BAB II GENERATOR SINKRON

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II GENERATOR SINKRON"

Transkripsi

1 BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator, generator AC (alternating current), atau generator sinkron. Dikatakan generator sinkron karena jumlah putaran rotornya sama dengan jumlah putaran medan magnet pada stator. Kecepatan sinkron ini dihasilkan dari kecepatan putar rotor dengan kutub kutub magnet yang berputar dengan kecepatan yang sama dengan medan putar pada stator. Mesin ini tidak dapat dijalankan sendiri karena kutub kutub rotor tidak dapat tiba tiba mengikuti kecepatan medan putar pada waktu sakelar terhubung dengan jala jala. Generator arus bolak balik dibagi menjadi dua jenis, yaitu: a. Generator arus bolak balik 1 phasa b. Generator arus bolak balik 3 phasa Gambar diagram kedua bentuk generator arus bolak balik tersebut dapat dilihat dari gambar 2.1 berikut.

2 (a) (b) Gambar 2.1(a) Diagram Generator AC Satu Fasa Dua Kutub (b) Diagram Generator AC Tiga Fasa Dua Kutub Perbedaan prinsip antara generator DC dengan generator AC adalah letak kumparan jangkar dan kumparan statornya. Pada generator DC, kumparan jangkar terletak pada bagian rotor dan kumparan medan terletak pada bagian stator. Sedangkan pada generator AC, kumparan jangkar terletak pada bagian stator dan kumparan medan terletak pada bagian rotor. 2.2 Konstruksi Generator Sinkron Pada bagian ini akan dibahas mengenai konstruksi generator sinkron secara garis besar. Bagian bagian generator yang dibahas pada bagian ini antara lain : (a) Stator (b) Rotor Stator Stator atau armatur adalah bagian generator yang berfungsi sebagai tempat untuk menerima induksi magnet dari rotor. Arus AC yang menuju ke beban disalurkan melalui armatur, komponen ini berbentuk sebuah rangka silinder dengan lilitan kawat konduktor yang sangat banyak. Armatur selalu diam (tidak bergerak). Oleh karena itu, komponen ini juga disebut dengan stator. Lilitan armatur generator dalam wye dan titik netral dihubungkan ke tanah. Lilitan dalam wye dipilih karena:

3 1. Meningkatkan daya output. 2. Menghindari tegangan harmonik, sehingga tegangan line tetap sinusoidal dalam kondisi beban apapun. Dalam lilitan wye tegangan harmonik ketiga masing-masing fasa saling meniadakan, sedangkan dalam lilitan delta tegangan harmonik ditambahkan. Karena hubungan delta tertutup, sehingga membuat sirkulasi arus harmonik ketiga yang meningkatkan rugi-rugi (I 2 R). Stator dari mesin sinkron terbuat dari bahan ferromagnetik yang berbentuk laminasi untuk mengurangi rugi-rugi arus pusar. Dengan inti ferromagnetik yang bagus berarti permeabilitas dan resistivitas dari bahan tinggi. Gambar 2.2 berikut memperlihatkan alur stator tempat kumparan jangkar. Gambar 2.2 Inti Stator dan Alur pada Stator Belitan jangkar (stator) yang umum digunakan oleh mesin sinkron tiga phasa, ada dua tipe yaitu: a. Belitan satu lapis (Single Layer Winding). Gambar 2.3 memperlihatkan belitan satu lapis karena hanya ada satu sisi lilitan di dalam masing - masing alur. Bila kumparan tiga phasa dimulai pada Sa,

4 Sb, dan Sc dan berakhir di Fa, Fb, dan Fc bisa disatukan dalam dua cara, yaitu hubungan bintang dan segitiga. Antar kumparan phasa dipisahkan sebesar 120 derajat listrik atau 60 derajat mekanik, satu siklus ggl penuh akan dihasilkan bila rotor dengan 4 kutub berputar 180 derajat mekanis. Satu siklus ggl penuh menunjukkan 360 derajat listrik, adapun hubungan antara sudut rotor mekanis α mek dan sudut listrik αlis, adalah: α lis = α mek. (2.1) Gambar 2.3 Belitan Satu Lapis Generator Sinkron Tiga Fasa b. Belitan berlapis ganda (Double Layer Winding). Kumparan jangkar yang diperlihatkan pada hanya mempunyai satu lilitan per kutub per phasa, akibatnya masing masing kumparan hanya dua lilitan secara seri. Bila alur-alur tidak terlalu lebar, masing-masing penghantar yang berada dalam alur akan membangkitkan tegangan yang sama. Masing masing tegangan phasa akan sama untuk menghasilkan tegangan per penghantar dan jumlah total dari penghantar per phasa. Dalam kenyataannya cara seperti ini tidak menghasilkan cara yang efektif dalam penggunaan inti stator, karena variasi kerapatan fluks dalam inti dan juga

5 melokalisir pengaruh panas dalam daerah alur dan menimbulkan harmonik. Untuk mengatasi masalah ini, generator praktisnya mempunyai kumparan terdistribusi dalam beberapa alur per kutub per phasa. Gambar 2.4 Belitan Berlapis Ganda Generator Sinkron Tiga Fasa Gambar 2.4 memperlihatkan bagian dari sebuah kumparan jangkar yang secara umum banyak digunakan. Pada masing masing alur ada dua sisi lilitan dan masing masing lilitan memiliki lebih dari satu putaran. Bagian dari lilitan yang tidak terletak ke dalam alur biasanya disebut winding overhang, sehingga tidak ada tegangan dalam winding overhang Rotor (Magnetic Field) Rotor berfungsi untuk membangkitkan medan magnet yang kemudian tegangan dihasilkan dan akan diinduksikan ke stator. Generator sinkron memiliki dua tipe rotor, yaitu : 1.) Rotor berbentuk kutub sepatu (salient pole) 2.) Rotor berbentuk kutub dengan celah udara sama rata (cylindrical)

6 Perbedaan utama antara keduanya adalah salient pole rotor digerakkan oleh turbin hidrolik kecepatan rendah sedangkan cylindrical rotor digerakkan oleh turbin uap berkecepatan tinggi. Sebagian besar turbin hidraulic harus berputar pada kecepatan rendah ( rpm). Salient pole rotor dihubungkan langsung ke roda kincir dan frekuensi yang diinginkan 60 Hz. Jumlah kutub yang dibutuhkan di rotor jenis ini sangat banyak. Sehingga dibutuhkan diameter yang besar untuk memuat kutub yang sangat banyak tersebut. Cylindrical rotor lebih kecil dan efisien daripada turbin kecepatan rendah. Untuk 2 kutub, frekuensi 60 Hz, putarannya 3600 rpm. Untuk 4 kutub, putarannya 1800 rpm. Bentuk rotor yang terdapat pada generator sinkron dapat dilihat pada gambar 2.5 berikut. (a) Rotor kutub menonjol (b) Rotor Silinder Gambar 2.5 Bentuk Rotor 2.3 Prinsip Kerja Generator Sinkron Jika kumparan rotor yang berfungsi sebagai pembangkit kumparan medan magnit yang terletak di antara kutub magnit utara dan selatan diputar oleh prime mover, maka pada kumparan rotor akan timbul medan magnit atau fluks yang bersifat bolak balik atau fluks putar. Fluks putar ini akan memotong motong kumparan stator sehingga pada ujung ujung kumparan stator timbul gaya gerak

7 listrik karena pengaruh induksi dari fluks putar tersebut. Gaya gerak listrik (ggl) yang timbul pada kumparan stator juga bersifat bolak balik, atau berputar dengan kecepatan sinkron terhadap kecepatan putar rotor. Frekuensi elektris yang dihasilkan generator sinkron adalah sinkron dengan kecepatan putar generator. Rotor generator sinkron terdiri atas rangkaian elektromagnet dengan suplai arus DC. Medan magnet rotor bergerak pada arah putaran rotor. Hubungan antara kecepatan putar medan magnet pada mesin dengan frekuensi elektrik pada stator adalah: Dimana: f n = frekuensi listrik (Hz) = kecepatan putar rotor (rpm) p = jumlah kutub magnet P = = jumlah pasang kutub Oleh karena rotor berputar pada kecepatan yang sama dengan medan magnet, persamaan diatas juga menunjukkan hubungan antara kecepatan putar rotor dengan frekuensi listrik yang dihasilkan. Agar daya listrik dibangkitkan tetap pada frekuensi 50Hz atau 60 Hz, maka generator harus berputar pada kecepatan tetap dengan jumlah kutub mesin yang telah ditentukan. Sebagai contoh untuk membangkitkan 60 Hz pada mesin dua kutub, rotor arus berputar

8 dengan kecepatan 3600 rpm. Untuk membangkitkan daya 50 Hz pada mesin empat kutub, rotor harus berputar pada 1500 rpm Generator Sinkron Tanpa Beban Dengan memutar generator sinkron diputar pada kecepatan sinkron dan rotor diberi arus medan (I f ), maka tegangan (E 0 ) akan terinduksi pada kumparan jangkar stator. Bentuk hubungannya diperlihatkan pada persamaan berikut. E 0 = c.n.φ. (2.3) Dimana : c = konstanta mesin n = putaran sinkron Φ = fluks yang dihasilkan oleh I f Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, karenanya tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (I f ). Apabila arus medan (I f ) diubah-ubah harganya, akan diperoleh harga E 0 seperti yang terlihat pada kurva sebagai berikut. Bila besarnya arus medan dinaikkan, maka tegangan output juga akan naik sampai titik saturasi (jenuh) seperti diperlihatkan pada gambar 2.6 berikut.

9 (a) (b) Gambar 2.6 (a) Kurva Karakteristik Generator Sinkron Tanpa Beban (b) Rangkaian Ekivalen Generator Sinkron Tanpa Beban Persamaan umum generator adalah : E 0 = V Φ + I a (R a + jx s ).. (2.4) Generator Sinkron Berbeban Bila generator diberi beban yang berubah ubah maka besarnya tegangan terminal Vt akan berubah ubah pula. Hal ini disebabkan adanya : Jatuh tegangan karena resistansi jangkar (R a ) Jatuh tegangan karena reaktansi bocor jangkar (X L ) Jatuh tegangan karena reaksi Jangkar Gambar rangkaian dan karakteristik generator sinkron berbeban diperlihatkan pada gambar 2.7 berikut ini.

10 Gambar 2.7 Rangkaian Generator Sinkron Berbeban Persamaan tegangan pada generator berbeban adalah: E a = V Φ + I a R a + j I a X s X s = X L + X a.. (2.5).. (2.6) Dimana: E a V Φ R a X s X L X a = tegangan induksi pada jangkar per phasa (Volt) = tegangan terminal output per phasa (Volt) = resistansi jangkar per phasa (ohm) = reaktansi sinkron per phasa (ohm) = reaktansi bocor per phasa (ohm) = reaktansi reaksi jangkar per phasa (ohm) a. Resistansi Jangkar

11 Resistansi jangkar per phasa R a yang dialiri oleh arus jangkar I a menyebabkan terjadinya tegangan jatuh per phasa I a R a yang sefasa dengan arus jangkar I a. Akan tetapi, pada praktiknya jatuh tegangan ini diabaikan karena sangat kecil. b. Reaktansi Bocor Jangkar Saat arus mengalir melalui penghantar jangkar, sebagian fluks yang terjadi tidak memotong air-gap, melainkan mengambil jalur yang lain dan menghubungkan sisi sisi kumparan. Fluks fluks tersebut dinamakan fluks bocor (leakage fluxes). Fluks bocor tersebut bergerak dengan arus jangkar dan memberikan induktansi diri (self-inductance) belitan yang disebut dengan reaktansi bocor jangkar (X L ). Oleh karena itu, fluks bocor ini akan menimbulkan jatuh tegangan akibat reaktansi bocor (X L ) yang sama dengan I a X L. Dimana, jatuh tegangan ini juga dapat mengurangi tegangan terminal (V Φ ). Jadi, akan diperoleh persamaan : E = V Φ + I a (R a + jx L ).... (2.7) V Φ = E I a (R a + jx L ).... (2.8) Gambar 2.8 berikut akan memperlihatkan diagram phasor dari pengaruh reaktansi bocor jangkar (X L ) terhadap tegangan terminal (V Φ ). Gambar 2.8 Diagram Phasor Pengaruh X L terhadap V Φ (beban induktif) c. Reaksi Jangkar

12 Seperti pada generator dc, reaksi jangkar adalah pengaruh dari fluksi jangkar pada fluksi medan utama. Dalam kasus alternator, faktor daya dari beban memiliki pengaruh yang cukup besar terhadap reaksi jangkar. Gambar 2.9 berikut akan memperlihatkan model reaksi jangkar pada generator sinkron. Gambar 2.9 Model Reaksi Jangkar Generator Sinkron Dimana :

13 Gambar (a) menunjukkan suatu medan magnet yang berputar menghasilkan tegangan induksi E A tidak timbul arus jangkar karena tidak ada beban yang terhubung dan E A = V Φ Gambar (b) memperlihatkan ketika beban induktif (lagging) dihubungkan pada terminal jangkar, arus jangkar (I A ) mengalir. Gambar (c) Arus jangkar menghasilkan medan magnet B s yang kemudian menghasilkan tegangan E stat pada belitan stator. Gambar (d) Medan magnet stator B s menambah B R menjadi B net. Tegangan E stat menambah E A menghasilkan V Φ pada terminal outputnya. Ketika generator dihubungkan dengan beban lagging, arus puncak akan terjadi pada sudut di bawah tegangan puncak. Pengaruh ini ditunjukkan pada gambar (b). Arus yang mengalir dalam belitan stator menghasilkan medan magnet B s dan arahnya ditentukan dengan menggunakan aturan tangan kanan seperit ditunjukkan pada gambar (c). Medan magnet stator B s menghasilkan tegangan di stator E stat. Dengan hadirnya dua jenis tegangan tersebut, total tegangan dalam satu phasa adalah penjumlahan dari tegangan induksi E A dan tegangan reaksi jangkar E stat. Dalam persamaan : V Φ = E A + E stat... (2.9) Total medan magnet B net adalah jumlah dari medan magnet rotor dan medan magnet stator, yaitu : B net = B R + B s. (2.10) Karena sudut sudut E A dan B R adalah sama dan sudut E stat dan B s juga sama, penjumlahan medan medan magnet B net akan sefasa dengan V Φ (gambar (d)). Tegangan reaksi jangkar dapat diperoleh dengan persamaan :

14 Sehingga tegangan terminal : E stat = - jxi A... (2.11) V Φ = E A - jxi A.. (2.12) Terdapat 3 kasus umum dalam reaksi jangkar antara lain : (i) Ketika faktor daya beban unity. Dimana, reaksi jangkar ini mengakibatkan distorsi. (ii) Ketika faktor daya beban zero lagging yang mengakibatkan pelemahan (demagnetising) karena fluksi utama berkurang sehingga tegangan induksi berkurang. (iii) Ketika faktor daya beban zero leading. Pada kasus ini, fluksi utama mengalami penambahan (magnetizing) sehingga tegangan induksi juga meningkat. Berikut ini akan diperlihatkan gambar diagram phasor pada generator sinkron saat faktor daya tertinggal (lagging), mendahului (leading) dan satu (unity).

15 (a) Faktor Daya Lagging (tertinggal) (c) Faktor Daya Mendahului (Leading) (d) Faktor Daya Unity Gambar 2.10 Diagram Phasor Generator Sinkron saat lagging, leading dan unity Dimana : E 0 = Tegangan tanpa beban (no-load) yang merupakan nilai tegangan terinduksi maksimum pada jangkar ketika tidak ada tahanan jangkar (R a ), reaktansi bocor (X L ) dan reaksi jangkar.

16 E = Tegangan beban terinduksi yang merupakan tegangan terinduksi setelah terdapat reaksi jangkar. Secara vektor, E lebih kecil daripada E 0 sebesar I a X a. V Φ = Tegangan terminal yang secara vektor lebih kecil daripada E 0 sebesar I a Z s atau lebih kecil daripada E sebesar I a Z. Dimana, Z =..... (2.13) Z s =.... (2.14) I a Ө = Arus jangkar per phasa = sudut faktor daya beban Maka, dari gambar dapat diperoleh : (i) Untuk faktor daya lagging : E 0 = =. (2.15) (ii) Untuk faktor daya leading : E 0 = =. (2.16) (ii) Untuk faktor daya unity : E 0 =

17 =. (2.17) 2.4 Karakteristik dan Penentuan Parameter parameter Generator Sinkron Karakteristik dan Penentuan Parameter Tanpa Beban : E 0 = E 0 (I f ) Karakteristik tanpa beban (beban nol) pada generator sinkron dapat ditentukan dengan melakukan test beban nol (open circuit) yang memiliki langkah langkah sebagai berikut : a.) Generator diputar pada kecepatan nominal (n) b.) Tidak ada beban yang terhubung pada terminal c.) Arus medan (I f ) dinaikkan dari nol hingga maksimum secara bertahap d.) Catat harga tegangan terminal (V t ) pada setiap harga arus medan (I f ) Gambar 2.11 Rangkaian Test Tanpa Beban Dari gambar dapat diperoleh persamaan umum generator : E 0 = V Φ + I a (R a + jx s ) Pada hubungan generator terbuka (beban nol), Ia = 0. Maka,

18 E 0 = V Φ = cnφ. (2.18) Karena tidak ada beban yang terpasang, maka Φ yang dihasilkan hanya Φ f. Sehingga : E 0 = cnφ f. (2.19) E 0 = cni f.. (2.20) Nilai cn adalah konstan sehingga persamaan menjadi : E 0 = k 1.I f.. (2.21) Berikut diperlihatkan gambar grafik hubungan V Φ vs I f yang disebut juga dengan karakteristik hubung terbuka dari generator atau OCC (Open - Circuit Characteristic). Gambar 2.12 Karakteristik Hubung Terbuka (OCC) Dari gambar 2.12 di atas terlihat bahwa pada awalnya kurva berbentuk hampir benar benar linear. Hingga pada harga harga arus medan yang tinggi, bentuk kurva mulai terlihat saturasi. Inti besi yang tidak jenuh dalam bingkai mesin sinkron memiliki reluktansi beberapa ratus kali lebih rendah daripada reluktansi air gap. Sehingga pertama tama hampir seluruh MMF melewati celah udara dan

19 peningkatan fluksi yang terjadi linear. Ketika inti besi mengalami saturasi, reluktansi besi meningkat secara drastis dan fluksi meningkat lebih lambat dengan peningkatan nilai MMF. Bentuk linear dari grafik OCC disebut karakteristik air gap line Karakteristik dan Penentuan Parameter Generator Sinkron Hubung Singkat : I sc = I sc (I f ) Untuk menentukan karakteristik dan parameter generator sinkron yang dihubung singkat terdapat beberapa langkah yang harus dilakukan antara lain : a.) Generator diputar pada kecepatan nominal b.) Atur arus medan (I f ) pada nol c.) Hubung singkat terminal d.) Ukur arus armatur (I a ) pada setiap peningkatan arus medan (I f ) Dimana, rangkaian test hubung singkat pada generator sinkron akan diperlihatkan pada gambar 2.13 berikut. Gambar 2.13 Rangkaian Test Hubung Singkat Dari gambar, persamaan umum generator sinkron dihubung singkat adalah : E = V Φ + I a (R a + jx s )

20 Pada saat generator sinkron dihubung singkat, V Φ = 0 dan I a = I sc. Maka, E = I sc (R a + jx s ). (2.22) cnφ = I sc (R a + jx s ). (2.23) Karena cn dan (R a + jx s ) bernilai konstan, maka : cn = k 1. (2.24) (R a + jx s ) = k 2. (2.25) Sehingga persamaan menjadi : k 1.I f = I sc. k 2. (2.26) I sc =. (2.27) Pada karakteristik generator hubung singkat bentuk kurva adalah linear. Hal ini disebabkan oleh medan magnet yang terjadi sangat kecil sehingga inti besi tidak mengalami saturasi. Gambar 2.14 berikut ini akan memperlihatkan karakteristik hubung singkat pada generator sinkron. Gambar 2.14 Karakteristik Hubung Singkat (SCC) Ketika generator dihubung singkat, arus armatur : (I a ) = I sc =. (2.28)

21 Harga mutlaknya adalah :. (2.29) Gambar 2.15 berikut menunjukkan diagram phasor dan medan magnet yang dihasilkan pada generator yang dihubung singkat. (i) Diagram Phasor (ii) Medan Magnet Gambar 2.15 Diagram Phasor dan Medan Magnet saat Hubung Singkat Karena B stat hampir meniadakan B R, medan magnet B net sangat kecil. Oleh karena itu, mesin tidak saturasi dan SCC berbentuk linear. Dari kedua test tersebut di atas diperoleh : - E a dari test beban nol (Open Circuit) - I a dari test hubung singkat (Short Circuit) Diperoleh impedansi sinkron : Z s = =. (2.30) Karena R a << X S, maka impedansi sinkron menjadi : Z S X S Karakteristik dan Penentuan Parameter Generator Sinkron Berbeban : V = V(I f )

22 Beberapa langkah untuk menentukan parameter generator sinkron berbeban antara lain sebagai berikut : a.) Generator diputar pada kecepatan nominal (n) b.) Beban (Z L ) terpasang pada terminal generator sinkron c.) Arus medan (I f ) dinaikkan dari nol hingga maksimum secara bertahap d.) Catat tegangan terminal (V t ) pada setiap peningkatan arus medan (I f ) Gambar 2.16 Rangkaian Generator Sinkron Berbeban Dari gambar 2.16 diperoleh persamaan umum generator sinkron berbeban : E a = V Φ + I a (R a + jx s ) V Φ = E a - I a (R a + jx s ). (2.31) Pada generator berbeban, I a = I L bernilai konstan karena beban (Z L ) tetap.

23 Gambar 2.17 Karakteristik Generator Sinkron Berbeban Penentuan Tahanan Stator Generator Sinkron Tahanan stator generator sinkron dapat ditentukan dengan melakukan pengukuran secara langsung. Akan tetapi, harga Ra naik pada keadaan kerja karena pengaruh skin effect. Jadi, biasanya Ra yang diukur dikalikan faktor 1,6. Rangkaian pengukuran tahanan stator generator sinkron dapat dilihat dari gambar 2.18 berikut. Gambar 2.18 Rangkaian Pengukuran Tahanan DC

24 2.4.5 Karakteristik Luar Generator Sinkron : V Φ = f (I L ) Karakteristik ini akan memperlihatkan pengaruh dari perubahan arus beban (I L ) terhadap tegangan terminal generator sinkron (V Φ ). Dalam penentuan karakteristik luar generator sinkron, beberapa hal yang perlu diperhatikan adalah sebagai berikut : a.) Kecepatan putar generator sinkron (n) tetap b.) Arus medan (I f ) konstan c.) Faktor daya (cosφ) tetap Dari gambar rangkaian generator sinkron berbeban yang telah diperlihatkan pada gambar 2.16 sebelumnya, diperoleh persamaan : E a = V Φ + I a (R a + jx s ) Sehingga persamaan tegangan terminal V Φ generator sinkron dalam keadaan berbeban : V Φ = E a - I a (R a + jx s ). (2.32) Dalam hal ini, arus yang mengalir pada stator sama dengan arus yang mengalir pada beban atau: I a = I L Maka : V Φ = E a I L (R a + jx s ). (2.33) V Φ = cnφ I L Z s. (2.34) V Φ = cni f I L Z s. (2.35) Karena c, n dan I f konstan : V Φ = k 1 I L Z s. (2.36)

25 Nilai Z s tetap, sehingga : V Φ = k 1 I L k 2. (2.37) Jika arus beban (I L ) = 0 (beban nol), maka : V Φ = k 1 Jika tegangan terminal (V Φ ) = 0 (hubung singkat), maka : I f =. (2.38) Berikut ini merupakan gambar karakteristik luar generator sinkron dengan beban induktif pada berbagai harga cosφ. Gambar 2.19 Karakteristik Luar Generator Beban Induktif Karakteristik Pengaturan Generator Sinkron : I f = f (I L ) Karakteristik ini menunjukkan hubungan antara perubahan arus beban (I L ) dengan terhadap arus medan (I f ) generator sinkron. Dimana, dalam karakteristik ini perlu diperhatikan hal hal berikut : a.) Tegangan terminal V Φ dijaga konstan b.) putaran tetap c.) Faktor daya (cosφ) tetap

26 Persamaan untuk generator berbeban (gambar 2.16) : Pada generator berbeban : E a = V Φ + I a (R a + jx s ) Sehingga : I L = I a E a = V Φ + I L (R a + jx s ). (2.39) cnφ = V Φ + I L Z s cni f = V Φ + I L Z s I f =. (2.40) Karena nilai c, n, V Φ, dan Z s konstan, maka : cn = k 1 V Φ = k 2 Z s = k 3 Sehingga diperoleh : I f =. (2.41) Jika,

27 Maka, I f =. (2.42) Gambar 2.20 berikut menunjukkan karakteristik pengaturan generator sinkron untuk faktor daya cosφ induktif (lagging), kapasitif (leading) dan unity. Gambar 2.20 Karakteristik Pengaturan Generator Karakteristik Faktor Daya Nol dan Segitiga Potier Karakteristik ZPFC dari sebuah alternator adalah penggambaran hubungan antara tegangan terminal jangkar dan arus medannya untuk nilai nilai arus jangkar dan kecepatan yang konstan. ZPFC dalam hubungannya dengan OCC adalah sangat penting untuk menentukan reaktansi bocor jangkar X L dan arus reaksi jangkar F a. Untuk sebuah alternator, ZPFC ditentukan sebagai berikut : a.) Mesin sinkron diputar pada kecepatan nominal oleh prime mover b.) Beban induktif murni dihubungkan pada terminal jangkar dan arus medan dinaikkan sampai arus jangkar beban penuh mengalir.

28 c.) Beban divariasikan secara bertahap dan arus medan dalam setiap tahapnya diatur untuk menjaga arus jangkar beban penuh. Gambar dari tegangan terminal jangkar dan arus medan yang dicatat pada setiap tahapan memberikan karakteristik faktor daya nol (ZPFC) pada arus jangkar beban penuh. Gambar 2.21 (a) Diagram Phasor alternator rotor silinder pada ZPF overexcited (b) OCC, ZPFC dan segitiga potier Dari gambar dapat dilihat bahwa tegangan terminal V t dan tegangan celah udara (air-gap) E r hampir sefasa dan dapat diperlihatkan lewat persamaan aljabar : V t = E r I a X L. (2.43) Total arus rotor (F r ) dan arus medan (F f ) juga hampir sefasa dan dihubungkan melalui persamaan sederhana :

29 F f = F r + F a. (2.44) Anggap bahwa OCC memberikan hubungan yang tepat antara tegangan air-gap Er dan total mmf F r dalam keadaan berbeban. Juga anggap bahwa reaktansi bocor jangkar adalah konstan. Kurva OCC dan ZPFC diperlihatkan dalam gambar 2.22(b). Untuk eksitasi medan F f atau arus medan I f adalah OP dan tegangan hubungan terbuka adalah PK. Dengan eksitasi medan dan kecepatan yang dijaga konstan, terminal jangkar terhubung dengan beban induktif murni yang dialiri oleh arus jangkar beban penuh. Suatu pengujian dari gambar (a) dan (b) menunjukkan bahwa dalam keadaan berbeban faktor daya nol, total eksitasi F r adalah OF yang bernilai lebih kecil daripada OP (F f ) sebesar F a. Sesuai dengan resultan OF, tegangan air-gap E r adalah FC dan jika CB = I a X L diambil dari E r = FC, tegangan terminal FB = PA = V t dapat ditentukan. Karena ZPFC adalah gambar hubungan antara tegangan terminal dan arus medan I f atau F f yang tidak berubah dari nilai tanpa bebannya OP, titik A terdapat pada ZPFC. Segitiga ABC disebut segitiga potier. Dimana, CB = I a X L dan BA = F a. Dari segitiga potier, reaktansi bocor jangkar X L dan arus jangkar dapat ditentukan. Jika tahanan jangkar dianggap nol dan arus jangkar dijaga konstan, maka ukuran segitiga potier konstan dan dapat diletakkan paralel terhadap dirinya sendiri dnegan sudut C tetap pada OCC dan sudut A pada ZPFC. Oleh karena itu, ZPFC memiliki bentuk yang sama dengan OCC dan diletakkan secara vertikal

30 sebesar I a X L dan secara horizontal ke kanan sebesar reaksi jangkar F a atau arus medan I f.

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

BAB II GENERATOR SINKRON TIGA PHASA. berupa putaran menjadi energi listrik bolak-balik (AC).

BAB II GENERATOR SINKRON TIGA PHASA. berupa putaran menjadi energi listrik bolak-balik (AC). BAB II GENERATOR SINKRON TIGA PHASA 2.1 Umum Hampir semua energi listrik dibangkitkan dengan menggunakan generator sinkron. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

PRINSIP KERJA GENERATOR SINKRON. Abstrak :

PRINSIP KERJA GENERATOR SINKRON. Abstrak : PRINSIP KERJA GENERATOR SINKRON * Wahyu Sunarlik Abstrak : Generator adalah suatu alat yang dapat mengubah tenaga mekanik menjadi energi listrik. Tenaga mekanik bisa berasal dari panas, air, uap, dll.

Lebih terperinci

BAB II GENERATOR SINKRON 3 FASA

BAB II GENERATOR SINKRON 3 FASA BAB II GENERATOR SINKRON 3 FASA 2.1 Umum Genetaror sinkron merupakan pembangkit listrik yang banyak digunakan. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat pembangkit listrik.

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Perubahan

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa ANALISA PERBANDINGAN METODE IMPEDANSI SINKRON, AMPER LILIT DAN SEGITIGA POTIER DALAM MENENTUKAN REGULASI TEGANGAN GENERATOR SINKRON DENGAN PEMBEBANAN RESISTIF, INDUKTIF DAN KAPASITIF Hanri Adi Martua Hasibuan,

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010 SYNCHRONOUS GENERATOR Teknik Elektro Universitas Indonesia Depok 2010 1 Kelompok 7: Ainur Rofiq (0706199022) Rudy Triandi (0706199874) Reza Perkasa Alamsyah (0806366296) Riza Tamridho (0806366320) 2 TUJUAN

Lebih terperinci

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Sinkron Tegangan output dari generator sinkron adalah tegangan bolak balik, karena itu generator sinkron disebut juga generator AC. Perbedaan prinsip antara generator

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Generator adalah salah satu jenis mesin listrik yang digunakan sebagai alat pembangkit energi listrik dengan cara menkonversikan energi mekanik menjadi energi listrik.

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

ANALISIS PERBANDINGAN KARAKTERISTIK PENGATURAN TEGANGAN GENERATOR SINKRON TANPA SIKAT DENGAN METODE IMPEDANSI SINKRON DAN AMPERE LILIT

ANALISIS PERBANDINGAN KARAKTERISTIK PENGATURAN TEGANGAN GENERATOR SINKRON TANPA SIKAT DENGAN METODE IMPEDANSI SINKRON DAN AMPERE LILIT ANALISIS PERBANDINGAN KARAKTERISTIK PENGATURAN TEGANGAN GENERATOR SINKRON TANPA SIKAT DENGAN METODE IMPEDANSI SINKRON DAN AMPERE LILIT Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Mesin sinkron merupakan mesin listrik yang kecepatan putar rotornya (N R ) sama (sinkron) dengan kecepatan medan putar stator (N S ), dimana: (2.1) Dimana: N S = Kecepatan

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator adalah mesin yang mengelola energi mekanik menjadi energi listrik. Prinsip kerja generator adalah rotor generator yang digerakan oleh turbin sehingga menimbulkan

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

Mesin AC. Dian Retno Sawitri

Mesin AC. Dian Retno Sawitri Mesin AC Dian Retno Sawitri Pendahuluan Mesin AC terdiri dari Motor AC dan Generator AC Ada 2 tipe mesin AC yaitu Mesin Sinkron arus medan magnet disuplai oleh sumber daya DC yang terpisah Mesin Induksi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan 1

Modul Kuliah Dasar-Dasar Kelistrikan 1 TOPIK 14 MESIN SINKRON PRINSIP KERJA MESIN SINKRON MESIN sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor. Kumparan jangkarnya berbentuk sarna dengan mesin induksi. sedangkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Rujukan penelitian yang pernah dilakukan untuk mendukung penulisan tugas akhir ini antara lain sebagai berikut : a. Berdasarkan hasil penelitian yang telah

Lebih terperinci

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung BAB II DASAR TEORI 2.1 Energi Listrik Energi adalah kemampuan untuk melakukan kerja. Salah satu bentuk energi adalah energi listrik. Energi listrik adalah energi yang berkaitan dengan akumulasi arus elektron,

Lebih terperinci

Mesin Arus Bolak Balik

Mesin Arus Bolak Balik Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id ACARA PERKULIAHAN DAN KOMPETENSI

Lebih terperinci

KONDISI TRANSIENT 61

KONDISI TRANSIENT 61 KONDISI TRANSIENT 61 NAMEPLATE GENERATOR GENERATOR SET SALES MODEL RATING 1000 KVA 800 KW 0.8 COSΦ 50 HZ CONTINUOUS XXX PRIME STANDBY STANDBY GENERATOR DATA 3 PHASE 12 WIRE XXX WYE DELTA CONNECTION XXX

Lebih terperinci

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

PERANCANGAN DAN PEMBUATAN GENERATOR FLUKS RADIAL SATU FASA MENGGUNAKAN LILITAN KAWAT SEPEDA MOTOR DENGAN VARIASI DIAMETER KAWAT

PERANCANGAN DAN PEMBUATAN GENERATOR FLUKS RADIAL SATU FASA MENGGUNAKAN LILITAN KAWAT SEPEDA MOTOR DENGAN VARIASI DIAMETER KAWAT SKRIPSI PERANCANGAN DAN PEMBUATAN GENERATOR FLUKS RADIAL SATU FASA MENGGUNAKAN LILITAN KAWAT SEPEDA MOTOR DENGAN VARIASI DIAMETER KAWAT Diajukan untuk memenuhi persyaratan dalam menyelesaikan Pendidikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perubahan beban terhadap karakteristik generator sinkron 3 fasa PLTG Pauh

BAB II TINJAUAN PUSTAKA. perubahan beban terhadap karakteristik generator sinkron 3 fasa PLTG Pauh BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Rujukan penelitian yang pernah dilakukan untuk mendukung penulisan skripsi ini antara lain: Sepannur Bandri (2013), melakukan penelitian mengenai analisa pengaruh

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah tenaga listrik arus searah ( listrik DC ) menjadi tenaga gerak atau tenaga mekanik, dimana tenaga gerak

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY)

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY) ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY) Selamat Aryadi (1), Syamsul Amien (2) Konsentrasi Teknik

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB MOTOR NDUKS SATU PHASA.1. Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran medan

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya 4 BAB II TINJAUAN PUSTAKA 2.1. Umum Generator sinkron adalah mesin pembangkit listrik yang mengubah energi mekanik sebagai input menjadi energi listrik sebagai output. Tegangan output dari generator sinkron

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Generator Sinkron Sebagian besar energi listrik yang dipergunakan oleh konsumen untuk kebutuhan sehari-hari dihasilkan oleh generator sinkron 3 fasa yang ada di pusatpusat tenaga

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor DC) adalah mesin yang merubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

BAB II GENERATOR SINKRON 3 FASA

BAB II GENERATOR SINKRON 3 FASA BAB II GENERATOR SINKRON 3 FASA 2.1 Umum Banyak energi listrik yang dibangkitkan dengan menggunakan generator sinkron. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat pembangkit

Lebih terperinci

BAB II DASAR TEORI. Generator arus bolak-balik (AC) atau disebut dengan alternator adalah

BAB II DASAR TEORI. Generator arus bolak-balik (AC) atau disebut dengan alternator adalah BAB II DAAR TEORI 2.1. Generator inkron Generator arus bolak-balik (AC) atau disebut dengan alternator adalah suatu peralatan yang berfungsi untuk mengkonversi energi mekanik (gerak) menjadi energi listrik

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Generator merupakan suatu alat yang dapat mengubah energi mekanik menjadi energi listrik melalui medium medan magnet. Bagian utama generator terdiri dari stator dan

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Dikatakan

Lebih terperinci

BAB III SISTEM EKSITASI TANPA SIKAT DAN AVR GENERATOR

BAB III SISTEM EKSITASI TANPA SIKAT DAN AVR GENERATOR 28 BAB III SISTEM EKSITASI TANPA SIKAT DAN AVR GENERATOR 3.1 Karakteristik Generator Sinkron Terdapat dua metode untuk dapat mengetahui karakteristik generator sinkron, yaitu Analisis grafis dan pengukuran

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa BAB I PENDAHULUAN 1.1 Latar Belakang Generator sinkron merupakan alat listrik yang berfungsi mengkonversikan energi mekanis berupa putaran menjadi energi listrik. Energi mekanis berupa putaran tersebut

Lebih terperinci

BAB 13 GENERATOR SINKRON

BAB 13 GENERATOR SINKRON BAB 13 GENERATOR SINKRON Daftar Isi : 13.1. Pendahuluan... 13-1 13.2. Konstruksi Mesin Sinkron... 13-2 13.3. Prinsip Kerja... 13-10 13.4. Generator Tanpa Beban... 13-12 13.5. Generator Berbeban... 13-13

Lebih terperinci

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi TEKNO, Vol : 19 Maret 2013, ISSN : 1693-8739 MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz M. Rodhi Faiz, Hafit Afandi Abstrak : Metode yang digunakan dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating BAB II TINJAUAN PUSTAKA 2.1 Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya berasal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1 TOPIK 12 MESIN ARUS SEARAH Suatu mesin listrik (generator atau motor) akan berfungsi bila memiliki: (1) kumparan medan, untuk menghasilkan medan magnet; (2) kumparan jangkar, untuk mengimbaskan ggl pada

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

BAB I PENDAHULUAN. Dengan ditemukannya Generator Sinkron atau Alternator, telah memberikan. digunakan yaitu listrik dalam rumah tangga dan industri.

BAB I PENDAHULUAN. Dengan ditemukannya Generator Sinkron atau Alternator, telah memberikan. digunakan yaitu listrik dalam rumah tangga dan industri. BAB I PENDAHULUAN 1.1. Latar Belakang Generator Sinkron merupakan mesin listrik yang mengubah energi mekanis berupa putaran menjadi energi listrik. Energi mekanis diberikan oleh penggerak mulanya. Sedangkan

Lebih terperinci

Mesin Arus Bolak Balik

Mesin Arus Bolak Balik Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Part 3 : Dasar Mesin Listrik Berputar Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

Politeknik Negeri sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri sriwijaya BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Generator Generator ialah mesin pembangkit tenaga listrik, pembangkitan diperoleh dengan menerima tenaga mekanis dan diubahnya menjadi tenaga listrik, tenaga mekanis untuk generator

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Bagian 9: Motor Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Outline Pendahuluan Konstruksi Kondisi Starting Rangkaian Ekivalen dan Diagram Fasor Rangkaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Generator adalah mesin yang mengelola energi mekanik menjadi energi listrik. Prinsip kerja generator adalah rotor generator yang digerakan oleh turbin sehingga menimbulkan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Motor arus searah (motor DC) telah ada selama lebih dari seabad. Keberadaan motor DC telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut

Lebih terperinci

BAB II PRINSIP KERJA PEMBANGKIT LISTRIK TENAGA DIESEL (PLTD)

BAB II PRINSIP KERJA PEMBANGKIT LISTRIK TENAGA DIESEL (PLTD) BAB II PRINSIP KERJA PEMBANGKIT LISTRIK TENAGA DIESEL (PLTD) II.1. Umum Pada dasarnya pembangkitan tenaga listrik AC biasanya menggunakan mesin sinkron yang bekerja sebagai generator. Beberapa kelebihan

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Dikatakan

Lebih terperinci

Disusun oleh Muh. Wiji Aryanto Nasri ( ) Ryan Rezkyandi Saputra ( ) Hardina Hasyim ( ) Jusmawati ( ) Aryo Arjasa

Disusun oleh Muh. Wiji Aryanto Nasri ( ) Ryan Rezkyandi Saputra ( ) Hardina Hasyim ( ) Jusmawati ( ) Aryo Arjasa Pengaruh Perubahan Beban Terhadap Frekuensi dan Tegangan Disusun oleh Muh. Wiji Aryanto Nasri (421 13 019) Ryan Rezkyandi Saputra (421 13 018) Hardina Hasyim (421 13 017) Jusmawati (421 13 021) Aryo Arjasa

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

PENGENDALIAN TEGANGAN TERMINAL GENERATOR SINKRON TERHADAP PERUBAHAN ARUS DAN FAKTOR DAYA BEBAN

PENGENDALIAN TEGANGAN TERMINAL GENERATOR SINKRON TERHADAP PERUBAHAN ARUS DAN FAKTOR DAYA BEBAN PENGENDALIAN TEGANGAN TERMINAL GENERATOR SINKRON TERHADAP PERUBAHAN ARUS DAN FAKTOR DAYA BEBAN ( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT-USU ) O L E H NAMA : ELMAN FAERI LASE NIM : 070422007

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci