Bab 4. Instrumen Penunjuk Arus Bolak-Balik A. PENDAHULUAN B. PEMBAHASAN MATERI AJAR. 4.1 Elektrodinamometer

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 4. Instrumen Penunjuk Arus Bolak-Balik A. PENDAHULUAN B. PEMBAHASAN MATERI AJAR. 4.1 Elektrodinamometer"

Transkripsi

1 Bab 4 Instrumen Penunjuk Arus Bolak-Balik A. PENDAHULUAN Pokok Bahasan : Elektrodinamometer Instrumen Besi Putar Instrumen Jenis Penyearah Termo Instrumen Elektrodinamometer dalam Pengukuran Daya Alat Ukur Watt / Jam Alat Ukur Faktor Daya Alat Ukur Frekuensi Tujuan Belajar : Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan mampu: Menjelaskan tentang elektrodinamometer Menjelaskan tentang instrumen besi putar Menjelaskan tentang instrumen jenis penyearah Menjelaskan tentang termo instrumen Menjelaskan tentang elektrodinamometer dalam pengukuran daya Menjelaskan tentang alat ukur Watt / jam Menjelaskan tentang alat ukur faktor daya Menjelaskan tentang alat ukur frekuensi B. PEMBAHASAN MATERI AJAR 4.1 Elektrodinamometer Penggerak jenis elektrodinamometer adalah penggerak meter dasar yang paling banyak dipakai saat ini. Seperti halnya penggerak d'arsonval yang telah dibahas sebelumnya, elektrodinamometer adalah peralatan yang peka terhadap arus; dimana, penyimpangan penunjuk skala akan naik karena ada arus yang melewati kumparan putar. Sekalipun penggerak meter ini lebih mendasar dalam penggunaannya, alat ini juga memiliki banyak kemampuan. Penggerak berkumparan tunggal dapat digunakan untuk mengukur tegangan atau arus baik searah maupun bolak-balik, atau wattmeter satu fasa atau Varmeter. Penggerak

2 berkumparan ganda dapat digunakan dalam wattmeter atau varmeter berfasa banyak, penggerak jenis kumparan menyilang dapat digunakan sebagai meter faktor daya atau sebagai sebuah frekwensi meter, disamping semua hal tersebut diatas, barangkali penerapan yang paling penting dari penggerak elektrodinamometer adalah sebagai voltmeter dan ammeter standar dan sebagai instrumen pengubah. Karena sifat akurasi dari penggerak elektrodinamometer, yang memberikan kebaikan pada alat tersebut untuk digunakan dalam meter standar untuk mengkalibrasi meter lainnya). Yang dimaksud dengan istilah instrumen pengubah adalah instrumen yang dapat dikalibrasi dengan sumber DC, kemudian digunakan tanpa modifikasi untuk raengukur arus bolak-balik, Hal ini memberi kita makna langsung tentang menyamakan pengukuran AC dan DC dari arus atau tegangan. Penggerak elektrodinamometer kumparan tunggal terdiri dari sebuah kumparan tetap, yang dibagi menjadi dua bagian yang sama besar, yang dipisahkan dengan kumparan yang dapat bergerak, seperti pada gambar 14. Kedua bagian dari belahan kumparan tetap dan kumparan putar dihubungkan secara serie, dan arus dari rangkaian yang diukur lewat melalui semua kumparan tersebut yang menyebabkan suatu medan magnetik disekitar kumparan tetap. Kumparan yang dapat bergerak berputar dalam medan magnet tersebut. Penggerak elektrodinamometer dasar mampu untuk menerima arus yang lebih banyak daripada penggerak d'arsonval yang tidak dapat menerima arus tanpa shunt. Suatu aliran arus 100 ma adalah perkiraan harga arus maksimum yang tanpa resistansi shunt. Penambahan kemampuan menerima arus diperoleh melalui rancangan dasar dari penggerak meter. Gambar 14. Penggerak Elektrodinamometer Kopel magnetik antara kumparan tetap dan kumparan putar terdapat celahcelah udara yang menyebabkan terjadinya medan magnet yang lemah. Untuk memperoleh kopel magnet yang cukup besar, arus yang lebih banyak harus dialirkan ke kumparan, yang berarti harus menggunakan diameter kawat yang lebih besar, Akan tetapi, kawat yang berdiameter besar memiliki resistansi yang kecil Jika dibandingkan dengan kawat yang berdiameter kecil, Hal ini menyebabkan penggerak elektrodinamometer mempunyai sensitifitas yang sangat rendah, yaitu sekitar 20 sampai 100 ohm/v. Saat menggunakan resistor shunt dengan penggerak elektrodinamometer untuk memperlebar kemampuan pengukuran arus, maka resistor shunt dihubung 50

3 paralel hanya dengan kumparan putar seperti yang ditunjukkan pada gambar 15. Selama hanya kumparan putar yang dihubung shunt, resistansi kumparan putar harus diketahui untuk mengukur harga shunt. Gambar 15. Penggunaan penggerak Elektronamometer Selama arus yang sama mengalir melewati kumparan medan dan kumparan putar, saat penggerak elektrodinamometer digunakan sebagai ammeter atau voltmeter lain, maka penyimpangan penunjuk sebagai kuadrat dari arus. Sebagai hasilnya adalah hukum kuadrat skala meter sepert ditunjukkan pada gambar 16. Gambar 16. Skala meter yang menggunakan hukum kuadrat Kemungkinan penerapan yang lebih luas dari penggerak elektrodinamometer adalah dalam wattmeter. Wattmeter daapt digunakan untuk mengukur daya DC maupun AC. Sinyal AC tidak terbatas pada bentuk gelombang sinusoidal saja, sehingga daya diperoleh dari beberapa bentuk gelombang AC yang diukur. Saat digunakan sebagai wattmeter elektrodinamometer dihubungkan seperti pada gambar 17. Saat digunakan sebagai wattmeter kumaparan tetap yang disebut dengan kuraparan "medan (field)" dihubung serie dengan beban dan dengan demikian mengonduksi arus yang sama seperti pada beban (ditambah arus kecil yang melalui kumparan putar). Kumparan putar dihubungkan sebagai voltmeterpada beban dimana resistor Rs adalah pengali untuk meter yang peka terhadap tegangan. 51

4 Gambar 17. Penggerak Elektrodinamometer yang digunakan pada Wattmeter Torsi magnetik yang menyebabkan Penunjuk untuk menyimpang pada skala penuh dapat dinyatakan dalam persamaan jumlah penyimpangan sebagai : dimana : ϕ E I cosϕ m = K m φ m = sudut penyimpangan dari penunjuk Km = konstantc instrumen, darajat/watt E = harga rms dari tegangan sumber I = harga rms dari arus sumber cos φ = faktor daya Karena tegangan kali arus sama dengan watt, maka semua satuan dapat dibagi kecuali derajat yang merupakan satuan untuk penyimpangan sudut. 4.2 Instrumen Besi Putar Instrumen-instrumen besi putar dapat dikelompokkan dalam dua jenis, yaitu instrumen tarikan (attraction) dan tolakan (repulsion). Yang terakhir ini lebih umum di-gunakan. Sebuah gerak tolakan daun radial (radial vane) ditunjukkan dalam bentuk diagram pada Gambar 18 Gerak ini terdiri dari sebuah kumparan stasioner (diam) yang mempunyai banyak gulungan dan membawa arus yang akan diukur. Dua daun besi lunak (ironvane) ditem-patkan di bagian dalam kumparan. Salah satu daun diikatkan tetap ke kerangka kumparan sedang daun lainnya dihubungkan ke poros instrumen sehingga dapat berputar secara bebas. Arus melalui kumparan memaknetisasi kedua daun dengan polaritas yang sama tanpa memperhatikan arah arus sesaat. Kedua daun yang termaknetisasi ini meng-hasilkan gaya tolakan, dan karena hanya satu daun yang bisa berputar, defleksi (penyim-pangannya) adalah analogi dari besarnya arus kumparan. Gaya tolak sebanding dengan kuadrat arus, tetapi efek frekuensi dan histeresis cenderung menghasilkan defleksi jarum yang tidak linear dan akibatnya tidak mempunyai hubungan kuadrat yang sempurna. 52

5 Instrumen daun radial jenis tolakan adalah gerak besi putar yang paling sensitif dan mempunyai skala paling linear. Perencanaan yang baik dan bermutu tinggi diperlukanbagi instrumen-instrumen tingkat tinggi. Perhatikan bahwa daun aluminium yang diikat ke poros tepat di bawah jarum berputar di dalam sebuah rongga yang besarnya hampir pas yang membawa jarum untuk berhenti dengan cepat Gambar 18. Instrumen Besi Putar. Sebuah variasi instrumen daun radial adalah gerak tolakan daun konsentrik (concentric-vane. Instrumen ini memiliki dua daun konsentrik. Salah satu daun diikat tetap ke kerangka kumparan sedang yang lain dapat berputar secara koaksial di bagian dalam daun yang diam. Kedua daun ini dimaknetisasi oleh arus di dalam kumparan ke polaritas yang sama dan menyebabkannya bergeser ke sisi sewaktu mengalami gaya tolakan. Karena daun yang dapat berputar terikat ke sebuah poros ber-engsel, gaya tolak ini menghasilkan gaya rotasi yang merupakan fungsi arus di dalam kumparan. Dikontrol oleh pegas seperti mekanisme lainnya, posisi akhir jarum merupakan ukuran arus kumparan. Karena gerak ini seperti halnya semua instrumen daun berputar tidak membedakan polaritas, dia dapat digunakan untuk dc atau ac, tetapi lebih lazim digunakan untuk pengukuran bolak-balik (ac). Redaman instrumen ini diperoleh dari sebuah daun redaman (damping vane) dari bahan aluminium ringan yang dipegang oleh flens pada semua sisi dan berputar dengan ruang main yang kecil di dalam rongga udara tertutup. Bila digunakan untuk arus bolak-balik, torsi aktual akan bergetar dan dapat mengakibatkan getaran ujung jarum. Konstruksi jarum yang kokoh terbungkus, secara efektif menghilangkan getaran tersebut pada suatu daerah frekuensi yang lebar dan berfungsi untuk mencegah pelengkungan jarum bila mengalami beban lebih. Instrumen konsentrik memiliki sensitivitas yang sedang dan mempunyai karakteris-tik skala kuadratis. Adalah mungkin untuk mengubah bentuk daun-daun agar memiliki karakteristik skala yang khusus, yaitu dengan "membuka skala" bila diinginkan. 53

6 Ketelitian instrumen-instrumen besi putar terutama dibatasi oleh ketidaklinearan kurva magnetisasi daun-daun besi. Untuk nilai arus yang rendah, puncak arus bolak-balik menghasilkan penyimpangan persatuan arus yang lebih besar dari nilai rata-rata, meng-akibatkan pembacaan bolak-balik yang lebih tinggi dari pembacaan arus searah ekivalen pada skala rendah. Dengan cara sama, pada skala tinggi lutut kurva maknetisasi didekati, dan nilai puncak arus bolak-balik akan menghasilkan defleksi persatuan arus yang lebih kecil dari nilai rata-rata, sehingga pembacaan arus bolak-balik akan lebih rendah dari nilai arus searah ekivalen. Histeris di dalam besi dan arus pusar (eddy-cureni) di dalam daun-daun dan bagian logam lainnya di dalam instrumen, juga mempengaruhi ketelitian pembacaan. Rapat fluksi, termasuk pada nilai arus skala penuh sangat kecil, sehingga instrumen mempunyai sensitivitas arus yang agak rendah. Di dalam sistem yang berputar ini tidak ada bagian yang membawa arus sehingga alat ukur daun besi sangat kokoh dan terpercaya. Dia tidak mudah rusak walaupun kelebihan beban sering terjadi. Penambahan sebuah tahanan pengali yang sesuai akan mengubah gerak daunbesi menjadi voltmeter; dengan cara sama, penambahan sebuah shunt akan menghasilkan rangkuman arus (current ranges) yang berbeda. Bila gerak daun besi digunakan sebagai voltmeter arus bolak-balik, frekuensi memperbesar impedansi rangkaian instrumen dan karena itu cenderung memberikan pembacaan tegangan yang lebih rendah. Karena itu voltmeter daun besi sebaiknya selalu dikalibrasi untuk setiap frekuensi yang digunakan. Instrumen komersil yang biasa dapat digunakan dalam batas-batas ketelitiannya dari 25 sampai 125 Hz. Rangkaian kompensasi khusus dapat memperbaiki prestasi alat ukur pada frekuensi-frekuensi y$ng lebih tinggi walaupun batas frekuensi atas tidak mudah diperluas melebihi sekitar 2500 Hz. Walaupun instrumen-instrumen ini akan memberi tanggapan terhadap arus searah, mereka tidak dapat digunakan sebagai instrumen alih. Namun demikian, alat ini sangat populer sebab murah dan kokoh, dan berprestasi sesuai dengan batas-batas yang telah ditetapkan. 4.3 Instrumen Jenis Penyearah a. Penggerak Meter d Arsonval dengan penyearah Setengah Gelombang Dalam sebelumnya telah didiskusikan tentang pengukuran arus dan tegangan searah, serta pengukuran resistansi, dengan menggunakan meter penggerak d'arsonval; merupakan peralatan yang tanggap terhadap arus searah (DC). Dalam bab ini kita akan mengungkapkan tentang penggunaan meter penggerak d'arsonval untuk mengukur arus dan tegangan bolak-balik. Untuk mengukur arus bolak-balik dengan penggerak meter d'arsonval, pertama-tama kita harus menyearahkan arus bolak-balik dengan menggunakan sebuah dioda penyearah untuk menghasilkan aliran arus searah. Beberapa jenis dari penyearah menggunakan sebuah penyearah oksida tembaga (CuO), dioda tabung hampa, suatu semikonduktor atau dioda "kristal". 54

7 Jika kita tambahkan sebuah dioda pada rangkaian voltmeter yang telah didiskusikan pada sebelumnya, seperti yang ditunjukkan pada gambar 19, kita akan memiliki kemampuan pengukuran tegangan AC. Dimana sensitifitas dari voltmeter adalah : S 1 1 = = = 1kΩ V Ifs 1mA / Suatu pengali yang melipatkan 10 kali dari harga ini adalah 10V, input DC akan menyebabkan penyimpangan skala penuh dengan tepat saat dihubungkan dengan polaritas yang ditunjukkan pada gambar. Bias maju dioda akan tidak berpengaruh pada operasi rangkaian jika kita anggap sebagai dioda ideal. Sekarang andaikata kita memberi input DC 10 volt dengan input gelombang sinus 10 V rms. Tegangan pada penggerak meter hanya setengah siklus positip dari gelombang sinus yang disebabkan oleh penyerahan dari dioda. Harga puncak 10 V rms gelombang sinus adalah : E p = 10 V rms x = V puncak Penggerak meter DC akan tanggap pada harga rata-rata dari gelombang sinus AC dimana harga rata-rata sama dengan 0,636 kali harga puncak. Harga rata-rata untuk input tersebut diatas adalah : Eav = Epx 0.636=14.14Vx 0.636=8.99 V Keseluruhannya, harga rata-rata yang melampaui seluruh siklus adalah setengah harga rata-rata dari 8,99 V atau sekitar 4,5 V. Dengan demikian, dapat kita lihat bahwa penunjuk pengukuran menyimpang skala penuh pada sinyal 10 V DC diberikan hanya menyimpang pada 4,5 V, saat diberikan sinya AC sinusoidal 10 V rms. Gambar19. Perubahan voltmeter AC untuk mengukur tegangan DC 55

8 Selama setengah siklus negatip tidak konduk. Hal ini berarti bahwa pada kenyataannya voltmeter AC tidak sesensitif voltmeter DC, suatu voltmeter AC yang menggunakan penyearahan setengah gelombang kira-kira sensitifitasnya hanya 45% dari voltmeter DC. Sebenarnya, rangkaian akan memungkinkan untuk dirancang pada penyimpangan skala penuh dengan memberikan tegangan AC 10 V rms, yang berarti bahwa resistor pengali akan hanya 45% dari harga resistor pengali untuk voltmeter DC 10 V. Selama kita lihat bahwa tegangan DC ekivalen sama dengan 45% dari harga RMS pada tegangan AC, kita dapat menyatakannya dalam bentuk suatu persamaan untuk menghitung harga resistor pengali sebagai : Rs = Edc Idc 0,45 E Rm = I dc rms Rm Kita dapat mengambil kesimpulan dari persamaan di atas, untuk penyearah setengah gelombang, bahwa Sen ac =0,45 Sen dc Secara komersial, memproduksi voltmeter AC yang menggunakan penyearahan setengah gelombang menjadikan kita untuk menambahkan dioda dan sebuah shunt seperti yang ditunjukkan pada gambar 20 Gambar 20 Penyearah setengah gelombang menggunakan penyearah dan shunt resistor Dioda ganda ini dibuat dalam kemasan tunggal yang secara umum disebut dengan suatu penyearah instrumen. Penambahan dioda D dibias mundur pada setengah siklus positip dan sebenarnya tidak mempunyai pengaruh terhadap kerja rangkaian. Pada setengah siklus negatip, D di bias maju dan memberikan lintasan yang bergantian pada kebocoran arus saat dibias oundur yang pada keadaan normal mengalir melewati penggerak meter dan dioda D1 Tujuan dari resistor shunt R adalah untuk menaikkan arus yang melewati D selama setengaa siklus positip sehingga dioda beroperasi pada ukuran yang lebih linier dari kurva karakteristiknya. Dengan demikian resistor shunt ini memperbaiki kelinieran meter pada batas tegangan rendah AC, yang juga menghasilkan sensitifitas yang lebih baik. 56

9 b. Penggerak Meter d Arsonval dengan penyearah Gelombang Penuh Gambar 21 Penyearah jembatan gelombang penuh digunakan voltmeter AC Pada voltmeter AC lebih sering yang berkeinginan untuk menggunakan penyearah gelombang penuh dari pada penyearah setengah gelombang, karena memiliki sensitifitas yang lebih tinggi. Jenis rangkaian yang paling banyak digunakan penyearah gelombang penuh adalah penyearah jenis jembatan. Selama setengah siklus positip, arus mengalir melalui dioda D2, melewati penggerak meter dari positip menuju negatip, dan melewati D3. Polaritas dalam rangkaian pada transformer sekunder adalah untuk setengah siklus positip. Selama arus mengalir melalui penggerak meter pada kedua siklus setengah, kita mengharapkan penyimpangan penunjuk menjadi lebih besar dari pada dengan penyearah setengah gelombang saat arus dialirkan hanya pada setiap setengah siklus lainnya, atau jika penyimpangan tetap sama maka instrumen yang menggunakan penyearahan gelombang penuh akan memiliki sensitifitas yang lebih besar Gambar 22 Voltmeter AC menggunakan penyearah gelombang penuh Berdasarkan rangkaian yang ditunjukkan pada gambar di atas. Hargapuncak dari sinyal 10 Vrms dihitung dengan penyearah setengah gelombang sebagai : 57

10 E p = 1,414 x E rms = 14,14 V peak Rata-rata, atau DC, harga dari pulsa gelombang sinus adalah : E ave = 0,636 Ep = 9 V Dengan demikian kita dapat melihat bahwa tegangan 10 y adalah sama dengan 9Vdc. Saat menggunakan penyearahan gelombarig penuh. Hal ini berarti bahwa sebuah voltmeter AC yang menggunakan penyearahan gelombang penuh mempunyai sensitifitas yang sama dengan 90% dari sensitifitas DC, atau mempunyai dua kali sensitifitas dari rangkaian yang menggunakan penyearahan setengah gelombang. Seperti halnya pada penyearah setengah gelombang, yang berarti bahwa harga resistor pengali akan hanya 90% dari harga voltmeter DC 10 V. Kit*, dapat menulisnya untuk penyearah gelombang penuh sebagai : Sac = 0,9 Sdc Sebagai catatan bahwa voltmeter yang menggunakan penyearahan setengah gelombang atau gelombang penuh hanya cocok untuk pengukuran gelombang AC sinusoidal. Juga, persamaan yang ditunjukkan menjadi tidak berlaku lagi untuk bentuk gelombang non sinusoidal misal: gelombang persegi, gelombang segitiga dan gelombang gigi gergaji. 4.4 Termo Instrumen Mekanisme Kawat Panas (Hot Wire Mechanism) Gambar 23 Skema Ampermeter Kawat Panas 58

11 Sejarah awal dari instrumen-instrumen yang bekerja berdasarkan pemanasan (termo-instrumen) adalah mekanisme kawat-panas, yang ditunjukkan secara skematis dalam Gambar 23. Arus yang akan diukur dilewatkan melalui sebuah kawat halus yang dire-gang kencang antara dua terminal. Kawat kedua diikat ke kawat halus tersebut pada satu ujung dan pada ujung lainnya ke sebuah pegas yang berusaha menarik kawat halus ke bawah. Kawat kedua ini dilewatkan melalui sebuah canai (roller) pada mana jarum dihu-bungkan. Arus yang akan diukur menyebabkan pemanasan kawat halus dan memuai sebanding dengan kuadfat arus pemanasan. Perubahan panjang kawat menggerakkan jarum dan menunjukkan besarnya arus. Ketidakstabilan karenaregangan kawat, lambatnya tanggapan (respons), dan kurangnya kompensasi terhadap temperatur sekeliling mem-buat mekanisme ini tidak memuaskan secara komersil. Sekarang ini mekanisme kawat panas tidak dipakai lagi dan diganti dengan yang lebih sensitif, lebih teliti dan memiliki kombinasi kompensasi yang lebih baik bagi elemen termolistrik dan gerak PMMC Instrumen Termokopel Gambar 24 Skema Instrumen termokopel dasar Gambar 24 menunjukkan gabungan sebuah termokopel dan gerak PMMC yang dapat digunakan untuk mengukur arus bolak-bakk (ac) dan arus searah (dc). Gabungan ini disebut instrumen termokopel karena bekerjanya didasarkan pada tindakan elemen termokopel Bila dua logam yang berbeda disambungkan bersamasama, suatu tegangan dibangkitkan pada sambungan kedua logam tersebut. Tegangan ini bertambah sebanding dengan temperatur sambungan. Dalam Gambar 24, CE dan DE menyatakan kedua logam yang tidak sama tersebut, disambungkan pada titik E dan digambarkan dengan garis tipis dan garis tebal untuk menunjukkan ketidaksamaannya. Beda potensial antara C dan D bergantung pada temperatur yang disebut ujung dingin (cold junction), E. Suatu ke-naikan temperatur mengakibatkan pertambahan tegangan dan ini merupakan suatu keuntungan yang diperoleh dari termokopel. Elemen panas AB yang mengalami kontak mekanis dengan sambungan kedua logam pada titik E membentuk sebagian rangkaian pengukuran arus. AEB disebut ujung panas (hot junction). Energi panas yang dibangkitkan oleh arus di dalam elemen panas menaikkan temperatur ujung dingin, dan menyebabkan pertambahan tegangan yang dibangkitkan antara C dan D. Beda potensial ini menghasilkan. suatu arus searah melalui instrumen PMMC. Panas yang ditimbulkan oleh arus berbanding langsung dengan kuadrat arus (I 2 R) f dan 59

12 kenaikan temperatur (yang berarti tegangan d'c yang dibangkitkan) sebanding dengan kuadrat arus rms. Berarti defleksi alat penunjuk akan memenuhi hubungan aturan kuadratis, menyebabkan pe-numpukan tanda-tanda skala pada skala rendah dan menyebar pada skala tinggi. Susunan Gambar 24 tidak memberikan kompensasi terhadap perubahan-perubahan temperatur sekeliling. Gambar 25 Termokopel Terkompensasi Termoelemen yang terkompensasi ditunjukkan secara skematis dalam Gambar 25, menghasilkan suatu tegangan termolistrik dalam termokopel CED yang berbanding langsung dengan arus melalui rangkaian AB. Karena tegangan termokopel yang dibangkitkan adalah fungsi dari beda temperatur antara ujung panas dan ujung dingin, beda temperatur ini harus disebabkan oleh arus yang diukur saja. Berarti untuk pengukuran-pengukuran yang teliti, temperatur titik C dan D haruslah rata-rata temperatur titik A dan B. Ini diperoleh dengan menempatkan ujung termokopel CdanZ) di tengah-tengah potongan tembaga (copper strip) yang terpisah, yang ujungujungnya mengalami kontak termal dengan A. dan B, tetapi secara elektris#terisolasi dari A dan B. Instrumen-instrumen termolistrik yang terpasang-di dalam dari jenis terkompensasi, 'tersedia dalam batas ukur 0,5 20 A. Rahgkuman yang lebih tinggi juga tersedia, tetapi dalam hal ini elemen pemanas merupakan bagian luar indikator. Elemen-elemen termokopel yang digunakan untuk rangkuman di atas 60 A umumnya dilengkapi dengan sirip-sirip pehdingin udara. 4.5 Elektrodinamometer dalam Pengukuran Daya Wattmeter Satu Fasa Gambar 26 Diagram sebuah Wattmeter elektrodinamometer 60

13 Elektrodinamometer dipakai secara luas dalam pengukuran daya. Dia dapat digunakan untuk menunjukkan daya searah (dc) maupun bolak-balik (ac) untuk setiap bentuk gelombang tegangan dan arus dan tidak terbatas pada gelombang sinus saja, elektrodinamometer yang digunakan sebagai voltmeter atau ampermeter terdiri dari kumparan-kumparan yang diam dan yang berputar dihubungkan secara seri, karena itu bereaksi terhadap efek kuadrat arus. Bila digunakan sebagai alat ukur daya satu fasa, kumparan-kumparan dihubungkan dalam cara yang berbeda. Lihat gambar 26. Kumparan-kumparan yang diam atau kumparan-kumparan medan ditunjukkan di sini sebagai dua elemen terpisah yang dihubungkan secara seri dan membawa arus jala-jala total (z c ). Kumparan yang berputar yang ditempatkan di dalam medan maknit kumparan-kumparan yang diam, dihubungkan seri dengan tahanan pembatas arus dan membawa arus kecil (i p ). Arus sesaat di dalam kumparan yang berputar adalah i p = e/r p, di mana e adalah tegangan sesaat pada jala-jala, dani R p adalah tahanan total kumparan berputar beserta tahanan serinya. Defleksi kumparan putar sebanding dengan perkalian i c dan i p dan untuk defleksi rata-rata selama satu periode dapat dituliskan : T 1 θ rata rata= K ic i p dt T 0 di mana Q rata-rata = defleksi sudut rata-rata dari kumparan K = konstanta instrumen I c = arus sesaat di dalam kumparan-kumparan medan = arus sesaat di dalam kumparan potensial. I p Wattmeter mempunyai satu terminal tegangan dan satu terminal arus yang ditandai dengan "+". Bila terminal arus yang ditandai ini dihubungkan ke jala-jala masuk dan terminal tegangan ke sisi jala-jala dalam mana kumparan arus dihubungkan, alat ukur selalu akan membaca naik bila daya dihubungkan ke beban. Jika untuk suatu alasan (se-perti dalam metoda dua wattmeter untuk mengukur daya tiga fasa) jarum membaca mundur, sambungan arus (bukan sambungan tegangan) harus dipertukarkan. Wattmeter elektrodinamometer membutuhkan sejumlah daya untuk mempertahan-kan medan maknitnya, tetapi ini biasanya begitu kecil dibandingkan terhadap daya beban sehingga dapat diabaikan. Jika diperlukan pembacaan daya yang tepat, kumparan arus harus persis membawa arus beban, dan kumparan potensial - harus dihubungkan di antara terminal-terminal beban. Dengan menghubungkan kumparan potensial ke titika seperti dalam Gambar 26, tegangan beban terukur dengan tepat, tetapi arus melalui kumparan-kumparan medan lebih besar sebanyak I p. Berarti wattmeter membaca lebih tinggi sebesar kehilangan daya tambahan di dalam rangkaian potensial. Tetapi, jika kumparan potensial dihubungkan ke titiki? dalam Gambar 26, kumparan medan mencatat arus beban yang tepat, tetapi tegangan pada kumparan potensial akan lebih besar sebanyak penurunan tegangan pada kumparankumparan medan. Juga wattmeter akan mencatat lebih tinggi, tetapi dengan kehilangan sebesar I 2 R di dalam kumparan-kumparan medan. Cara penyambungan 61

14 yang tepat bergantung pada situasi. Umumnya, sambungan kumparan potensial pada titik A lebih diinginkan untuk beban-beban arus tinggi, tegangan rendah; sedang sambungan kumparan potensial pada titik B lebih diinginkan untuk beban-beban arus rendah, tegangan tinggi. Kesulitan dalam menempatkan sambungan kumparan potensial diatasi dalam wattmeter yang terkompensasi seperti ditunjukkan pada Gambar 27. Kumparan arus ter-diri dari dua kumparan, masing-masing mempunyai jumlah lilitan yang sama. Salah satu kumparan menggunakan kawat besar yang membawa arus beban ditambah arus untuk kumparan potensial. Gulungan lain menggunakan kawat kecil (tipis) dan hanya membawa arus ke kumparan tegangan. Tetapi arus ini berlawanan arah dengan arus di dalam gulungan besar, menyebabkan fluksi yang berlawanan dengan fluksi utama. Berarti efekip dihilangkan dan wattmeter menunjukkan daya yang sesuai. Gambar 27 Diagram Wattmeter Terkonpensasi Wattmeter Fasa banyak Pengukuran daya dalam suatu sistem fasa banyak memerlukan pemakaian dua atau lebih wattmeter. Kemudian daya nyata total diperoleh dengan menjumlahkan pembaca-an masing-masing wattmeter secara aljabar. Teorema Blondel menyatakan bahwa daya nyata dapat diukur dengan mengurangi satu elemen wattmeter dari sejumlah kawat-kawat dalam setiap sistem fasa banyak, dengan persyaratan bahwa satu kawat dapat di-buat "common" terhadap semua rangkaian potensial. Gambar 28 menunjukkan sambungan dua wattmeter untuk pengukuran konsumsi daya oleh sebuah beban tiga fasa yang setimbang yang dihubungkan secara delta. Kumparan arus wattmeter 1 dihubungkan dalam jaringan ; dan kumparan tegang-annya dihubungkan antara antaran (jala-jala, line) A dan C Kumparan arus wattmeter 2 dihubungkan dalam antaran B, dan kumparan tegangannya antara antaran B dan C. Daya total yang dipakai oleh beban setimbang tiga fasa sama dengan penjumlahan aljabar dari kedua pembacaan wattmeter. Diagram fasor Gambar 29 menunjukkan tegangan tiga fasa V AC, V CB, dan V BA dan arus tiga fasa I A c, I CB dan I BA. Beban yang dihubungkan secara delta dianggap in- 62

15 duktif, dan arus fasa ketinggalan dari tegangan fasa sebesar sudut 6. Kumparan arus Gambar 28 Diagram Pengukuran daya 3 fase dengan 2 wattmeter Gambar 29. Diagram fasor dan tegangan dan arus daya 3 fase tiga kawat Wattmeter 1 membawa arus antara I A ' A, Yang merupakan penjumlahan vektor dari arus-arus fasa I AC dan I AB. Kumparan potensial wattmeter 1 dihubungkan ke tegangan antaran V AC. Dengan cara sama kumparan arus wattmeter 2 membawa arus antaran I B.B yang merupakan penjumlahan vektor dari arus-arus fasa I BA dani BC sedang tegangan pada kumparan potensialnya adalah tegangan antaran V BC. Karena beban adalah setimbang, tegangan-tegangan fasa dan arus-arus fasa sama besarnya dan dituliskan V AC =VBC=V dan I AC = I CB = I BA = I Daya, dinyatakan oleh arus dan tegangan masing-masing wattmeter adalah : 63

16 4.6 Alat Ukur Watt / Jam Alat ukur wattjam (watthourmeter) tidak sering digunakan di laboratorium tetapi banyak digunakan untuk pengukuran energi listrik komersil. Kenyataannya adalah jelas bahwa di semua tempat di manapun, perusahaan listrik menyalurkan energi listrik ke industri dan pemakai setempat (domestik). Gambar 30 menunjukkan elemen alat ukur wattjam satu fasa dalam bentuk skema. Kumparan arus dihubungkan sen dengan antaran, dan kumparan tegangail dihu-bungkan paralel. Kedua kumparan yang dililitkan pada sebuah kerangka logam dengan desain khusus melengkapi dua rangkaian maknit. Sebuah piringan aluminium ringan digantung di dalam senjang udara medan kumparan arus yang menyebabkan arus pusar mengalir di dalam piringan. Reaksi arus pusar dan medan kumparan tegangan membang-kitkan sebuah torsi (aksi motor) terhadap piringan dan menyebabkannya berputar. Gambar 30. Elemen alat ukur wattjam satu fase Torsi yang dibangkitkan sebanding dengan kuat medan kumparan tegangan dan arus pusar di dalam piringan yang. berturut-turut adalah fungsikuat medan kumparan arus. Berarti jumlah putaran piringan sebanding dengan energi yang telah dipakai oleh beban dalam selang waktu tertentu, dan diukur dalam kilowatt-jam (kwh, kilowatt-hour). Poros yang menopang piringan aluminium dihubungkan melalui susunan roda gigi ke mekanisme jam dipanel alat ukur, melengkapi suatu pembacaan kwh yang terkalibrasi dalam desimal. v Redaman piringan diberikan oleh dua maknit permanen kecil yang ditempatkan saling berhadapan pada sisi piringan. Bila piringan berputar, maknitmaknit permanen mengindusir arus pusat di dalamnya. Arus-arus pusar ini bereaksi dengan medan maknit dari maknit-maknit permanen kecil dan meredam gerakan piringan. Kalibrasi alat ukur watt-jam dilakukan pada kondisi beban penuh yang diijinkan dan pada kondisi 10% dari beban yang diijinkan. Pada beban penuh, kalibrasi terdiri dari pengaturan posisi maknit-maknit perniai^gjcec^ agar alat ukur membaca dengan tegat. Pada beban-beban yang sangat ringan, komponen tegangan dari medan menghasukan suatu torsi yang tidak berbanding langsung dengan beban. 64

17 Kompensasi kesalahan diper-oleh dengan menyisipkan sebuah kumparan pelindung atau pelat di atas sebagian kumparan tegangan dengan membuat alat ukur bekerja pada 10%beban yang diijinkan. Kalibrasi alat-ukur pada kedua posisi ini biasanya menghasilkan pembacaan yang inemuas kan untuk semua beban-beban lainnya. Alat ukur watt-jam tipe poros tempting (floating shaft) menggunakan sebuah desain yang unik untuk menggantungkan piringan. Poros berputar mempunyai sebuah maknit kecil pada masing-masing ujung. Maknit poros bagian atas ditarik ke sebuah maknit dalam bantalan atas, sedang maknit bawah ditarik ke sebuah maknit dalam bantalan bawah. Berarti gerakan pelampung tidak akan menyentuh kedua permukaan bantalan, dan satu-satunya kontak terhadap gerakan adalah melalui roda gigi yang menghubung-kan poros ke kelengkapan roda gigi. 4.7 Alat Ukur Faktor Daya Menurut definisi, faktor daya adalah kosinus sudut fasa antara tegangan dan arus, dan pengukuran faktor daya biasanya menyangkut penentuan sudut fasa ini. Ini di-tunjukkan dalam kerja alat ukur faktor daya kumparan bersilang (crossed-coil power factor meter). Pada dasarnya instrumen ini adalah gerak elektrodinamometer di mana elemen yang berputar terdiri dari dua kumparan yang dipasang pada poros yang sama tetapi tegak lurus satu sama lain. Kumparan putar berputar di dalam medan maknetik yang dihasilkan oleh kumparan medan yang membawa arus jala-jala. Penyambungan alat ukur ini di dalam sebuah rangkaian satu fasa ditunjukkan pada diagram Gambar 31. Seperti biasanya kumparan medan dihubungkan seri dengan an-taran dan mengalirkan arus antaran. Salah satu kumparan dari elemen yang berputar dihubungkan seri dengan sebuah tahanan (R) pada antaran-antaran dan menerima arus dari beda potensial yang dimasukkan. Kumparan kedua elemen yang berputar tersebut Gambar 31. Rangkaian alat ukur faktor daya kumoran silang satu fasa dihubungkan seri dengan sebuah induktor (L) pada antaran. Karena di sini tidak diguna-kan pegas-pegas pengatur posisi setimbang, elemen yang berputar akan bergantung pada torsi yang diakibatkan oleh kedua kumparan yang saling bersilang. Bila elemen yang berputar dalam posisi setimbang, kontribusi masing-masing elemen terhadap torsi total harus sama tetapi berlawanan tanda. Torsi yang dibangkitkan di dalam masing-masing kumparan adalah fungsi arus melalui kumparan dan berarti bergantung pada im-pedansi rangkaian kumparan tersebut. 65

18 Torsi juga bergantung pada induktansi bersama antara tiap bagian kumparan yang bersilang dan kumparan medan stasioner. Induktansi bersama ini bergantung pada posisi sudut elemen-elemen kumparan bersilang terhadap posisi kumparan medan stasioner. Bila elemen yang berputar dalam keadaan setimbang, dapat dilihat bahwa simpangan sudutnya merupakan fungsi dari sudut fasa antara arus antaran (kumparan medan) dan tegangan antaran (kumparan-kumparan yang bersilang). Penunjukan jarum yang dihubungkan ke elemen berputar dikalibrasi langsung dalam sudut fasa atau faktor daya. Alat ukur faktor daya dengan daun terpolarisasi (polarized vane powerfactor meter) ditunjukkan dalam sketsa konstruksi Gambar Instrumen ini terutama diguna-kan dalam sistem daya tiga fasa sebab prinsip kerjanya bergantung pada pemakaian tegangan tiga fasa. Kumparan luar adalah kumparan potensial yang dihubungkan ke an-taran-antaran sistem tiga fasa. Penyambungan tegangan tiga fasa ke kumparan potensial menyebabkannya bertindak seperti stator motor induksi tiga fasa sewaktu membang-kitkan suatu fluksi maknit berputar. Kumparan di tengah atau kumparan arus dihubungkan seri dengan salah satu antaran fasa, dan ini mempolariser daun-daun besi. Daun-daun terpolarisasi ini bergerak di dalam medan maknit berputar dan mengambil suatu posisi di mana medan putar pada suatu saat mempunyai fluksi polarisasi paling besar (maksimal). Posisi ini merupakan indikasi sudut fasa dan berarti indikasi faktor daya. Instrumen ini dapat digunakan dalam sistem satu fasa dengan syarat bahwa sebuah rangkaian pemisah fasa (serupa dengan yang digunakan dalam motor satu fasa) ditambahkan untuk membangkitkan medan maknit putar yang diperlukan. Kedua jenis alat ukur faktor daya terbatas pada pengukuran frekuensi yang relatif Rndah dan khususnya digunakan pada frekuensi jala-jala (60 Hz). Pengukuran fasa pada frekuensi-frekuensi yang lebih tinggi sering lebih teliti dan ini secara memuaskan akan lihasilkan oleh instrumen-instrumen elektronik atau tehnik-tehnik tertentu. 4.8 Alat Ukur Frekuensi Frekuensi dapat ditentukan dengan berbagai cara, tetapi sementara kita membicarakan instrumen-instrumen penunjuk yang dalam kategori ini adalah alatalat ukur freiuensi yang memanfaatkan efek frekuensi terhadap faktor-faktor seperti : induktansi Ibersama, resonansi sirkuit penyetalaan (tuned circuit) dan resonansi mekanik Sebuah contoh pemakaian rangkaian penyetalaan ditemukan pada alatukur frekuansi tipe elektrodinamometer, yang ditunjukkan secara skematis dalam Gambar 32. Dalam alat ukur frekuensi ini, kumparan-kumparan medan membentuk sebagian dari dua rangkaian resonan terpisah. Kumparan medan 1 adalah seri dengan induktorlj dan kapasitor C\, dan membentuk sebuah rangkaian resonan yang disetel ke suatu frekuensi sedikit di bawah skala terendah dari instrumen. Kumparan medan 2 adalah sen dengan induktor L 2 dan kapasitor C 2, dan membentuk sebuah rangkaian resonan yang disetel ke frekuensi sedikit lebih tinggi dari skala tertinggi instrumen. Dalam hal frekuensi jala-jala, rangkaian harus disetel ke frekuensi berturut-turut 50 Hz dan 70 Hz, dengan 60 Hz pada pertengahan skala. 66

19 Gambar 32. Rangkaian alat ukur frekunsi tipe lektrodinamometer Kedua kumparan medan disusun seperti ditunjukkan pada diagram dan dikembalikan ke jala-jala melalui gulungan kumparan yang dapat berputar. Torsi pada elemen yang berputar sebanding dengan arus melalui kumparan berputar. Arus ini terdiri dari penjumlahan kedua arus kumparan medan. Untuk frekuensi yang dimasukkan dalam batas-batas rangkuman instrumen, rangkaian kumparan medan 1 bekerja di atas frekuensi resonan dengan arus i x ketinggalan dari tegangan yang dimasuikkan. Rangkaian kumparan medan 2 bekerja di bawah frekuensi resonannya dan dengan demikian adalah kapasitif dengan arus i 2 yang mendahului tegangan yang dimasukkan. Karena itu torsi yang dihasilkan oleh kedua arus terhadap kumparan putar adalah lawanan, dan torsi yang dihasilkan tersebut merupakan fungsi dari frekuensi tegar.yang dimasukkan. Untuk setiap frekuensi yang dimasukkan dalam batas ukur instrumen torsi yang dibangkitkan pada elemen yang berputar menyebabkan jarum berada posisi yang dihasilkannya dan defleksi jarum dikalibrasi dalam frekuensi yang dibenka tersebut. Torsi pemulih dilengkapi oleh sebuah daun besi kecil yang dipasang pada irparan yang berputar. Daerah pengukuran instrumen ini biasanya terbatas pada frekuensi jala-jala dan pemakaian utama adalah dalam bidang ini yakni untuk memonitor frekuansi sebuah sistem day a Alat ukur frekuensi jenis batang atau lidah bergetar (tuned-reed frequency mechanism bekerja berdasarkan prinsip resonansi mekanis. Sederetan batang-batang dipasang bersama-sama pada sebuah alas fleksibel yang terpasang pada jangkar sebuah elektromakna Kumparan elektromaknit diberi energi listrik dari jala-jala arus bolakbalik yang frekuensinya akan ditentukan. Batang disetel ke suatu frekuensi dasar yang tepat berdasarkan pemilihan panjang dan massa yang sesuai. Batang yang frekuensi dasarnya sama frekuensi pada mana elektromaknit diberi energi, membentuk suatu getaran. Getaran ini dapat dilihat pada panel alat ukur di mana ujung getaran batang ditunjukimelalui sebuah jendela. Jika frekuensi yang diukur berada di antara frekuensi dua yang berdekatan, kedua batang akan hergetar dan frekuensi jala-jala akan paling ke batang yang bergetar paling tinggi. Interpolasi antara frekuensi-frekuensi dasar batang-batang ini dapat dilakukan dengan mudah dan teliti, sebab frekuensi-frekubatang adalah tepat. Instrumen ini mempunyai keuntungan 67

20 karena konstruksi sangat sederhana dan sangat kokoh. Dia mempertahankan kalibrasinya dengan baikngan syarat bahwa getaran batang-batang dipertahankan dalam batas-batas yang Walaupun operasinya tidak bergantung pada nilai tegangan yang tepat, pengubbatas ukur tegangan biasanya dilakukan dengan penambahan tahanan. Alat ukur frekuensi tipe inti jenuh (saturable-core frequency meter), yang menangani dan mengukur suatu rangkuman frekuensi dengan baik, ditunjukkan secaj skematis pada Gambar 33. Transformator terdiri dari dua inti (core) dan satuga r JOM (yoke). Satu inti adalah bahan non-maknit, sedang inti yang lain adalah bahan maijj yang saturasi pada nilai ggl dan arus yang sangat kecil. Gandar terbuat dari bahan maiaj dengan penampang yang cukup besar sehingga tidak mencapai saturasi. Kumparan pm mer transformator dililitkan pada kedua inti tersebut secara bersamaan (simultarn mm perti ditunjukkan pada Gambar 33. Kumparan sekunder terdiri dari dua bagian H paroh gulungan dililitkan pada inti maknit dan separoh lainnya pada inti non-makiij Gulungan-gulungan sekunder dihubungkan seri dalam cara sedemikian sehingga tegar yang diinduksi di dalam gulungan-gulungan tersebut berlawanan satu sama lain. Biladaya disalurkan ke kumparan primer, transformator akan mengindusir tegangan di ialam kumparan-kumparan sekunder. Karena nilai saturasi inti maknetik yang rendah, inti ini akan saturasi pada tegangan sekunder yang sangat kecil. Begitu inti ini saturasi, iaju pertambahan tegangan induksi di dalam kumparan tersebut akan sama dengan laju pertambahan tegangan induksi di dalam gulungan pada inti bukan maknit. Dengan de-mikian laju pertambahan tegangan-tegangan induksi saling meniadakan karena ggl di ialam gulungan-gulungan sekunder berlawanan satu sama lain. Karena itu tegangan sekunder bukan merupakan fungsi tegangan primer yang dimasukkan, tetapi hanya akan bergantung pada frekuensi tegangan tersebut. Tegangan keluaran sekunder disea-rahkan dan dimasukkan ke sebuah alat ukur arus searah yang defleksinya sebanding dengan frekuensi. Skala alat-ukur dikalibrasi dalam frekuensi. Gambar 33. Skema alat ukur frekunsi tipe inti jenuh 68

21 C. RANGKUMAN V AC V rms V dc V pp V ave V dc = = = = V rms V pp 1 2 0, 45 V ave x 1, 414 x 0, 636 V rms Vrms 10 V Rm = 100? Vdc Idp = 1 ma 4,5 V Rs V dc = = = 0, 45 xv rms 0, 45 x10 4, 5 Volt V pp = V rms V ave = V pp 1,44 0,636 V dc = V ave = 0,9 V rms D. LATIHAN SOAL 1. Yang mana dari alat-alat ukur berikut akan mengukur arus bolak-balik tanpa bergantung pada penggunaan penyerah: a. alat ukur besi putar daun radial b. elektrodinamometer c. mekanisme kumparan putar maknit inti d. instrumen termokopel tipe jembatan 2. Jelaskan mengapa nilai ohm per volt bagian rus bolak-balik (ac) dari sebuah multimeter komersial lebih rendah dari bagian arus DC 3. Sebuah alat ukur pada tegangan 25V mempunyai tahanan dalam 100Ω dan memerlukan 1mA DC untuk defleksi penuh. Tahanan shunt yang dihubungkan (Rsh) paralel terhadap alat ukur tersebut sebesar 200Ω Dioda D1 dan D2 masing-masing mempunyai tegangan maju rata-rata sebesar 400Ω dan dianggap mempunyai tahanan balik tek terhingga. Tentukanlah : 69

22 (a) Nilai tahanan pengali Rs (b) Sensitivitas voltmeter pada rangkuman Ac tersebut E. KASUS Sebuah instrumen termokopel membaca 10 A pada defleksi penuh. Tentukan arus yang menyebabkan defleksi setengah skala F. SUMBER BELAJAR Diktat Pengukuran Listrik I Instrumentasi Elektronik dan Pengukuran Tsuneo Furuya, et.al William David Cooper 70

05 Pengukuran Besaran Listrik INSTRUMEN PENUNJUK ARUS BOLAK BALIK

05 Pengukuran Besaran Listrik INSTRUMEN PENUNJUK ARUS BOLAK BALIK 05 Pengukuran Besaran Listrik INSTRUMEN PENUNJUK ARUS BOLAK BALIK 5.1 Pendahuluan Gerak d Arsonval akan memberi respons terhadap nilai rata-rata atau searah (dc) melalui kumparan putar. Jika kumparan tersebut

Lebih terperinci

Elektrodinamometer dalam Pengukuran Daya

Elektrodinamometer dalam Pengukuran Daya Elektrodinamometer dalam Pengukuran Daya A. Wattmeter Wattmeter digunakan untuk mengukur daya listrik searah (DC) maupun bolak-balik (AC). Ada 3 tipe Wattmeter yaitu Elektrodinamometer, Induksi dan Thermokopel.

Lebih terperinci

ALAT UKUR BESARAN LISTRIK. Jenis dan Prinsip Kerjanya

ALAT UKUR BESARAN LISTRIK. Jenis dan Prinsip Kerjanya ALAT UKUR BESARAN LISTRIK Jenis dan Prinsip Kerjanya Alat ukur besaran listrik : Galvanometer Ampermeter arus searah Voltmeter arus searah ohmmeter Galvanometer Prinsip kerja PMMC (Permanent magnet moving

Lebih terperinci

PRINSIP KERJA ALAT UKUR GAYA, TORSI, DAN DAYA

PRINSIP KERJA ALAT UKUR GAYA, TORSI, DAN DAYA PRINSIP KERJA ALAT UKUR GAYA, TORSI, DAN DAYA 1. ALAT UKUR GAYA Alat ukur gaya yang paling sederhana dan dapat mengukur secara langsung adalah dinamometer. Dalam laboratorium fisika, nama lain dari dinamometer

Lebih terperinci

DTG 2M3 - ALAT UKUR DAN PENGUKURAN TELEKOMUNIKASI

DTG 2M3 - ALAT UKUR DAN PENGUKURAN TELEKOMUNIKASI DTG 2M3 - ALAT UKUR DAN PENGUKURAN TELEKOMUNIKASI By : Dwi Andi Nurmantris ALAT UKUR ANALOG DC POKOK BAHASAN Pendahuluan Penunjuk alat ukur Analog Alat Ukur Analog DC Voltmeter DC Ampermeter DC OhmMeter

Lebih terperinci

Prinsip Pengukuran Besaran Listrik

Prinsip Pengukuran Besaran Listrik Bab 3 Prinsip Pengukuran Besaran Listrik www.themegallery.com LOGO www.themegallery.com LOGO Materi Bab 3 1 Pengukuran Arus dan Tegangan 2 Pengukuran Daya dan Faktor Daya 3 Pengukuran Energi Listrik 4

Lebih terperinci

ALAT UKUR ANALOG ARUS SEARAH

ALAT UKUR ANALOG ARUS SEARAH ALAT UKU ANALOG AUS SEAAH Alat Ukur dan Pengukuran Telekom Pokok Bahasan Penunjuk Analog Arus Searah Voltmeter DC Ampermeter DC Ohmmeter Multimeter Efek pembebanan 1. Penunjuk Analog Arus Searah (1/6)

Lebih terperinci

Imasuk = I keluar atau n Imasuk = ni keluar...(2.1)

Imasuk = I keluar atau n Imasuk = ni keluar...(2.1) BAB II LANDASAN TEORI 2.1. HUKUM KIRCHOF I Adalah: jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan. Secara matematis dinyatakan : Imasuk

Lebih terperinci

COS PHI (COS φ) METER

COS PHI (COS φ) METER COS PHI (COS φ) METER Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Alat Ukur Dan Pengukuran Listrik Dosen Pengampu Achmad Hardito, B.Eng., M.Kom. Disusun Oleh kelompok 3 kelas LT 1D : 1. 2. 3.

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

INSTRUMEN PENUNJUK ARUS SEARAH. Lunde Ardhenta ST., MSc.

INSTRUMEN PENUNJUK ARUS SEARAH. Lunde Ardhenta ST., MSc. INSTRUMEN PENUNJUK ARUS SEARAH Lunde Ardhenta ST., MSc. GALVANOMETER Astatic Galvanometer GALVANOMETER Alat ukur listrik yang digunakan untuk mengukur kuat arus dan beda potensial listrik yang relatif

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

PRINSIP KERJA ALAT UKUR

PRINSIP KERJA ALAT UKUR PRINSIP KERJA ALAT UKUR PRINSIP KERJA kwh dan kvarh meter : sistem induksi kw / kva max meter Volt meter Amper meter : sistem elektrodinamis : sistem elektro magnit, kumparan putar, besi putar : sistem

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

TOPIK 5 PENGUKURAN BESARAN LISTRIK

TOPIK 5 PENGUKURAN BESARAN LISTRIK TOPIK 5 PENGUKURAN BESARAN LISTRIK Pengukuran sering dilakukan dalam melakukan analisis rangkaian. Pengukuran dilakukan untuk mendapatkan nilai besaran listrik, seperti : nilai arus yang melalui suatu

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja BAB II DASAR TEORI 2.1 Mesin arus searah 2.1.1. Prinsip kerja Motor listrik arus searah merupakan suatu alat yang berfungsi mengubah daya listrik arus searah menjadi daya mekanik. Motor listrik arus searah

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

Instrument arus searah

Instrument arus searah Makalah pengukuran listrik Instrument arus searah OLEH: PUTU NOPA GUNAWAN NIM : D411 10 009 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS HASANUDDIN 2011 BAB I PENDAHULUAN A. Latar Belakang Proses

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

Bahan Ajar BAB II. Teori umum alat ukur analog Tatap muka : Minggu 3, Minggu 4, Minggu 5

Bahan Ajar BAB II. Teori umum alat ukur analog Tatap muka : Minggu 3, Minggu 4, Minggu 5 Bahan Ajar BAB II. Teori umum alat ukur analog Tatap muka : Minggu 3, Minggu 4, Minggu 5 1 MINGGU 3,4 & 5 TEORI UMUM ALAT UKUR ANALOG Prinsip dasar pengukuran. Pengukuran menunjukkan kuantitas besaran

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham nalisis Rangkaian Listrik Jilid Sudaryatno Sudirham, nalisis Rangkaian Listrik () Rangkaian Pemroses Energi (rus Searah) Dalam bab ini kita akan melihat beberapa contoh aplikasi analisis

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah tenaga listrik arus searah ( listrik DC ) menjadi tenaga gerak atau tenaga mekanik, dimana tenaga gerak

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

TUGAS PERTANYAAN SOAL

TUGAS PERTANYAAN SOAL Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

Alat Ukur Listrik. Modul 1 PENDAHULUAN

Alat Ukur Listrik. Modul 1 PENDAHULUAN Modul 1 Alat Ukur Listrik K PENDAHULUAN Drs. Purwanto Fadjar, H.M. Dwa Desa Warnana, M.Si. ita sudah biasa menggunakan peralatan teknik, yang sebagian besar terdiri dari alat-alat listrik. Listrik yang

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

TEGANGAN EFFECTIVE (RMS), PEAK DAN PEAK-TO-PEAK

TEGANGAN EFFECTIVE (RMS), PEAK DAN PEAK-TO-PEAK TEGANGAN EFFECTIVE (RMS), PEAK DAN PEAK-TO-PEAK ELEKTRONIKA ANALOG (5TEMA) Dosen: Mujahidin Oleh: Lina (1221011) PRODI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS INTERNASIONAL BATAM DESEMBER

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

CIRCUIT DASAR DAN PERHITUNGAN

CIRCUIT DASAR DAN PERHITUNGAN CIRCUIT DASAR DAN PERHITUNGAN Oleh : Sunarto YB0USJ ELEKTROMAGNET Listrik dan magnet adalah dua hal yang tidak dapat dipisahkan, setiap ada listrik tentu ada magnet dan sebaliknya. Misalnya ada gulungan

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

1.KONSEP SEGITIGA DAYA

1.KONSEP SEGITIGA DAYA Daya Aktif, Daya Reaktif dan Dan Pasif 1.KONSEP SEGITIGA DAYA Telah dipahami dan dianalisa tentang teori daya listrik pada arus bolak-balik, bahwa disipasi daya pada beban reaktif (induktor dan kapasitor)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

Makalah pengukuran listrik. bolak - balik OLEH: PUTU NOPA GUNAWAN NIM : D

Makalah pengukuran listrik. bolak - balik OLEH: PUTU NOPA GUNAWAN NIM : D Makalah pengukuran listrik Instrument arus bolak - balik OLEH: PUTU NOPA GUNAWAN NIM : D411 10 009 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS HASANUDDIN 2011 1 BAB I PENDAHULUAN A. Latar Belakang

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

BAB I TEORI RANGKAIAN LISTRIK DASAR

BAB I TEORI RANGKAIAN LISTRIK DASAR BAB I TEORI RANGKAIAN LISTRIK DASAR I.1. MUATAN ELEKTRON Suatu materi tersusun dari berbagai jenis molekul. Suatu molekul tersusun dari atom-atom. Atom tersusun dari elektron (bermuatan negatif), proton

Lebih terperinci

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk II. TINJAUAN PUSTAKA A. Transformator Transformator merupakan suatu peralatan listrik yang berfungsi untuk memindahkan dan mengubah tenaga listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya,

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

BAB I PENDAHULUAN. Pada bagian ini, akan dibahas sebagian dari rangkaian dasar arus searah, antara lain :

BAB I PENDAHULUAN. Pada bagian ini, akan dibahas sebagian dari rangkaian dasar arus searah, antara lain : BAB I PENDAHULUAN Pada dasarnya, pengukuran suatu resistansi dapat dilakukan dengan mudah. Namun kelemahannya adalah kurang akurat. Pengukuran resistansi yang lebih baik dapat dilakukan dengan cara: 1.

Lebih terperinci

LVDT (Linear Variable Differensial Transformer)

LVDT (Linear Variable Differensial Transformer) LVDT (Linear Variable Differensial Transformer) LVDT merupakan sebuah transformator yang memiliki satu kumparan primer dan dua kumparan sekunder. Ketiga buah kumparan tadi, diletakkan simetris pada sebuah

Lebih terperinci

MEMILIH ALAT UKUR LISTRIK

MEMILIH ALAT UKUR LISTRIK MEMILIH ALAT UKUR LISTRIK ELK-DAS.15 15 JAM Penyusun : TIM FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

1 PENGUKURAN DAN KESALAHAN

1 PENGUKURAN DAN KESALAHAN Daftar Isi 1 PENGUKURAN DAN KESALAHAN... :

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II SISTEM DAYA LISTRIK TIGA FASA

BAB II SISTEM DAYA LISTRIK TIGA FASA BAB II SISTEM DAYA LISTRIK TIGA FASA Jaringan listrik yang disalurkan oleh PLN ke konsumen, merupakan bagian dari sistem tenaga listrik secara keseluruhan. Secara umum, sistem tenaga listrik terdiri dari

Lebih terperinci

BAB I DASAR TEORI I. TRANSFORMATOR

BAB I DASAR TEORI I. TRANSFORMATOR BAB I DASAR TEORI I. TRANSFORMATOR Transformator atau trafo adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang

Lebih terperinci

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik)

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik) Prinsip dasar dari sebuah mesin listrik adalah konversi energi elektromekanik, yaitu konversi dari energi listrik ke energi mekanik atau sebaliknya dari energi mekanik ke energi listrik. Alat yang dapat

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan perealisasian inductive wireless charger untuk telepon seluler. Teori-teori yang digunakan dalam skripsi

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

Voltmeter, ampermeter dan ohmeter elektronik menggunakan penguat, penyearah, dan rangkaian lain untuk membangkitkan suatu arus yang sebanding dengan

Voltmeter, ampermeter dan ohmeter elektronik menggunakan penguat, penyearah, dan rangkaian lain untuk membangkitkan suatu arus yang sebanding dengan Voltmeter, ampermeter dan ohmeter elektronik menggunakan penguat, penyearah, dan rangkaian lain untuk membangkitkan suatu arus yang sebanding dengan besaran yang diukur. Selanjutnya arus ini menggerakkan

Lebih terperinci

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI 1 LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI A. TUJUAN 1. Mempelajari watak kumparan jika dialiri arus listrik searah (DC).. Mempelajari watak kumparan jika dialiri arus listrik bolak-balik

Lebih terperinci

Mekatronika Modul 7 Aktuator

Mekatronika Modul 7 Aktuator Mekatronika Modul 7 Aktuator Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Aktuator Listrik Tujuan Bagian ini memberikan informasi mengenai karakteristik dan penerapan

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

Teknik Tenaga Listrik (FTG2J2)

Teknik Tenaga Listrik (FTG2J2) Teknik Tenaga Listrik (FTG2J2) Kuliah 4: Transformator Ahmad Qurthobi, MT. Engineering Physics - Telkom University Daftar Isi Transformator Ideal Induksi Tegangan pada Sebuah Coil Tegangan Terapan dan

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II LANDASAN TEORI Tinjauan Hukum Pemakaian Arus Listrik Ilegal. Penertiban Pemakaian Tenaga Listrik adalah singkatan dari (P2TL), yang

BAB II LANDASAN TEORI Tinjauan Hukum Pemakaian Arus Listrik Ilegal. Penertiban Pemakaian Tenaga Listrik adalah singkatan dari (P2TL), yang BAB II LANDASAN TEORI 2. 1 Tinjauan Hukum Pemakaian Arus Listrik Ilegal Penertiban Pemakaian Tenaga Listrik adalah singkatan dari (P2TL), yang merupakan salah satu program kerja PT PLN untuk mengurangi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Penampang kumparan rotor dari atas.[4] permukaan rotor, seperti pada gambar 2.2, saat berada di daerah kutub dan

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Penampang kumparan rotor dari atas.[4] permukaan rotor, seperti pada gambar 2.2, saat berada di daerah kutub dan BAB II TINJAUAN PUSTAKA 2.1 Motor DC 2.1.1. Prinsip Kerja Motor DC Motor listrik adalah mesin dimana mengkonversi energi listrik ke energi mekanik. Jika rotor pada mesin berotasi, sebuah tegangan akan

Lebih terperinci

DIODA SEBAGAI PENYEARAH (E.1) I. TUJUAN Mempelajari sifat dan penggunaan dioda sebagai penyearah arus.

DIODA SEBAGAI PENYEARAH (E.1) I. TUJUAN Mempelajari sifat dan penggunaan dioda sebagai penyearah arus. DIODA SEBAGAI PENYEARAH (E.1) I. TUJUAN Mempelajari sifat dan penggunaan dioda sebagai penyearah arus. II. DASAR TEORI 2.1 Pengertian Dioda Dioda adalah komponen aktif bersaluran dua (dioda termionik mungkin

Lebih terperinci

09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK

09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK 09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK 9.1 Pendahuluan Jembatan arus bolak balik bentuk dasarnya terdiri dari : - empat lengan jembatan - sumber eksitasi dan - sebuah detektor nol Pada

Lebih terperinci

BAB 3 PENGUJIAN DAN HASIL PENGUKURAN. 3.1 Rangkaian dan Peralatan Pengujian

BAB 3 PENGUJIAN DAN HASIL PENGUKURAN. 3.1 Rangkaian dan Peralatan Pengujian BAB 3 PENGUJIAN DAN HASIL PENGUKURAN 3.1 Rangkaian dan Peralatan Pengujian Pengujian dilakukan di Laboratorium Tegangan Tinggi dan Pengukuran Listrik (TTPL) Fakultas Teknik. Secara umum, pengujian terbagi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

Rangkaian Arus Bolak Balik. Rudi Susanto

Rangkaian Arus Bolak Balik. Rudi Susanto Rangkaian Arus Bolak Balik Rudi Susanto Arus Searah Arahnya selalu sama setiap waktu Besar arus bisa berubah Arus Bolak-Balik Arah arus berubah secara bergantian Arus Bolak-Balik Sinusoidal Arus Bolak-Balik

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya.

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. BAB III MAGNETISME Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. Magnetisme (kemagnetan) tercakup dalam sejumlah besar operasi alat listrik, seperti

Lebih terperinci

BAB III KWH METER SEBAGAI ALAT UKUR ENERGI LISTRIK. dan ampermeter. Jika V volt yang ditunjukkan oleh voltmeter dan I amper yang

BAB III KWH METER SEBAGAI ALAT UKUR ENERGI LISTRIK. dan ampermeter. Jika V volt yang ditunjukkan oleh voltmeter dan I amper yang BAB III KWH METER SEBAGAI ALAT UKUR ENERGI LISTRIK 3.1. Pengukuran Daya Dan Energi Listrik Daya dalam rangkaian arus searah dapat diukur dengan bantuan voltmeter dan ampermeter. Jika V volt yang ditunjukkan

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci