hadap robot menuju koordinat tujuan yang akan dilalui robot. Setelah melakukan subproses penentuan penentuan arah, robot selanjutnya memasuki subproses penentuan jarak tempuh robot. Pada subproses ini menggunakan implementasi dari rumus phytagoras yang berfungsi untuk menentukan jarak tempuh yang akan dilalui robot dari titik koordinat awal menuju titik koordinat tujuan. Setelah A B JCONES Vol 3, No 2 (2014) Hal: 111

6 kedua subproses tersebut dilakukan, robot akan berjalan menuju koordinat tujuan dan apabila telah sampai pada koordinat tujuan maka robot akan kembali pada proses pengecekan data koordinat tujuan untuk melakukan penghitungan ulang terhadap koordinat tujuan lain yang telah dimasukan. Proses pengecekan koordinat tersebut dilakukan berulang sampai jumlah koordinat yang telah dilalui sama dengan total koordinat yang dimasukan oleh pengguna. PENENTUAN ARAH TUJUAN PADAMOBILE ROBOT Diagram alir untuk mengetahui penentuan arah tujuan pada mobile robot berdasarkan pembacaan sensor kompas digital terdapat pada Gambar 5. A Init sensor kompas Baca sensor kompas Set offset kompas agar dapat melakukan penentuan offset. Offset berguna sebagai derajat acuan robot pada saat robot melakukan navigasi. Setelah mendapatkan input data koordinat, dilakukan perhitungan sudut alpha dengan menggunakan rumus Trigonometri sebagai berikut: y target 1 α = tan x target Kemudian diteruskan dengan merubah sudut alpha menjadi arah tujuan robot.setelah mendapatkan arah tujuan robot, dilakukan penentuan nilai toleransi arah tujuan robot. Setelah mendapatkan nilai-nilai diatas dilakukan penyesuaian arah hadap mobile robot terhadap arah tujuan robot dengan cara membandingkan nilai arah robot dan nilai arah tujuan robot. PENENTUAN JARAK TEMPUH PADAMOBILE ROBOT Diagram alir untuk mengetahui penentuan jarak tempuh tujuan berdasarkan pembacaan rotary encoderterdapat pada Gambar 6. Data koordinat Hitung sudut alpha B Init rotary encoder Merubah sudut alpha menjadi arah tujuan robot Menentukan nilai toleransi arah tujuan robot Data koordinat Hitung jarak tempuh tujuan Baca rotary encoder Arah robot!= Arah tujuan robot Ya Robot berputar pada porosnya Data rotary encoder!= Jarak tempuh tujuan Ya Robot berjalan sesuai arah tujuan Tidak Return Gambar 5 Diagram alir penentuan arah tujuan pada mobile robot Pada gambar 5Diagram alir penentuan arah tujuan pada mobile robot, penentuan arah tujuan pada mobile robot dimulai dengan inisialisasi sensor kompas digital yang diteruskan dengan pembacaan sensor Tidak Return Gambar 6 Diagram alir penentuan jarak tempuh pada mobile robot Pada gambar 6Diagram alir penentuan jarak tempuh tujuan pada mobile robot, penentuan jarak tempuh tujuan pada JCONES Vol 3, No 2 (2014) Hal: 112

7 mobile robot dimulai dengan inisialisasi rotary encoder yang diteruskan dengan pengambilan data koordinat. Kemudian dilakukan perhitungan jarak tempuh dengan menggunakan rumus Phytagoras sebagai berikut: r target = x target 2 + y target 2 Setelah mendapatkan nilai jarak tempuh, dilakukan pembacaan rotary encoder dan pembandingan nilai antara outputrotary encoder dan nilai jarak tempuh yang didapat untuk menentukan pergerakan mobile robot. PENGUJIAN SISTEM Tujuan evaluasi sistem ini adalah untuk mengetahui sistem navigasi pada mobile robot apakah sudah dapat berjalan sesuai dengan yang diharapkan. Apakah sistem navigasi dapat menentukan arah pergerakan mobile robot dari koordinat asal menuju koordinat tujuan, sesuai dengan koordinat inputan dari user. HASIL PENGUJIAN Pengujian keseluruhan sistem navigasi pada differential steering mobile robotini menggunakan 5 pola jalan. Pemilihan 5 pola jalan ini mewakili kemungkinan-kemungkinan pergerakan yang terjadi saat melakukan proses navigasi. Pada pengujian ini menggunakan arena khusus yang berbentuk persegi dengan ukuran 141cm x 141cm dan diberi garis bantu untuk mempermudah proses penghitungan pada pengujian ini. Pada pengujian ini menggunakan satuan koordinat (X,Y) yang berukuran 23,5cm x 23,5cm. Adapun 5 pola jalan tersebut digambarkan sebagai berikut. Gambar 8 Gambar pola jalan 2 Gambar 9 Gambar pola jalan 3 Gambar 10 Gambar pola jalan 4 Gambar 11 Gambar pola jalan 5 Hasil perhitungan nilai error keseluruhan pada sistem navigasi yang telah diujikan pada 5 pola yang telah disiapkan dapat dilihat pada tabel 1sebagai berikut. Gambar 7 Gambar pola jalan 1 JCONES Vol 3, No 2 (2014) Hal: 113

8 Tabel 1 Tabel perhitungan error keseluruhan pada sistem navigasi ERROR POLA (X) ERROR POLA (Y) POLA JUMLAH ERROR (X) SELURUH LANGKAH / JUMLAH LANGKAH JUMLAH ERROR (Y) SELURUH LANGKAH / JUMLAH LANGKAH (DECIMAL) (%) (DECIMAL) (%) % % % % % % % % % % ES % % Keterangan : : Notasi (-/+) pada error menunjukan arah penyimpangan : ES adalah Error kesuluruhan (jumlah error seluruh pola dibagi banyaknya pola) Error keseluruhan pada sistem navigasi ini merupakan rata-rata dari error tiap pola yaitu jumlah seluruh error pola dibagi dengan banyaknya pola. ES = ( ΣError Pola ) / Banyak Pola. Banyak pola = 5 Berdasarkan tabel 4.1 dapat disimpulkan bahwa sistem navigasi ini memiliki nilai rata-rata error keseluruhan untuk (x) sebesar 2,42 % (kearah negatip) dan (y) sebesar 0,79 % (kearah positip) pada lapangan yang telah disiapkan untuk penelitian ini. Disamping karena kondisi lantai (lapangan) seperti yang diterangkan dimuka (faktor kelicinan yang tidak rata), hal tersebut juga disebabkan karena kepekaan motor berbeda sehingga kecepatan putar motor kanan dan motor kiri tidak sama, penyebab lain karena adanya pembacaan sensor kompas yang selalu berubah karena pengaruh keadaan di sekitar robot. Sistem navigasi ini meliputi dua proses yaitu proses perhitungan sudut arah hadap untuk menentukan posisi hadap tujuan dan proses perhitungan jarak tempuh untuk menentukan jarak antara koordinat asal menuju koordinat tujuan. Perhitungan sudut arah hadap mobile robot didapatkan dengan menggunakan hasil perhitungan rumor trigoniometri yang ditambahkan dengan derajat offset sehingga menghasilkan sudut putar arah koordinat tujuan. Sedangkan perhitungan jarak tempuh mobile robot didapatkan dengan menggunakan rumus phytagoras yang dibandingkan dengan update keluaran pada rotary endcoder saat mobile robot berjalan sehingga menghasilkan jarak tempuh yang haris dillalui mobile robot untuk mencapai koordinat. Guna keperluan analisis error pada tiap-tiap tingkat diberikan notasi (-) atau (+) sesuai dengan posisinya. KESIMPULAN Dengan memanfaatkan sensor kompas digital dan rotary encoder yang terintegrasi pada differential steering mobile robot perancangan sistem navigasi ini telah berhasil berjalan sesuai dengan yang diharapkan.selain itu Perhitungan jarak dengan menggunakan rumus Pytagoras dan perhitungan sudut dengan menggunakan rumus trigonometri telah berhasil diimplementasikan untuk sistem navigasi pada differential steering mobile robot. Pada pola jalan navigasi robot yang bervariasi, sistem navigasi ini memiliki nilai rata-rata error keseluruhan untuk (x) sebesar 2,42 % (kearah negatip) dan (y) sebesar 0,79 % (kearah positip) pada lapangan yang telah disiapkan untuk penelitian ini. DAFTAR PUSTAKA Goge, Douglas W. ( 1995). A Brief History of Unmanned Ground Vehicle (UGV) Development Efforts, Unmanned System Magazine, United States of America. Hartanti, E. D. (2011). Rancang Bangun Mobile Robot Penjejak Benda Bergerak Berbasis Pengendali PD (Proposional-Derivative) Menggunakan Mikrokontroler AVR Atmega8535. Semarang: Jurusan Teknik Elektro, Fakultas Teknik Universitas diponegoro. Mardiana, I. D. (2008). Sistem Penentuan Lokasi Kendaraan Menggunakan GPS Dengan Pemanfaatan SMS Sebagai Komunikasi Data. JCONES Vol 3, No 2 (2014) Hal: 114

9 Singgeta, R. L. (2013). Rancang Bangun Robot Boat Navigasi Tanpa Awak. e-jurnal Teknik dan Komputer. Utomo, A. D. (2007). Sistem Kontrol Navigasi Pada Mobile Robot Berbasis PCBC (piecewise cubic bezier curve). Varberg, D. (2007). Ninth Edition Calculus. United States of America: Pearson Education, Inc. JCONES Vol 3, No 2 (2014) Hal: 115

Journal of Control and Network Systems

Journal of Control and Network Systems JCONES Vol, No (04) 6-6 Journal of Control and Network Systems Situs Jurnal : http://jurnal.stikom.edu/index.php/jcone RANCANG BANGUN OBSTACLE AVOIDANCE PADA DIFFERENTIAL STEERING MOBILE ROBOT Galih Kusuma

Lebih terperinci

Journal of Control and Network Systems

Journal of Control and Network Systems JCOES Vol 3, o 2 (2014) 127-135 Journal of Control and etwork Systems Situs Jurnal : http://jurnal.stikom.edu/index.php/jcone THE DESIG OF A MAPPIG SSTEM USIG CARBO MOOXIDE GAS COCETRATIOS DIFFERETIAL

Lebih terperinci

Kata kunci:sensor rotary encoder, IC L 298, Sensor ultrasonik. i Universitas Kristen Maranatha

Kata kunci:sensor rotary encoder, IC L 298, Sensor ultrasonik. i Universitas Kristen Maranatha Perancangan dan Realisasi Auto Parking Pada Robot Mobil Menggunakan Modul Mikrokontroler Arduino Uno Disusun oleh : Heryanto Joyosono 0822021 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria

Lebih terperinci

Pengendalian Gerak Robot Penghindar Halangan Menggunakan Citra dengan Kontrol PID

Pengendalian Gerak Robot Penghindar Halangan Menggunakan Citra dengan Kontrol PID Journal of Electrical Electronic Control and Automotive Engineering (JEECAE) Pengendalian Gerak Robot Penghindar Halangan Menggunakan Citra dengan Kontrol PID Basuki Winarno, S.T., M.T. Jurusan Teknik

Lebih terperinci

PRESENTASI TUGAS AKHIR. Oleh : M. NUR SHOBAKH

PRESENTASI TUGAS AKHIR. Oleh : M. NUR SHOBAKH PRESENTASI TUGAS AKHIR PENGEMBANGAN ROBOT PENGIKUT GARIS BERBASIS MIKROKONTROLER SEBAGAI MEJA PENGANTAR MAKANAN OTOMATIS Oleh : M. NUR SHOBAKH 2108 030 061 DOSEN PEMBIMBING : Dr. Ir. Bambang Sampurno,

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan dan Implementasi Pemotong Rumput Lapangan Sepakbola Otomatis dengan Sensor Garis dan Dinding ini, terdapat beberapa masalah

Lebih terperinci

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8

SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 I Nyoman Benny Rismawan 1, Cok Gede Indra Partha 2, Yoga Divayana 3 Jurusan Teknik Elektro, Fakultas Teknik Universitas

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN ALAT

BAB III ANALISIS MASALAH DAN RANCANGAN ALAT BAB III ANALISIS MASALAH DAN RANCANGAN ALAT III.1. Analisa Permasalahan Masalah yang dihadapi adalah bagaimana untuk menetaskan telur ayam dalam jumlah banyak dan dalam waktu yang bersamaan. Karena kemampuan

Lebih terperinci

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. Metode penelitian yang digunakan adalah studi kepustakaan dan

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. Metode penelitian yang digunakan adalah studi kepustakaan dan BAB III MEODE PENELIIAN DAN PERANCANGAN SISEM 3.1 Metode Penelitian Metode penelitian yang digunakan adalah studi kepustakaan dan penelitian laboratorium. Studi kepustakaan dilakukan sebagai penunjang

Lebih terperinci

TINJAUAN PUSTAKA. Waktu dan Tempat Penelitian

TINJAUAN PUSTAKA. Waktu dan Tempat Penelitian III TINJAUAN PUSTAKA Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Januari 2012 November 2012 di laboratorium lapangan Siswadi Supardjo, Program Studi Teknik Mesin Pertanian dan Pangan,

Lebih terperinci

Rancang Bangun Program Visualisasi Pergerakan Differential Drive Mobile Robot

Rancang Bangun Program Visualisasi Pergerakan Differential Drive Mobile Robot Rancang Bangun Program Visualisasi Pergerakan Erni Dwi Wahyuni Jurusan Teknik Informatika Politeknik Elektronika Negeri Surabaya Institut Teknologi Sepuluh Nopember E-mail : ernidw@student.eepis-its.edu

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Sistem Gambaran sistem dapat dilihat pada blok diagram sistem di bawah ini : Gambar 3.1 Blok Diagram Sistem Berdasarkan blok

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

APLIKASI SENSOR KOMPAS UNTUK PENCATAT RUTE PERJALANAN ABSTRAK

APLIKASI SENSOR KOMPAS UNTUK PENCATAT RUTE PERJALANAN ABSTRAK APLIKASI SENSOR KOMPAS UNTUK PENCATAT RUTE PERJALANAN Frederick Sembiring / 0422168 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung,

Lebih terperinci

BAB III METODE PENELITIAN. Tujuan dari tugas akhir ini yaitu akan membuat sebuah mobile Robot

BAB III METODE PENELITIAN. Tujuan dari tugas akhir ini yaitu akan membuat sebuah mobile Robot BAB III METODE PENELITIAN 3.1. Model Pengembangan Tujuan dari tugas akhir ini yaitu akan membuat sebuah mobile Robot yang mampu membantu manusia dalam mendeteksi kebocoran gas. Robot ini berperan sebagai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Roket merupakan sebuah wahana antariksa yang dapat digunakan untuk menunjang kemandirian dan kemajuan bangsa pada sektor lain. Selain dapat digunakan untuk misi perdamaian

Lebih terperinci

ROBOT PEMINDAH BARANG BERBASIS MIKROKONTROLER ATmega 32

ROBOT PEMINDAH BARANG BERBASIS MIKROKONTROLER ATmega 32 ROBOT PEMINDAH BARANG BERBASIS MIKROKONTROLER ATmega 32 Oskardy Pardede 1127026 Jurusan Sistem Komputer, Fakultas Teknik,, Jl. Prof.Drg.Suria Sumantri, MPH no. 65, Bandung, Indonesia. Email : oskardy.pardede@gmail.com

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN Semua mekanisme yang telah berhasil dirancang kemudian dirangkai menjadi satu dengan sistem kontrol. Sistem kontrol yang digunakan berupa sistem kontrol loop tertutup yang menjadikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara kepulauan dengan panjang pantai 81.000 Km dimana ± 2/3 wilayah kedaulatannya berupa perairan. Dengan memanfaatkan potensi wilayah ini banyak

Lebih terperinci

PERANCANGAN SISTEM KENDALI GERAKAN ROBOT BERODA TIGA UNTUK PEMBERSIH LANTAI

PERANCANGAN SISTEM KENDALI GERAKAN ROBOT BERODA TIGA UNTUK PEMBERSIH LANTAI PERANCANGAN SISTEM KENDALI GERAKAN ROBOT BERODA TIGA UNTUK PEMBERSIH LANTAI Muhammad Firman S. NRP 2210 030 005 Muchamad Rizqy NRP 2210 030 047 Dosen Pembimbing Ir. Rusdhianto Effendie AK, M.T NIP. 19570424

Lebih terperinci

BAB III PERANCANGAN Gambaran Alat

BAB III PERANCANGAN Gambaran Alat BAB III PERANCANGAN Pada bab ini penulis menjelaskan mengenai perancangan dan realisasi sistem bagaimana kursi roda elektrik mampu melaksanakan perintah suara dan melakukan pengereman otomatis apabila

Lebih terperinci

BAB I PENDAHULUAN. Sistem pendeteksi pada robot menghindar halangan banyak

BAB I PENDAHULUAN. Sistem pendeteksi pada robot menghindar halangan banyak BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem pendeteksi pada robot menghindar halangan banyak menggunakan sensor sebagai acuan dalam menghindari halangan. Pengaplikasian obstacle avoidance robot

Lebih terperinci

PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH

PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH PERANCANGAN DAN ANALISIS PERBANDINGAN POSISI SENSOR GARIS PADA ROBOT MANAGEMENT SAMPAH Bambang Dwi Prakoso Jurusan Teknik Elektro Universitas Brawijaya Dosen Pembimbing : Sholeh Hadi Pramono, Eka Maulana

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS 3.1. Spesifikasi Perancangan Perangkat Keras Secara sederhana, perangkat keras pada tugas akhir ini berhubungan dengan rancang bangun robot tangan. Sumbu

Lebih terperinci

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 167 Telp & Fax. 0341 554166 Malang 65145 KODE PJ-01 PENGESAHAN PUBLIKASI HASIL PENELITIAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di era globalisasi sekarang ini teknologi dan informasi semakin berkembang pesat, begitu juga teknologi robot. Robotika merupakan bidang teknologi yang mengalami banyak

Lebih terperinci

REALISASI ROBOT MOBIL HOLONOMIC Disusun Oleh : Nama : Santony Nrp :

REALISASI ROBOT MOBIL HOLONOMIC Disusun Oleh : Nama : Santony Nrp : REALISASI ROBOT MOBIL HOLONOMIC Disusun Oleh : Nama : Santony Nrp : 0422091 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia.

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1 Perancangan Sistem Secara Umum Sistem pada penelitian ini akan menyeimbangkan posisi penampang robot dengan mengenal perubahan posisi dan kemudian mengatur kecepatan. Setiap

Lebih terperinci

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA Hendrik Albert Schweidzer Timisela Jl. Babakan Jeruk Gg. Barokah No. 25, 40164, 081322194212 Email: has_timisela@linuxmail.org Jurusan

Lebih terperinci

REALISASI ROBOT DALAM AIR

REALISASI ROBOT DALAM AIR REALISASI ROBOT DALAM AIR Disusun Oleh : Nama : Gede Rehardima Uji Saputra Sugata Nrp : 0422114 Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia. Email

Lebih terperinci

RANCANG BANGUN ROBOT PENGIKUT CAHAYA (LIGHT FOLLOWER) MENGGUNAKAN SENSOR LDR DENGAN PEMROGRAMAN MIKROKONTROLER ATMEGA8535 TUGAS AKHIR

RANCANG BANGUN ROBOT PENGIKUT CAHAYA (LIGHT FOLLOWER) MENGGUNAKAN SENSOR LDR DENGAN PEMROGRAMAN MIKROKONTROLER ATMEGA8535 TUGAS AKHIR RANCANG BANGUN ROBOT PENGIKUT CAHAYA (LIGHT FOLLOWER) MENGGUNAKAN SENSOR LDR DENGAN PEMROGRAMAN MIKROKONTROLER ATMEGA8535 TUGAS AKHIR Untuk Memenuhi Persyaratan Mencapai Pendidikan Diploma III (DIII) Disusun

Lebih terperinci

Makalah Seminar Tugas Akhir

Makalah Seminar Tugas Akhir Makalah Seminar Tugas Akhir Rancang Bangun Mobile Robot Penjejak Benda Bergerak Berbasis Pengendali PD (Proposional-Derivative) Menggunakan Mikrokontroler AVR Atmega8535 Endang Dwi Hartanti [], Iwan Setiawan,

Lebih terperinci

ROBOT MOBILE PENJEJAK ARAH CAHAYA DENGAN KENDALI LOGIKA FUZZY

ROBOT MOBILE PENJEJAK ARAH CAHAYA DENGAN KENDALI LOGIKA FUZZY ROBOT MOBIE PENJEJAK ARAH CAHAYA DENGAN KENDAI OGIKA FUZZY Fajar Wisnu Aribowo 1, Adian Fatchur R 2, Iwan Setiawan 2 Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Abstrak - Pengaturan kecepatan

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1 Umum Robot merupakan kesatuan kerja dari semua kerja perangkat penyusunnya. Perancangan robot dimulai dengan menggali informasi dari berbagai referensi, temukan ide,

Lebih terperinci

PERANCANGAN PROTOTYPE ROBOT SOUND TRACKER BERBASIS MIKROKONTROLER DENGAN METODE FUZZY LOGIC

PERANCANGAN PROTOTYPE ROBOT SOUND TRACKER BERBASIS MIKROKONTROLER DENGAN METODE FUZZY LOGIC PERANCANGAN PROTOTYPE ROBOT SOUND TRACKER BERBASIS MIKROKONTROLER DENGAN METODE FUZZY LOGIC SKRIPSI Oleh MUHAMMAD RENDRA TRIASMARA NIM 071910201015 PROGRAM STUDI STRATA-1 TEKNIK ELEKTRO JURUSAN TEKNIK

Lebih terperinci

SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA

SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA Syahrul 1, Andi Kurniawan 2 1,2 Jurusan Teknik Komputer, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia Jl. Dipati Ukur No.116,

Lebih terperinci

2 TINJAUAN PUSTAKA. Unmanned Surface Vehicle (USV) atau Autonomous Surface Vehicle (ASV)

2 TINJAUAN PUSTAKA. Unmanned Surface Vehicle (USV) atau Autonomous Surface Vehicle (ASV) 2 TINJAUAN PUSTAKA 2.1 Unmanned Surface Vehicle (USV) Unmanned Surface Vehicle (USV) atau Autonomous Surface Vehicle (ASV) merupakan sebuah wahana tanpa awak yang dapat dioperasikan pada permukaan air.

Lebih terperinci

BAB III METODE PENELITIAN. diperlukan dengan beberapa cara yang dilakukan, antara lain:

BAB III METODE PENELITIAN. diperlukan dengan beberapa cara yang dilakukan, antara lain: BAB III METODE PENELITIAN Dalam pembuatan kendali robot omni dengan accelerometer dan keypad pada smartphone dilakukan beberapa tahapan awal yaitu pengumpulan data yang diperlukan dengan beberapa cara

Lebih terperinci

RANCANG BANGUN ROBOT PENGIKUT GARIS DAN PENDETEKSI HALANG RINTANG BERBASIS MIKROKONTROLER AVR SKRIPSI

RANCANG BANGUN ROBOT PENGIKUT GARIS DAN PENDETEKSI HALANG RINTANG BERBASIS MIKROKONTROLER AVR SKRIPSI 1 RANCANG BANGUN ROBOT PENGIKUT GARIS DAN PENDETEKSI HALANG RINTANG BERBASIS MIKROKONTROLER AVR SKRIPSI Oleh Wahyu Adi Nugroho NPM. 0734210306 JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun BAB 4 IMPLEMENTASI DAN EVALUASI Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun keseluruhan sistem, prosedur pengoperasian sistem, implementasi dari sistem dan evaluasi hasil pengujian

Lebih terperinci

ROBOT PENGHINDAR HALANGAN DENGAN MIKROKONTROLER AT89C51

ROBOT PENGHINDAR HALANGAN DENGAN MIKROKONTROLER AT89C51 ROBOT PENGHINDAR HALANGAN DENGAN MIKROKONTROLER AT89C51 SKRIPSI Oleh : FREGHA HARYANSYAH 0534010073 JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA

Lebih terperinci

DESAIN DAN IMPLEMETASI GRID-BASED MAP SEBAGAI SISTEM PENGENALAN POSISI PADA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) DIVISI BERODA

DESAIN DAN IMPLEMETASI GRID-BASED MAP SEBAGAI SISTEM PENGENALAN POSISI PADA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) DIVISI BERODA DESAIN DAN IMPLEMETASI GRID-BASED MAP SEBAGAI SISTEM PENGENALAN POSISI PADA KONTES ROBOT PEMADAM API INDONESIA (KRPAI) DIVISI BERODA Publikasi Jurnal Skripsi Disusun Oleh : NUR ISKANDAR JUANG NIM : 0910630083-63

Lebih terperinci

PERANCANGAN ROBOT OKTAPOD DENGAN DUA DERAJAT KEBEBASAN ASIMETRI

PERANCANGAN ROBOT OKTAPOD DENGAN DUA DERAJAT KEBEBASAN ASIMETRI Asrul Rizal Ahmad Padilah 1, Taufiq Nuzwir Nizar 2 1,2 Jurusan Teknik Komputer Unikom, Bandung 1 asrul1423@gmail.com, 2 taufiq.nizar@gmail.com ABSTRAK Salah satu kelemahan robot dengan roda sebagai alat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. terhadap perangkat keras serta perangkat lunak dari system secara keseluruhan

BAB IV HASIL DAN PEMBAHASAN. terhadap perangkat keras serta perangkat lunak dari system secara keseluruhan BAB IV HASIL DAN PEMBAHASAN Pengujian system yang telah dilakukan penulis ini merupakan pengujian terhadap perangkat keras serta perangkat lunak dari system secara keseluruhan yang telah selesai dibuat

Lebih terperinci

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID Endra 1 ; Nazar Nazwan 2 ; Dwi Baskoro 3 ; Filian Demi Kusumah 4 1 Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

III. METODE PENELITIAN. Perancangan sistem dilakukan dari bulan Maret sampai Juni 2014, bertempat di

III. METODE PENELITIAN. Perancangan sistem dilakukan dari bulan Maret sampai Juni 2014, bertempat di III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Perancangan sistem dilakukan dari bulan Maret sampai Juni 2014, bertempat di Laboratorium Terpadu Teknik Elektro, Jurusan Teknik Elektro, Universitas

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV Pengujian Alat dan Analisa BAB IV PENGUJIAN ALAT DAN ANALISA 4. Tujuan Pengujian Pada bab ini dibahas mengenai pengujian yang dilakukan terhadap rangkaian sensor, rangkaian pembalik arah putaran

Lebih terperinci

Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51

Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51 21 Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51 Ahmad Yusup, Muchlas Arkanuddin, Tole Sutikno Program Studi Teknik Elektro, Universitas Ahmad Dahlan Abstrak Penggunaan

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Sistem 4.1.1 Spesifikasi Perangkat Keras Proses pengendalian mobile robot dan pengenalan image dilakukan oleh microcontroller keluarga AVR, yakni ATMEGA

Lebih terperinci

ABSTRAK. i Universitas Kristen Maranatha

ABSTRAK. i Universitas Kristen Maranatha ABSTRAK Perkembangan teknologi saat ini berkembang sangat pesat, terutama dalam bidang robotika. Robot dapat digunakan dalam berbagai bidang, contohnya dalam bidang industri, hiburan, dan restoran. Pada

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan PID

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan PID BAB IV PENGUJIAN DAN ANALISIS SISTEM Pada bab ini akan dibahas hasil analisa pengujian yang telah dilakukan, pengujian dilakukan dalam beberapa bagian yang disusun dalam urutan dari yang sederhana menuju

Lebih terperinci

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem BAB III PERANCANGAN Pada bab ini akan dijelaskan mengenai perancangan sistem yang meliputi sistem kontrol logika fuzzy, perancangan perangkat keras robot, dan perancangan perangkat lunak dalam pengimplementasian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Sudah menjadi trend saat ini bahwa pengendali suatu alat sudah banyak yang diaplikasikan secara otomatis, hal ini merupakan salah satu penerapan dari perkembangan teknologi dalam

Lebih terperinci

BAB III METODE PENELITIAN. pada blok diagram tersebut antara lain adalah webcam, PC, microcontroller dan. Gambar 3.1 Blok Diagram

BAB III METODE PENELITIAN. pada blok diagram tersebut antara lain adalah webcam, PC, microcontroller dan. Gambar 3.1 Blok Diagram BAB III METODE PENELITIAN 3.1 Model Penelitian Pengerjaan Tugas Akhir ini dapat terlihat jelas dari blok diagram yang tampak pada gambar 3.1. Blok diagram tersebut menggambarkan proses dari capture gambar

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA SISTEM. Pada bab ini diterangkan tentang langkah dalam merancang cara kerja

BAB III PERANCANGAN DAN CARA KERJA SISTEM. Pada bab ini diterangkan tentang langkah dalam merancang cara kerja BAB III PERANCANGAN DAN CARA KERJA SISTEM Pada bab ini diterangkan tentang langkah dalam merancang cara kerja sistem, baik secara keseluruhan ataupun kinerja dari bagian-bagian sistem pendukung. Perancangan

Lebih terperinci

BAB III PERANCANGAN SISTEM. untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input untuk

BAB III PERANCANGAN SISTEM. untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input untuk BAB III PERANCANGAN SISTEM 3.1 Dasar Perancangan Sistem Perangkat keras yang akan dibangun adalah suatu aplikasi mikrokontroler untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input

Lebih terperinci

PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID

PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID Mikrotiga, Vol 1, No. 2 Mei 2014 ISSN : 2355-0457 19 PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID Muhammad Ariansyah Putra 1*,

Lebih terperinci

IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI)

IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI) IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI) Publikasi Jurnal Skripsi Disusun Oleh : RADITYA ARTHA ROCHMANTO NIM : 916317-63 KEMENTERIAN

Lebih terperinci

PROTOTYPE SISTEM KONTROL PINTU GARASI MENGGUNAKAN SMS

PROTOTYPE SISTEM KONTROL PINTU GARASI MENGGUNAKAN SMS E-Jurnal Prodi Teknik Elektronika Edisi Proyek Akhir D3 PROTOTYPE SISTEM KONTROL PINTU GARASI MENGGUNAKAN SMS Oleh : Fauzia Hulqiarin Al Chusni (13507134014), Universitas Negeri Yogyakarta smartfauzia@gmail.com

Lebih terperinci

RANCANG BANGUN ROBOT PENGIKUT GARIS (LINE FOLLOWER) MENGGUNAKAN SENSOR PHOTODIODE DENGAN PEMROGRAMAN MIKROKONTROLER ATMEGA8535 TUGAS AKHIR

RANCANG BANGUN ROBOT PENGIKUT GARIS (LINE FOLLOWER) MENGGUNAKAN SENSOR PHOTODIODE DENGAN PEMROGRAMAN MIKROKONTROLER ATMEGA8535 TUGAS AKHIR RANCANG BANGUN ROBOT PENGIKUT GARIS (LINE FOLLOWER) MENGGUNAKAN SENSOR PHOTODIODE DENGAN PEMROGRAMAN MIKROKONTROLER ATMEGA8535 TUGAS AKHIR Untuk Memenuhi Persyaratan Mencapai Pendidikan Diploma III (DIII)

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN Sepeda merupakan salah satu alat transportasi yang mudah dipakai dan harganya terjangkau bagi kalangan menengah ke bawah. Sebagai alat transportasi, sepeda sering digunakan

Lebih terperinci

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 21 BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 3.1 Gambaran umum Perancangan sistem pada Odometer digital terbagi dua yaitu perancangan perangkat keras (hardware) dan perangkat lunak (software). Perancangan

Lebih terperinci

APLIKASI ROBOT PEMADAM API DENGAN MENGGUNAKAN SENSOR FLAME DETECTOR BERBASIS MIKROKONTROLLER ATMEGA8535 DAN DIDUKUNG BAHASA PEMROGRAMAN C

APLIKASI ROBOT PEMADAM API DENGAN MENGGUNAKAN SENSOR FLAME DETECTOR BERBASIS MIKROKONTROLLER ATMEGA8535 DAN DIDUKUNG BAHASA PEMROGRAMAN C APLIKASI ROBOT PEMADAM API DENGAN MENGGUNAKAN SENSOR FLAME DETECTOR BERBASIS MIKROKONTROLLER ATMEGA8535 DAN DIDUKUNG BAHASA PEMROGRAMAN C Haris Tri Saputra AMIK Tri Dharma Pekanbaru Email : haristrisaputra@rocketmail.com

Lebih terperinci

DAFTAR ISI. LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii. LEMBAR PENGESAHAN PENGUJI...

DAFTAR ISI. LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii. LEMBAR PENGESAHAN PENGUJI... DAFTAR ISI COVER...i LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii LEMBAR PENGESAHAN PENGUJI... iv HALAMAN PERSEMBAHAN... v HALAMAN MOTTO... vi KATA PENGANTAR...

Lebih terperinci

Perancangan Sistem Kendali Pergerakan Robot Beroda dengan Media Gelombang Radio

Perancangan Sistem Kendali Pergerakan Robot Beroda dengan Media Gelombang Radio Perancangan Sistem Kendali Pergerakan Robot Beroda dengan Media Gelombang Radio Fransiscus A. Halim 1, Meiliayana 2, Wendy 3 1 Program Studi Sistem Komputer, Fakultas Ilmu Komputer, Universitas Pelita

Lebih terperinci

PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL

PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL SUMARNA Program Studi Teknik Informatika Universita PGRI Yogyakarta Abstrak Sinyal ultrasonik merupakan sinyal dengan frekuensi tinggi berkisar

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras

BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras BAB 3 PERANCANGAN SISTEM 3.1 Blok Diagram Perangkat Keras Sistem perangkat keras yang digunakan dalam penelitian ini ditunjukkan oleh blok diagram berikut: Computer Parallel Port Serial Port ICSP Level

Lebih terperinci

RANCANG BANGUN MOBIL ROBOT DETEKSI API DAN LINE FOLLOWER BERBASIS MIKROKONTROLER PIC16F84

RANCANG BANGUN MOBIL ROBOT DETEKSI API DAN LINE FOLLOWER BERBASIS MIKROKONTROLER PIC16F84 RANCANG BANGUN MOBIL ROBOT DETEKSI API DAN LINE FOLLOWER BERBASIS MIKROKONTROLER PIC16F84 Tugas Akhir Untuk memenuhi sebagian persyaratan mencapai pendidikan Diploma III (DIII) Disusun oleh : DENY HERMAWAN

Lebih terperinci

ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER. Muchamad Nur Hudi. Dyah Lestari

ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER. Muchamad Nur Hudi. Dyah Lestari Nur Hudi, Lestari; Robot Omni Directional Steering Berbasis Mikrokontroler ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER Muchamad Nur Hudi. Dyah Lestari Abstrak: Robot Omni merupakan seperangkat

Lebih terperinci

SISTEM GERAK ROBOT LINE FOLLOWER MENGGUNAKAN MOTOR DC BERBASIS MIKROKONTROLER ATmega8535 DENGAN SENSOR PHOTODIODA

SISTEM GERAK ROBOT LINE FOLLOWER MENGGUNAKAN MOTOR DC BERBASIS MIKROKONTROLER ATmega8535 DENGAN SENSOR PHOTODIODA SISTEM GERAK ROBOT LINE FOLLOWER MENGGUNAKAN MOTOR DC BERBASIS MIKROKONTROLER ATmega8535 DENGAN SENSOR PHOTODIODA TUGAS AKHIR Untuk Memenuhi Persyaratan Mencapai Pendidikan Diploma III (DIII) Disusun Oleh

Lebih terperinci

RANCANG BANGUN DETEKTOR KECEPATAN DAN ARAH ANGIN BERBASIS MIKROKONTROLLER AT89S52

RANCANG BANGUN DETEKTOR KECEPATAN DAN ARAH ANGIN BERBASIS MIKROKONTROLLER AT89S52 Jurnal Teknik dan Ilmu Komputer RANCANG BANGUN DETEKTOR KECEPATAN DAN ARAH ANGIN BERBASIS MIKROKONTROLLER AT89S52 THE DESIGN OF WIND SPEED AND DIRECTION DETECTOR WITH MICROCONTROLLER AT89S52 Albert Mandagi

Lebih terperinci

Rancang Bangun Prototype Alat Sistem Pengontrol Kemudi Kapal Berbasis Mikrokontroler

Rancang Bangun Prototype Alat Sistem Pengontrol Kemudi Kapal Berbasis Mikrokontroler Rancang Bangun Prototype Alat Sistem Pengontrol Kemudi Kapal Berbasis Mikrokontroler Muhammad Taufiqurrohman Jurusan Teknik Elektro, Fakultas Teknik dan Ilmu Kelautan Universitas Hang Tuah Jl. Arif Rahman

Lebih terperinci

PENGENDALIAN POSISI MOBILE ROBOT MENGGUNAKAN METODE NEURAL NETWORK DENGAN UMPAN BALIK KAMERA PEMOSISIAN GLOBAL

PENGENDALIAN POSISI MOBILE ROBOT MENGGUNAKAN METODE NEURAL NETWORK DENGAN UMPAN BALIK KAMERA PEMOSISIAN GLOBAL PENGENDALIAN POSISI MOBILE ROBOT MENGGUNAKAN METODE NEURAL NETWORK DENGAN UMPAN BALIK KAMERA PEMOSISIAN GLOBAL Randy Reza Kautsar (1), Bima Sena Bayu D S.ST M.T (2), A.R. Anom Besari. S.ST, M.T (2) (1)

Lebih terperinci

SABUK GETAR SEBAGAI ALAT BANTU PENUNJUK ARAH BAGI TUNA NETRA

SABUK GETAR SEBAGAI ALAT BANTU PENUNJUK ARAH BAGI TUNA NETRA ISSN: 1410-233 SABUK GETAR SEBAGAI ALAT BANTU PENUNJUK ARAH BAGI TUNA NETRA Son Ali Akbar, Anton Yudhana Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad Dahlan Kampus III UAD,

Lebih terperinci

BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK

BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK Pada bab ini dibahas tentang perangkat mekanik simulator mesin pembengkok, konstruksi motor DC servo, konstruksi motor stepper,

Lebih terperinci

Elvin Nur Afian, Rancang Bangun Sistem Navigasi Kapal Laut berbasis pada Image Processing metode Color Detection

Elvin Nur Afian, Rancang Bangun Sistem Navigasi Kapal Laut berbasis pada Image Processing metode Color Detection RANCANG BANGUN SISTEM NAVIGASI KAPAL LAUT BERBASIS PADA IMAGE PROCESSING DENGAN METODE COLOR DETECTION (DESIGN OF SHIPS NAVIGATION SYSTEM BASED ON IMAGE PROCESSING WITH COLOR DETECTION METHOD ) 1 Elvin

Lebih terperinci

DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... Halaman DAFTAR LAMPIRAN... xviii DAFTAR ISTILAH DAN SINGKATAN... BAB I PENDAHULUAN 1.1 Latar

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Umum Perancangan robot merupakan aplikasi dari ilmu tentang robotika yang diketahui. Kinerja alat tersebut dapat berjalan sesuai keinginan kita dengan apa yang kita rancang.

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN

BAB III ANALISA DAN PERANCANGAN BAB III ANALISA DAN PERANCANGAN III.1.Analisa Masalah Dalam perancangan dan implementasi robot keseimbangan dengan menggunakan metode PID, terdapat beberapa masalah yang harus dipecahkan. Permasalahan

Lebih terperinci

BAB III METODE PERANCANGAN. tabung V maka penulis membuat diagram dan mekanis system sebagai

BAB III METODE PERANCANGAN. tabung V maka penulis membuat diagram dan mekanis system sebagai BAB III METODE PERANCANGAN 3.1 Diagram Mekanis Sistem Untuk memudahkan dalam pembuatan alat Mixer menggunakan tabung V maka penulis membuat diagram dan mekanis system sebagai gambaran ketika melakukan

Lebih terperinci

Rancang Bangun Prototipe Kapal Tanpa Awak Menggunakan Mikrokontroler

Rancang Bangun Prototipe Kapal Tanpa Awak Menggunakan Mikrokontroler Rancang Bangun Prototipe Kapal Tanpa Awak Menggunakan Mikrokontroler Dosen Pembimbing: Suwito, ST., MT. Yoga Uta Nugraha 2210 039 025 Ainul Khakim 2210 039 026 Jurusan D3 Teknik Elektro Fakultas Teknologi

Lebih terperinci

BAB III PERANCANGAN. Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana. simulasi mobil automatis dirancang, diantaranya adalah :

BAB III PERANCANGAN. Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana. simulasi mobil automatis dirancang, diantaranya adalah : BAB III PERANCANGAN Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana simulasi mobil automatis dirancang, diantaranya adalah : 1. Menentukan tujuan dan kondisi pembuatan simulasi

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Teknologi sebagai hasil peradaban manusia yang semakin maju dirasakan sangat membantu dan mempermudah manusia dalam memenuhi kebutuhan hidupnya di zaman modern

Lebih terperinci

PENDEKATAN RANCANGAN. Kriteria Perancangan

PENDEKATAN RANCANGAN. Kriteria Perancangan IV PENDEKATAN RANCANGAN Kriteria Perancangan Pada prinsipnya suatu proses perancangan terdiri dari beberapa tahap atau proses sehingga menghasilkan suatu desain atau prototype produk yang sesuai dengan

Lebih terperinci

BAB III PERENCANAAN SISTEM DAN PEMBUATAN ALAT

BAB III PERENCANAAN SISTEM DAN PEMBUATAN ALAT BAB III PERENCANAAN SISTEM DAN PEMBUATAN ALAT 3.1 Pendahuluan Dalam bab ini akan dibahas pembuatan seluruh sistem perangkat dari Sistem Interlock pada Akses Keluar Masuk Pintu Otomatis dengan Identifikasi

Lebih terperinci

BAB I PENDAHULUAN. digital untuk menunjang dunia teknologi industri. mengukur kecepatan kendaraan, yang merupakan perlengkapan standar setiap

BAB I PENDAHULUAN. digital untuk menunjang dunia teknologi industri. mengukur kecepatan kendaraan, yang merupakan perlengkapan standar setiap BAB I PENDAHULUAN 1.1 Latar Belakang Dijaman teknologi industri yang semakin pesat kemajuan sebuah alat pengukuran yang menujang sebuah sistem. Merancang sebuah sistem pengukuran sebuah kecepatan, jarak

Lebih terperinci

REMOTE CONTROL INFRARED DENGAN KODE KEAMANAN YANG BEROTASI. Disusun Oleh : Nama : Yoshua Wibawa Chahyadi Nrp : ABSTRAK

REMOTE CONTROL INFRARED DENGAN KODE KEAMANAN YANG BEROTASI. Disusun Oleh : Nama : Yoshua Wibawa Chahyadi Nrp : ABSTRAK REMOTE CONTROL INFRARED DENGAN KODE KEAMANAN YANG BEROTASI Disusun Oleh : Nama : Yoshua Wibawa Chahyadi Nrp : 0222051 Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung,

Lebih terperinci

RANCANG BANGUN DATA AKUISISI TEMPERATUR 10 KANAL BERBASIS MIKROKONTROLLER AVR ATMEGA16

RANCANG BANGUN DATA AKUISISI TEMPERATUR 10 KANAL BERBASIS MIKROKONTROLLER AVR ATMEGA16 Enis F., dkk : Rancang Bangun Data.. RANCANG BANGUN DATA AKUISISI TEMPERATUR 10 KANAL BERBASIS MIKROKONTROLLER AVR ATMEGA16 Enis Fitriani, Didik Tristianto, Slamet Winardi Program Studi Sistem Komputer,

Lebih terperinci

BAB IV PERANCANGAN. 4.1 Flowchart

BAB IV PERANCANGAN. 4.1 Flowchart BAB IV PERANCANGAN Bab ini membahas tentang perancangan sistem gerak Robo Bin, mulai dari alur kerja sistem gerak robot, perancangan alat dan sistem kendali, proses pengolahan data hingga menghasilkan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Pada bab ini membahas tentang perancangan sistem yang dibuat dimana diantaranya terdiri dari penjelasan perancangan perangkat keras, perancangan piranti lunak dan rancang bangun

Lebih terperinci

Sistem Kendali dan Pemantauan Kursi Roda Elektrik

Sistem Kendali dan Pemantauan Kursi Roda Elektrik Jurnal Teknik Elektro, Vol. 9, No. 2, September 2016, 43-48 ISSN 1411-870X DOI: 10.9744/jte.9.2.43-48 Sistem Kendali dan Pemantauan Kursi Roda Elektrik Daniel Christian Yunanto, Handry Khoswanto, Petrus

Lebih terperinci

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN Dimas Silvani F.H 1*, Abd. Rabi 1, Jeki Saputra 2 1 Program Studi Teknik Elektro, Fakultas Teknik,

Lebih terperinci

BAB III PERANCANGAN ALAT SIMULASI PEGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN SECARA OTOMATIS

BAB III PERANCANGAN ALAT SIMULASI PEGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN SECARA OTOMATIS BAB III PERANCANGAN ALAT SIMULASI PEGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN SECARA OTOMATIS Pada bab ini menjelaskan tentang perancangan dan pembuatan alat simulasi Sistem pengendali lampu jarak

Lebih terperinci

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM Aretasiwi Anyakrawati, Pembimbing : Goegoes D.N, Pembimbing 2: Purwanto. Abstrak- Pendulum terbalik mempunyai

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN BAB IV PENGUJIAN DAN ANALISA RANGKAIAN Setelah perancangan alat selesai, selanjutnya yang perlu dilakukan adalah pengujian dan analisa alat yang bertujuan untuk melihat tingkat keberhasilan dalam perancangan

Lebih terperinci

REALISASI PROTOTIPE SISTEM GERAK ROBOT DENGAN DUA KAKI

REALISASI PROTOTIPE SISTEM GERAK ROBOT DENGAN DUA KAKI REALISASI PROTOTIPE SISTEM GERAK ROBOT DENGAN DUA KAKI Disusun Oleh: Raymond Wahyudi 0422022 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof.Drg.Suria Sumantri, MPH no.65,

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan pengendali

BAB IV PENGUJIAN DAN ANALISIS SISTEM. didapat suatu sistem yang dapat mengendalikan mobile robot dengan pengendali BAB IV PENGUJIAN DAN ANALISIS SISTEM Pada bab ini akan dibahas hasil analisis pengujian telah dilakukan, pengujian dilakukan dalam beberapa bagian yang disusun dalam urutan dari yang sederhana menuju sistem

Lebih terperinci

PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM

PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM Fandy Hartono 1 2203 100 067 Dr. Tri Arief Sardjono, ST. MT. 2-1970 02 12 1995 12 1001 1 Penulis, Mahasiswa S-1

Lebih terperinci