JURNAL TEKNIK ELEKTRO

Ukuran: px
Mulai penontonan dengan halaman:

Download "JURNAL TEKNIK ELEKTRO"

Transkripsi

1 JURNAL TEKNIK ELEKTRO Vol. 3, No. 1 Juni 2005 ISSN : SUSUNAN REDAKSI Penanggung Jawab Pemimpin Redaksi Redaksi Ahli Redaksi Pelaksana Sirkulasi/Publikasi Bendahara Administrasi Alamat Redaksi Frekuensi terbitan : Ketua Jurusan Teknik Elektro FT. USU : Prof. Dr. Ir. Usman S. Baafai : 1. Ir. Mustafrin Lubis 2. Ir. R.Sugih Arto Yusuf 3. Ir. Bonggas L.Tobing 4. Ir. Djendanari Sembiring 5. Ir. Risnidar Chan, MT 6. Ir. T.Ahri Bahriun, M.Sc 7. Ir. Syafruddin HS, MS 8. Ir. M.Zulfin, MT : 1. Ir. Zulkarnaen Pane 2. Ir. Syahrawardi 3. Ir.Surya Hardi, M.Sc 4. Ir. Arman Sani, MT 5. Soeharwinto, ST, MT 6. Rejeki Simanjorang, ST, MT : Ir. Surya Tarmizi Kasim : Ir. Satria Ginting : Marthin Luther Tarigan A.Md : Fakultas Teknik USU Jl. Almamater Kampus USU Medan Telp. / Fax : (061) : 2 ( dua ) kali setahun

2 JURNAL TEKNIK ELEKTRO TEKNIK ENERGI - TEKNIK TELEKOMUNIKASI - TEKNIK KOMPUTER VOl. 3, NO. 1 JUNI 2005 ISSN : DAFTAR ISI Salam Redaksi... i Sistim Akuisisi Data F. Rizal batubara Implementasi Rangkaian Elektronika Menggunakan Teknologi Surface Mount Suherman Implementasi Sistem Step by Step Switching Menggunakan Komponen Terintegrasi Suherman Rele Tegangan Elektronik T.Ahri Bahriun Kajian Pemanfaatan Sistem Teknologi Pembangkit Tenaga Gasifikasi Batubara Tulus Burhanuddin Sitorus Pengukuran Tahanan Grid Pembumian pada Model Lapisan Tanah yang tidak Unifom Zulkarnaen Pane Pedoman Penulisan Naskah Jurnal ENSIKOM JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA

3 SALAM REDAKSI Kami memanjatkan Puji dan Syukur kepada Tuhan Ynag Maha Esa karena atas ridho nya Jurnal Teknik Elektro ENSIKOM, Volume : 1, No. 3 Juni 2005 telah dapat diterbitkan dan sampai kehadapan para pembaca yang budiman. Jurnal ENSIKOM adalah suatu jurnal ilmiah yang berisi hasil penelitian, kajian pustaka maupun rekayasa peralatan yang digunakan oleh laboratorium serta informasi yang berkaitan dengan Energi, Sistem Telekomunikasi dan Komputer. Penerbitan Jurnal ENSIKOM ini diterbitkan setiap 6 (enam) bulan sekali, untuk itu kami harapkan partisipasi dari para ilmuan maupun praktisi untuk mengisi tulisan pada Jurnal ini demi kemajuan ilmu Teknik Elektro. Saran dan kritik yang membangun sangat kami harapkan demi keberhasilan penerbitan Jurnal ini pada edisi berikutnya. Dalam kesempatan ini pula kami seluruh Redaksi Jurnal Teknik Elektro ENSIKOM mengucapkan Selamat Ulang Tahun ke- 40 Departemen Teknik Elektro FT - USU ( ). Semoga dengan bertambahnya usia akan menjadikan departemen teknik elektro ft-usu menjadi lebih berkembang dimasa mendatang dalam menunjang kemajuan teknologi untuk kesejahteraan bangsa dan negara Republik Indonesia. Atas perhatian dan partisipasinya dengan segala kerendahan hati, kami ucapkan banyak terima kasih. Wassalam REDAKSI i

4

5

6

7 SISTIM AKUISISI DATA F. Rizal batubara 1) 1) Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik USU Abstrak Sistem akuisisi data menkonversikan besaran fisis sumber data ke bentuk sinyal digital dan diolah oleh suatu komputer. Pengolahan dan pengontrolan proses oleh komputer memungkinkan penerapan akuisisi data dengan software. Konfigurasi sistem akuisisi data dapat di lihat dari banyaknya tranduser atau kanal yang digunakan, kecepatan pemrosesan data, dan letak masing-masing komponen pada sistem akuisisi data. Kata kunci: Akuisisi data, konverter A/D Abstract Data Acquisition System converts physical number of data sources to digital signal form and processed by computer. Processing and Controlling of process by computer allow the application of data acquisition with software. Configuration of data acquisition system can be known from number of tranducer or channel which are used, data processing speed, and position of each component on data acquisition system. Keywords: Data Acquisition, A/D converter Pendahuluan Sistim akuisisi data dapat didefinisikan sebagai suatu sistem yang berfungsi untuk mengambil, mengumpulkan dan menyiapkan data, hingga memprosesnya untuk menghasilkan data yang dikehendaki. Jenis serta metode yang di pilih pada umumnya bertujuan untuk menyederhanakan setiap langkah yang dilaksanakan pada keseluruhan proses. Suatu sistem akuisisi data pada umumnya dibentuk sedemikian rupa sehingga sistem tersebut berfungsi untuk mengambil, mengumpulkan dan menyimpan data dalam bentuk yang siap untuk diproses lebih lanjut. gambar 1 menunjukan diagram blok sistem akuisisi data. data trand pengkondisian sinyal mux pengiriman dan penyimpanan pengolahan data data trand pengkondisian sinyal display Gambar 1. Diagram blok sistem akuisisi data. Sistim Akuisisi Data (F. Rizal Batubara) 1

8 memory trands A/D komputer Display mass storage Gambar 2. Komputer digital untuk kebutuhan akuisisi data Perkembangan Sistem Akuisisi Data Pada mulanya proses pengolahan data lebih banyak dilakukan secara manual oleh manusia, sehingga pada saat itu perubahan besaran fisis dibuat ke besaran yang langsung bisa diamati panca indra manusia. Selanjutnya dengan kemampuan teknologi pada bidang elektrikal besaran fisis yang diukur sebagai data dikonversikan ke bentuk sinyal listrik, data kemudian ditampilkan ke dalam bentuk simpangan jarum, pendaran cahaya pada layar monitor, rekorder xy dan lain-lain. Sistem akuisisi data berkembang pesat sejalan dengan kemajuan dibidang teknologi digital dan komputer. Kini, akuisisi data menkonversikan besaran fisis sumber data ke bentuk sinyal digital dan diolah oleh suatu komputer. Pengolahan dan pengontrolan proses oleh komputer memungkinkan penerapan akuisisi data dengan software. Software memberikan harapan proses akuisisi data bisa divariasi dengan mudah sesuai kebutuhan. Gambar 2 menunjukan proses akuisisii data menggunakan komputer. trands filter S/H A/D Komputer display A/D Gambar.3.Sistem akuisisi data kanal tunggal Fungsi masing-masing blok dalam sistem adalah sebagai berikut: Tranduser : berfungsi untuk merubah besaran fisis yang diukur kedalam bentuk sinyal listrik. Amp : berfungsi untuk memperbesar amplitudo dari sinyal yang dihasilkan transduser. LPF : berfungsi untuk membatasi lebar band frekuensi sinyal listrik dari data yang diukur. S/H : berfungsi untuk menjaga amplitudo sinyal analog tetap konstan selama waktu konversi analog ke digital. A/D : berfungsi untuk merubah besaran analog kedalam bentuk representasi numerik. D/A : berfungsi untuk merubah besaran numerik kedalam sinyal analog. Komputer : berfungsi untuk mengolah data dan mengontrol proses. Pada konfigurasi kanal tunggal, komputer berfungsi sebagai pemroses data dan juga pengontrol penguatan sinyal. 2 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (1-4)

9 trands Filter S/H A/D Sistem MUX Digital Komputer trands Filter S/H A/D Gambar 4. Sistem Kanal Banyak Dengan Cara Ketiga Kofigurasi Sistem Akuisisi Data Suatu konfigurasi sistem akuisisi data sangat tergantung pada jenis dan jumlah tranduser serta teknik pengolahan yang akan digunakan. Konfigurasi ini dapat di lihat dari banyaknya tranduser atau kanal yang digunakan, kecepatan pemrosesan data dan letak masing-masing komponen pada sistem akuisisi data. Sistem kanal tunggal. Sistem kanal tunggal disebut juga sistem akuisisi data sederhana, ditunjukkan pada gambar 3. Sistem Berkecepatan Tinggi Sistem akuisisi data yang menggunakan komputer digital sebagai pengolah data kecepatannya ditentukan oleh proses pengubahan sinyal analog ke digital. Untuk mempercepat akuisisi data biasanya digunakan suatu konverter analog ke digital yang berkecepatan tinggi yang disebut dengan FLASH A to D. Bila kecepatan akuisisi masih ingin dipercepat, maka dapat digunakan teknik seperti yang diperlihatkan pada gambar 5. Cara ini digunakan dua buah A/D yang bekerja secara bergantian. Sistem Kanal Banyak Terdapat tiga jenis metode untuk menyusun suatu sistem akuisisi data dengan banyak tranduser. Perbedaan utama pada ketiga jenis ini ditentukan oleh letak multiplexer didalam sistem. Sistem pertama meletakan multiplexer pada ujung bagian depan, sehingga sinyal analog yang mengalami proses pemilihan masuk kekanal. Pada cara kedua pemasangan multiplexer setelah terjadi pencuplikan dan holding sinyal, metode kedua lebih baik dibandingkan metode pertama. Metode ketiga merupakan metode yang terbaik, tetapi dengan penerapan masing-masing kanal mempunyai A/D sendiri mengakibatkan sistem menjadi lebih mahal dibandingkan cara sebelumnya. Gambar 4. menunjukan sistem kanal banyak metode ketiga. A/D 1 input Analog MUX DIGITAL Sistem Komputer A/D 2 Sistim Akuisisi Data (F. Rizal Batubara) 3

10 input Analog A/D Komputer Modem sistem komunikasi analog Modem Komputer Mass Storage Gambar 6. Sistem Akuisisi Data Pada Saluran Komunikasi Analog Input Analog A/D Sstem Komputer ISDN SISTEM komputer Mass Storage Gambar 7. Sistem Akuisisi Jarak Jauh Pada saluran ISDN Sistem Akuisisi Jarak Jauh Suatu sistem akuisisi data yang mempunyai komponen pengambil dan pengolah data dengan jarak berjauhan, maka dibutuhkan media untuk mentransfer antara kedua sub sistem tersebut. Kondisi ini membutuhkan sistem memori yang disuplai baterai sebagai penampung sementara, memori seperti ini disebut sistem memori RAMPACK. Data yang diambil disimpan di memori RAMPACK, kemudian memori dibawah ketempat komputer pengolahan data. Sistem lain menggunakan sistem komunikasi, data diambil oleh transduser yang terletak jauh dari komputer kemudian data ditransmisikan melalui saluran komunikasi, bila saluran komunikasi merupakan sistem analog, diperlukan komponen yang disebut modem, ditunjukan gambar 6. Penyaluran data melalui jaringan ISDN bisa dilakukan dengan pemasangan langsung pada jack terminal saluran tersebut, terlihat pada gambar 7. Kepustakaan Austerlitz, Howard. Data Acquisition Techniques Using PCs, San Diego: Academic Press; Gadre, Dhananjay V. Programming the Parallel Port: Interfacing the PC for Data Acquisition and Process Control, Berkeley: CMP Books; James, Kevin. PC Interfacing and Data Acquisition, Oxford: Newnes; Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (1-4)

11 IMPLEMENTASI RANGKAIAN ELEKTRONIKA MENGGUNAKAN TEKNOLOGI SURFACE MOUNT Suherman 1) 1) Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik USU Abstrak Salahsatu perkembangan perangkat elektronika adalah miniaturisasi, yakni pengurangan pada volume perangkat. Dan teknologi yang berperan penting dalam proses miniaturisasi adalah teknologi Surface Mount. Teknologi Surface Mount adalah teknologi komponen yang berusaha nengurangi ukuran komponen dan diletakkan secara langsung pada permukaan PCB. Teknologi ini menggantikan teknologi sebelumnya, yakni teknologi thru hole, dimana dalam pemasangannya dilakukan pelubangan pada PCB. Pemakaian komponen ini telah merata pada semua perangkat elektronika. Namun sangat disayangkan, teknologi ini sangat asing di ndonesia, baik pada tingkat industri, pasar komponen, maupun pada kurikulum perguruan tinggi. Tulisan ini akan mengulas mengenai teknologi elektronika surface mount, komponen, peralatan pendukung serta proses implementasi rangkaian. Kata kunci : Elektronika, surface mount, thru hole Abstract Miniaturization is one of the electronics devices development that reduce equipment size. Surface mount technology fullfil this requirement. Surface Mount is an electronics devices technology that reduce the size and mounting the components on the board surface directly. This technology then replace through hole technology that using hole on PCB, even sometimes they are combined. All electronics devices are now using surface mount, but it still unknown well in Indonesian factory, market or in the university curriculum. This paper describe surface mount technology, its components, devices and implementation process. Keywords : Electronics, surface mount, thru hole 1. Pendahuluan Teknologi Surface Mount adalah teknologi komponen elektronika terintegrasi dengan cara peletakan (mounting) komponen secara langsung pada permukaan (surface) PCB. Teknologi ini menggantikan teknologi sebelumnya, yakni teknologi thru hole (through hole), dimana dalam pemasangannya dilakukan proses pelubangan pada PCB. Pada gambar 1 (Sam Ulbing, 1999) terlihat perbedaan perangkat yang tersusun dari komponen surface mount dan komponen thru hole. Beberapa keuntungan penggunaan komponen Surface Mount dibandingkan thru hole antara lain adalah, memiliki komponen yang lebih kecil sehingga mengurangi volume rangkaian (denser layout), mengurangi biaya produksi, memerlukan catudaya lebih rendah, pemasangan PCB lebih mudah karena tanpa pelubangan juga mempermuda proses perakitan otomatis. Selain itu, kebanyakan perangkat RF memerlukan jumper yang pendek untuk mengurangi interferensi, Surface Mount sangat mendukung hal ini. Surface mount juga memiliki frekuensi respons dan ketahanan EMI/RFI yang lebih baik. Implementasi Rangkaian Elektronika Menggunakan Teknologi Surface Mount 5

12 Rangkaian dengan Surface Mount Pada perkembangan selanjutnya, kemasan thru hole dikembangkan menjadi beberapa bentuk, termasuk menjadi kemasan komponen surface mount. Gambar 3 menunjukkan perkembangan kemasan IC thru hole dan surface mount. Rangkaian dengan Thru Hole Pemasangan Komponen (a) Thru Hole (b) Surface Mount Gambar 1.Perbandingan Surface Mount dan Thru Hole Namun demikian, ada beberapa kesulitan yang dihadapi dalam implementasi komponen SMT/SMD (Surface Mount Technology / Surface Mount Devices) antara lain, kerapatan komponen menyebabkan cepat panas, sehingga membutuhkan sistem pendingin atau chasing yang mendukung sirkulasi udara. Kepadatan komponen menyebabkan sedikit ruang untuk pembersihan. Karena kecil, inspeksi kerusakan secara visual sulit, sehingga membutuhkan alat bantu. Peletakan komponen memerlukan ketelitian yang tinggi. Proses assembly secara manual sulit dilakukan. 2. Kemasan Komponen Kemasan komponen pasif thru hole adalah komponen diskrit dengan ukuran relatif besar dan pin yang panjang. Komponen aktif thru hole yang berbentuk IC memiliki kemasan DIP (Dual Inline Packet), ZIP (Zigzag Inline Packet) dan PGA (Pin Grid Array). DIP memiliki jumlah pin 6 sampai 64 pin. ZIP terdiri 20 sampai 40 pin, Sedangkan PGA memiliki jumlah pin yang besar sampai 400 pin. Gambar 2 menunjukkan contoh IC dengan kemasan DIP dan PGA. (b) ZIP (a) Kemasan DIP (c) PGA Gambar 3 Kemasan IC Thru Hole dan Surface Mount Kemasan IC surface mount terdiri atas SOP, SOJ, SSOP, TSOP, QFJ, QFP, TQFP, LQFP, TCP, CSP dan BGA. Sementara komponen pasif surface mount berbentuk chip (chip resistor, chip kapasitor dan chip induktor) dengan 2 pin serta berbentuk network dengan jumlah pin lebih dari 2 (contoh resistor network). Kemasan transistor dan dioda serta beberapa IC dalam bentuk SO (Small Outline), contoh SOT-32 (Small Outline Transistor). Selain berbentuk paket plastik, IC surface juga dapat berbentuk paket keramik. (b) Network Resistor 1 2 p resistor n isolation region p substrate Gambar 2 Kemasan IC Thru Hole (a) Konstruksi Chip Resistor (c) Resistor Gambar 4. Resistor Surface Mount 6 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (5-9)

13 3. Komponen Pasif Surface Mount 3.1 Resistor Beberapa teknologi resistor surface mount yang ada di lapangan adalah teknologi thick film, thin film, MELF, wirewound, carbon film, metal film dan lain-lain. Resistor SMT berbentuk chip resistor dan network resistor. Kebanyakan chip resistor berbasis teknologi thick film, dimana permukaannya diberi pelindung gelas, dan menggunakan pin nikel, konstruksinya ditunjukkan pada gambar 4. Resistor MELF (Metallized Electrode Face) merupakan pengembangan resistor dengan elektroda metal. Resistor MELF dibuat dari lilitan bahan resistif. Harga resistor ini lebih murah tetapi memiliki kualitas yang lebih buruk dibandingkan thick film. Resistor dalam jumlah banyak (Network resistor) dibuat dari bahan thick film, semikonduktor maupun metal oxide). Kemasannya dalam bentuk SO (Small Outline) dengan jumlah pin berkisar 8 dengan penamaan sederhana. Lapisan semikonduktor yang digunakan untuk membentuk resistor sangat tipis seperti pada gambar 4c. Penambahan resistansi diperoleh dengan menyusun lapisan memanjang. Beberapa resistor tidak disertai kode nilai, untuk mengukurnya menggunakan ohmmeter. Beberapa resistor menggunakan kode 3 digit, contohnya 102, berarti 10x10 2 = 1kOhm ataupun menggunakan kode lebih dari 3 digit seperti pada tabel 1. Terdapat juga cara pengkodean yang disebut EIA-96 marking methode yang berisi 3 karakter kode. Dua karakter pertama menunjukkan nilai sesuai dengan tabel 2. Sedangkan digit ketiga adalah multiplier. Multiplier berupa angka. Contoh penamaan, kode 22A, berarti 165 Ohm, 68C berarti Ohm atau 49,9kOhm. Namun kode ini hanya untuk resistor dengan toleransi 1%. Untuk toleransi yang lebih besar, memiliki tabulasi sendiri. Tabel 1. Contoh penandaan resistor SMT(G4PMK, 2003) Contoh 3 digit Contoh 4 digit 330 adalah 33 ohm adalah 100 ohm bukan bukan 330 ohm 1000 ohm 4992 adalah ohm, 221 adalah 220 ohm adalah 49.9 kohm 683 adalah ohm, adalah ohm, atau 68 kohm adalah 162 kohm 105 adalah R56 adalah R56 adalah 0.56 ohm, atau 1 Mohm ohms 8R2 adalah 8.2 ohm Tabel 2. Kode EIA-96 code value code value code value code value code value code value Implementasi Rangkaian Elektronika Menggunakan Teknologi Surface Mount 7

14 3.2 Kapasitor Komponen kapasitor SMT paling banyak terbuat dari keramik. Kapasitor keramik SMT tersedia dalam bentuk fixed ataupun variabel. Sedangkan kapasitor film plastik dan elektrolit aluminium jarang digunakan. Kapasitor keramik memiliki desain dielektrik berlapis seperti pada gambar 5 (Bryan Bergeron, 1991). nilai standartnya dari 1pF sampai 1 uf dengan range tegangan 25 sampai 200V. Ukuraan sebuah kapasitor keramik SMT sangat kecil, berkisar 3,2 x 2,5 x 0,7 mm. Tabel 3. Multiplier (G4PMK, 2003) letter multiplier letter multiplier F B 10 E A 1 D 1000 X or S 0.1 C 100 Y or R 0.01 Selain keramik, terdapat juga kapasitor SMT tantalum dengan nilai kapasitansi mencapai 220 uf, rating tegangan 50V. adalah 10 2, sehingga KA2 bernilai 100pF. Tabel 4. menunjukkan kode-kode tersebut. Tabel 4. Kode penandaan kapasitor SMT. Let Mant Let Mant Let Mant Let Mant A 1.0 J 2.2 S 4.7 a 2.5 B 1.1 K 2.4 T 5.1 b 3.5 C 1.2 L 2.7 U 5.6 d 4.0 D 1.3 M 3.0 V 6.2 e 4.5 E 1.5 N 3.3 W 6.8 f 5.0 F 1.6 P 3.6 X 7.5 m 6.0 G 1.8 Q 3.9 Y 8.2 n 7.0 H 2.0 R 4.3 Z 9.1 t 8.0 y 9.0 (let.=letter, mant.= mantissa) Kapasitor elektrolit SMT memiliki penandaan yang berbeda. Nilai rating tegangan dituliskan dengan hurup pada digit pertama, diikuti dengan digit nilai dan multiplier. Basis perhitungan adalah pf. Contoh, A475, A = 10V, 475 = 47x10 5 pf, sehingga A475 adalah 4,7mF 10V. Kode rating tegangan kapasitor meliputi : e=2,5 ; G=4 ; J=6,3 ; A=10 ; C=16 ; D=20 ; E=25 ; V=35 ; dan H =50. (a) (b) (c) Gambar 5. Konstruksi Kapasitor SMT Kapasitor SMT umumnya tanpa penanda. Jika tanpa kode, satu-satunya cara mengetahuinya adalah dengan menggunakan kapasitansi meter. Beberapa capasitor menggunakan kode yang berisi 2 atau 3 karakter. Karakter pertama adalah kode pabrik, karakter kedua adalah mantisa (dengan nilai tertentu), karakter ketiga adalah multipier. Basis nilai adalah pf. Contoh KA2, K adalah kode pabrik (pabrik Kemet), A adalah 1.0 dan Induktor Induktor SMT terbuat dari bahan keramik ataupun core ferit dengan konstruksi yang kompak disesuaikan ukuran komponen lainnya, beberapa induktor memiliki ukuran 4, x 3,2 x 2,6 mm. Nilai induktansinya bervariasi dari 0,1 uh sampai 2,2 uh dengan rating arus sampai 0,5 A. Namun perkembangan teknologi SMT saat ini menghasilkan induktor SMT sampai bernilai uh dan rating sampai 50A, seperti produksi Vishay ( 3.4 Komponen Lainnya Seiring dengan pperkembangan komponen pasif utama di atas, komponen pasif pendukung lainnya juga mengalami miniaturisasi, walau dalam beberapa aplikasi masih ditemukan kombinasi komponen SMT dengan komponen thru hole. Komponen pendukung tersebut seperti konektor, rele, fuse, switch, choke, transformator, LC filter, tee bias, kristal, sensor dan lain-lain. 8 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (5-9)

15 4. Komponen Aktif Surface Mount Komponen aktif terdiri dari dioda, transistor, dan komponen terintegrasi. Komponen aktif SMT tersedia dalam kemasan small outline (SO), quad flat pack (QFP), plastic-leaded chip carrier (PLCC), tapeautomated bonding (TAB), leadless ceramic plastic carrier (LCCC). Sebahagian kemasan tersebut terdapat pada gambar 3.Sebagai alternatif, juga terdapat variasi pin chip. Pin atau lead tersedia dalam bentuk gull-wing, J-lead, dan I-lead seperti pada gambar 6a. Kemasan SO tersedia dari 3 sampai 28 pin, kemasan QFP memiliki pin 64 sampai 196 dengan bentuk gullwing. PLCC memiliki pin sampai 84 dengan J- lead di empat sisinya, sedangkan LCCC lebih kompak dimana pin terdapat di sebelah dalam sehingga tidak memungkinkan penanganan secara manual. yang berbeda, sehingga cukup sulit dalam mengidentifikasi. Seperti yang disinggung di bagian pendahuluan, kemasan komponen SMT memiliki banyak keunggulan dibandingkan thru hole, salahsatunya lumped component atau nilai terdistribusi dari induktansi dan kapasitansi. Nilai-nilai yang dihasilkan karena interaksi antar pin ini akan menghasilakan RFI/EMI. Tabulasi perbandingan nilai kapasitansi dan induktansi terdistribusi dapat dilihat pada tabel 5. Komponen aktif lain seperti MOV, SCR, DIAC, TRIAC, Op Amp, RFIC, microstrip, MMIC, Microwave device, IC digital, interfacing chip, IC mikrokontroler, mikroprosesor, dan IC regulator tersedia dalam kemasan SMT. Beberapa vendor yang menyediakan komponen SMT seperti Digi-Key (digikey.com), Newark ( Keytronics ( Avnet ( Jameco (jameco.com), dan EDX ( (a) (b) (c) Gambar 6. (a) lead gull-wing, J-lead dan I-lead (b) small outline transistor SOT-23 dan SOT-89 (c)kemasan dan footprintnya Transistor umumnya menggunakan kemasan SO, gambar 6b menunjukkan konstruksi transistor SMT dalam kemasan SO. Transistor dengan dissipasi daya maksimum 200mW menggunakan kemasan SOT-23, sedangkan kemasan yang lebih besar menggunakan SOT-89 yang mampu mendisipasi daya sampai 500mW. Dalam peletakan komponen SMT di pcb, perlu diketahui footprint komponen. Masingmasing kemasan memiliki bentuk footprint tertentu dan standar seperti pada gambar 6c. Dioda memiliki kemasan seperti chip resistor maupun sama dengan transistor terkecuali 1 pin tidak digunakan. Kemasan yang banyak digunakan dioda adalah SOT-23, SOT- 323, SOD-80, SOD-123 dan SOD-132. Kemasan dengan 3 pin (SOT) juga dapat berisi dual dioda. Baik transistor maupun dioda, masing-masing pabrikan memiliki penamaan Implementasi Rangkaian Elektronika Menggunakan Teknologi Surface Mount 9

16 IMPLEMENTASI SISTEM STEP by STEP SWITCHING MENGGUNAKAN KOMPONEN TERINTEGRASI Suherman 1) 1) Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik USU Abstrak Sentral yang menggunakan sistem step by step switching telah lama ditinggalkan. Teknologi telah beralih ke sistem switching digital common control, bahkan berbasis packet switching khususnya penggunaan IP based Network. Namun demikian, teknologi switching step by step yang dahulu berbasis sistem mekanis masih dapat diperbaharui dengan memanfaatkan komponen terintegrasi (integrates cicuit, IC). Sistem switching step by step dengan komponen terintegrasi ini dapat dimanfaatkan untuk membentuk sistem PABX kapasitas kecil. Karena dibentuk dengan memanfaatkan komponen terintegrasi, teknologi ini memungkinkan untuk diimplementasikan dalam bentuk IC tunggal (Application Specipic Integrated Circuit, ASIC). Sehingga akan diperoleh komponen PABX mini yang lebih sederhana dibandingkan PABX berbasis microcontroller. Kata kunci : Switching, step by step, PABX, telepon, extension, trunk Abstract munication exchange which used step by step switching system are obsolete. Technology had move to the digital common control switching system even based on switching package, especially using IP based network. Even though, the step by step switching system technology based on mechanical switching system are renewable by using integrated circuits IC s. Step by step switching system using the integrated circuits technologies can be used to build a small capacity PABX system. Because of built by using IC s, this technology can be implemented in the form of single chip IC (Application Spesific Integrated Circuits, ASIC). This will give small PABX components which is more simple compared to microcontroller base PABX. Keywords: Switching, step by step, PABX, telepon, extension, trunk 1. Pendahuluan Sistem switching merupakan bagian dari teknologi telekomunikasi. Sistem switching manual mengawali teknologi ini, kemudian ditemukan sistem switching otomatis oleh Almon B. Strowger dengan sistemnya yang dikenal sebagai sistem step by step atau direct control. Sistem inilah yang diadopsi dalam tulisan ini. Pada perkembangan selanjutnya, muncul sistem switching common control atau indirect control yang diawali oleh Gothief Betulander dengan switch crossbar. Sistem common control berkembang dari sistem crossbar, electromekanis, elektronis, analog sampai sistem switching digital. Sistem switching step by step semakin ditinggalkan. 2. Sistem Switching Step by Step Sentral Step by step adalah sistem switching otomatis yang paling tua dan paling sederhana. Step by step switching menggunakan pengontrolan dial langsung (direct-dial control) dimana switch secara langsung merespon digit yang dikirimkan telepon ke masing-masing tingkatan switch. Sistem switching ini mendominasi dunia telekomunikasi sampai tahun Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (10-14)

17 Komponen utama yang digunakan oleh sistem switching step by step adalah selektor. Selektor merupakan alat pemilih yang menghubungkan satu masukkan (inlet) dengan beberapa pilihan keluaran (outlet), (Sigit Haryadi, 1985). Selektor elektromekanik digerakkan secara elektromagnetik maupun dengan mempergunakan elektromotor. Gambar 1 menunjukkan konstruksi selektor (Suherman, 2004). Gambar 1. Selektor Selektor dalam keadaan awal berada pada home position, saat menerima impuls dari pesawat telepon, wiper atau tungkai selektor akan berpindah. Perpindahannya ditentukan oleh besarnya impulse tadi. Setiap output selektor dihubungkan dengan saluran ke telepon lain. Sentral step by step terdiri dari beberapa bagian, di antaranya SLIC, linefinder, alloter, group selector dan final selector. SLIC atau Subcriber Line Interface Circuit digunakan sebagai rangkaian interface ke pelanggan, linefinder merupakan selector yang merespons telepon yang meminta layanan, alloter merupakan selector yang mencari outlet sesuai impuls yang diberikan telepon sedangkan preselector, group selector dan final selector adalah penamaan kelompok-kelompok selektor. Gambar 2 (Suherman, 2004) menunjukkan bagian switching step by step. 3. Aplikasi Switching Step by Step Gambar 3 merupakan contoh switching step by step sederhana yang melayani 5 pelanggan dan 1 trunk untuk ke sentral lain (105). Karena kapasitasnya yang kecil, maka selektor yang dipakai hanyalah Line Finder, dan Final Selector (Suherman, 2004). Masing-masing pelanggan dihubungkan ke SLIC dan terhubung ke 3 Line Finder. 3 line finder berarti setiap saat ada 3 telepon yang bisa menggunakan sentral. Dibandingkan jumlah pelanggan, diperoleh perbandingan 3 : 5 atau 60%. Persentasi ini sering disebut sebagai konsentrasi. Jika disebut 20%, maka hanya 20% dari pelanggan yang bisa menggunakan sentral secara bersamaan. Sentral dengan 5 pelanggan di atas menggunakan 3 Line Finder yang menghasilkan 3 telepon yang bisa aktif secara bersamaan dengan pertimbangan, 1 telepon menelpon kesentral lain dan 2 telepon menelepon pelanggan di dalam sentral, sehingga 5 pesawat telepon dapat aktif secara bersamaan. Gambar 2. Sistem switching step by step 1 2 SLIC SLIC SLIC SLIC SLIC 1 5 Line Finder Controller Selector Controller Line Finder Controller 1 Selector Controller 0 5 Line Finder Controller Selector Controller 5 Ke Sentral Lain Gambar 3. Sistem Switching Step By Step Kapasitas 105 Implementasi Sistem Step by Step Switching Menggunakan Komponen Terintegrasi (Suherman) 11

18 4. Implementasi Line Finder Tunggal Implementasi switch terintegrasi dapat mempergunakan IC 4066 atau IC sejenisnya. IC ini menghubungkan input-output jika pin kendali berlogika 1. Gambar 4 menunjukkan implementasi selektor line finder dengan menggunakan IC 4066 dengan gerbang logika serta IC latch. Input gerbang logika berasal dari deteksi hook. Saat semua hook tertutup, gerbang logika (output gerbang OR) akan menghasilkan output logika 0. Output ini mengendalikan pin enable IC latch. Kondisi logika 0 menyebabkan IC latch dalam kondisi enable, input yang berasal dari deteksi hook akan dihubungkan ke output latch. Jika semua telepon dalam kondisi tertutup, maka output IC latch akan berlogika 0, sehingga tidak ada switch yang tertutup. Saat salah satu hook telepon diangkat, maka output gerbang akan menjadi tinggi, menyebabkan input sesaat IC latch disalurkan ke output kemudian kondisinya mengunci (latch). Output akan menghubungkan switch bersesuaian dengan hook yang diangkat. Telepon tersebut menduduki switch. Saat telepon lain diangkat, tidak akan mengganggu kondisi switch selama ia masih diduduki. TELEPHONE LINE SLIC SLIC SLIC SLIC SLIC HOOK DETECT SELECTOR - LINE FINDER (IC SWITCH 4066) SWITCH CONTROL IC QUAD LATCH VOICE CHANNEL TELEPHONE LINE SLIC SLIC SLIC SLIC SLIC SWITCH CONTROL DARI SELECTOR LAIN HOOK DETECT LINE FINDER CONTROLLER SELECTOR - LINE FINDER (IC SWITCH 4066) SWITCH CONTROL IC QUAD LATCH SWITCH CONTROL KE SELECTOR LAIN Gambar 5. Line Finder Jamak VOICE CHANNEL Kondisi di atas dapat dihindari dengan menambahkan gerbang AND pada input gerbang pengendali. Input gerbang AND berasal dari line finder lain. Rangkaian lengkap ditunjukkan pada gambar Implementasi Final Selector Setelah menduduki line finder, pesawat telepon yang diangkat menekan nomor telepon yang dituju. Nomor dalam bentuk DTMF ini akan menggerakkan final selector. Nada DTMF akan dideteksi oleh DTMF detektor. DTMF detector atau DTMF receiver dapat menggunakan IC MT8870. Output DTMF receiver akan didekodekan menggerakan switch. Tetapi untuk menghindari pendudukan switch terus menerus saat panggilan berakhir yang disebabkan output DTMF receiver yang bersifat mengambang (latch), maka pengontrolan juga dikendalikan oleh sinyal call control yang berasal dari output gerbang di line finder, serta pin Std yang berasal dari DTMF receiver. FINAL SELECTOR (IC SWITCH 4066) LINE FINDER CONTROLLER Gambar 4. Line Finder Untuk Aplikasi Tunggal VOICE CHANNEL VOICE CHANNEL 5. Implementasi Line Finder Jamak Untuk aplikasi line finder lebih dari satu, diperlukan rangkaian kendali yang mengendalikan penggunaan switch satu persatu. Jika line finder bertingkat hanya menggunakan rangkaian pada gambar 4, maka saat salah satu telepon diangkat, semua line finder akan diduduki. SWITCH CONTROL CALL CONTROL SET Q Clk D LATCH BCD - DECIMAL ENCODER Std DTMF RECEIVER FINAL SELECTOR CONTROLLER Gambar 6. Rangkaian Final Selector 12 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (10-14)

19 Gambar 6 menunjukkan rangkaian lengkap final selector. Switch akan menghubungkan voice channel telepon pemanggil ke telepon yang dipanggil. 7. Implementasi SLIC SLIC atau Subcriber Line Interface Card adalah rangkaian antarmuka telepon pelanggan yang melakukan fungsi suplai tegangan 48V, perlindungan tegangan lebih, sinyal dering, ringback tone, deteksi hook dan fungsi-fungsi signaling pelanggan lainnya. Dalam sentral digital, fungsi SLIC mencakup BORSCHT, yakni battery feeding, overvoltage protection, ringing, supervision, coding, hibrid dan test. SLIC pada sentral umumnya dalam bentuk modul kapasitas 8, 16 atau 32 telepon. Sinyal Suara +48V Sinyal Dering 10K 10K Sinyal Ringback Tone 5 V 10uF uF 100nF uF/ 100V OT600 4K V 2x1N K 1 2 BD139 10K 10K 4N Kontrol Dering MOV 5V 10K Deteksi Hook Gambar 7. Rangkaian SLIC sederhana Telepon Salah satu contoh rangkaian SLIC ditunjukkan pada gambar 7. Suplai tegangan telepon sebesar 48V akan mengalirkan arus berkisar 20mA saat telepon diangkat. Arus akan mengalir melalui optocoupler 4N25 melalui rangkaian penarik arus BD139. Saat arus mengalir menyebabkan tegangan pada pin kolektor 4N25 akan turun dari 5V menjadi 0V. Pin 5 ini akan berfungsi sebagai pendeteksi hook saat telepon diangkat. Saat telepon akan diberi nada dering (kondisi tertutup, on hook), kontrol dering diberi tegangan yang menyebabkan rele berpindah dari catuan 48V ke catuan tegangan dering AC (sekitar 55Vac 90Vac). Saat ingin memberikan sinyal ringback tone, sinyal akan dikopling melalui kopling capasitor, pembagi tegangan dan trafo. Fungsi trafo digunakan untuk mencegang tegangan 48V masuk ke line finder maupun final selector. Pencegahan tegangan lebih yang dapat merusak rangkaian menggunakan MOV (Metal Oxide Varistor), yakni komponen yang identik dengan 2 buah zener diode bertolak belakang yang memberikan stabilisasi nilai tegangan. 8. Implementasi Trunking Trunking menghubungkan sentral ke sentral lain. Saat panggilan keluar (outgoing call), trunk dihubungkan ke final selector, sedangkan saat panggilan masuk (incoming call), trunk dihubungkan dengan line finder. Sehingga dibutuhkan rangkaian khusus sebagai antarmuka trunking. Gambar 8 menunjukkan blok antarmuka trunking. 9. Komparasi Teknologi Sistem step by step terintegrasi memiliki kelebihan dibandingkan sentral step by step konvensional. Hal ini disebabkan adanya reduksi volume selector. Namun jika dibandingkan teknologi common control, baik sentral analog maupun sentral digital, sentral ini memiliki banyak kekurangan. Kebutuhan komponen relatif besar jika implementasinya menggunakan teknologi SSI/MSI serta komponen pasif yang terdapat di pasaran. Untuk implementasi gambar 3, membutuhkan 5 buah SLIC dengan kepadatan 25 komponen per SLIC, 3 buah line finder dengan kepadatan 15 komponen per line finder, membutuhkan 3 buah final selector dengan kepadatan 10 komponen per unit. Ke Final Selector Ke Line Finder Trunk Interface SLIC Trunk Gambar 8. Blok Antarmuka Trunk Pada gambar 3, trunking hanya berfungsi sebagai outgoing call, sehingga dibutuhkan 1 rangkaian interface trunk dengan komposisi 10 komponen. Sehingga perkiraan total komponen berkisar 210 komponen tidak termasuk catudaya. Selain komposisi komponen rangkaian, fitur telepon hanya terbatas pada incoming dan outgoing call, tanpa dilengkapi fitur sentral pada umumnya. Namun demikian, penggunaan komponen VLSI, komponen surface mount dan kombinasi step by step dengan common control (penggunaan mikrokontroler) dapat menjadi alternatif teknologi sentral berkapasitas kecil. Implementasi Sistem Step by Step Switching Menggunakan Komponen Terintegrasi (Suherman) 13

20 10. Kesimpulan Dari uraian di atas, dapat disimpulkan bahwa implementasi teknologi switching step by step dengan komponen terintegrasi adalah mungkin. Namun masih memiliki kekurangan pada kepadatan komponen dan fitur sentral. Daftar Pustaka Sigit Haryadi,Ir, 1986, Diktat Kuliah Dasar Teknik Penyambungan Telepon, Pendidikan Ahli Teknik Telekomunikasi. Suherman,ST., 2004, Diktat Teknik Jaringan Telekomunikasi, Politeknik Caltex Riau, Pekanbaru. Suherman,ST., (Desember 2004) Modifikasi Sistem Pemrograman Pabx Mini Dilengkapi Rangkaian Penguji, Jurnal Ensikom, Vol.2 No.2, Medan. 14 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (10-14)

21 RELE TEGANGAN ELEKTRONIK T.Ahri Bahriun 1) 1) Staf Pengajar Jurusan Teknik Elektro, Fakultas Teknik USU Abstrak Salah satu alat proteksi yang sangat dibutuhkan untuk mengamankan peralatan listrik ialah rele tegangan. Rele ini berfungsi untuk memantau tegangan dan akan memberikan sinyal melalui kontakkontak keluarannya, jika tegangan yang dipantau lebih besar dari nilai maksimum atau lebih kecil dari nilai minimum yang diperkenankan. Rele ini umumnya bekerja secara elektronik dan rangkaian yang digunakan sangatlah sederhana, sehingga mudah untuk dipahami. Tulisan ini mencoba membahas suatu rangkaian rele tegangan yang sangat sederhana. Kata kunci: Rele, Tegangan, Proteksi. Abstract One of the protection equipments which is needed for protecting the electrical instruments is a voltage relay. This relay function as to detect voltages and will send signals from its terminals when the detect voltege greater than its maximum value or smaller than its minimum voltage rating. In general this relay works electronically, and using simple circuits so it is easy to understand. This paper try to explain a very simple voltage relay. Keywords: relay, voltage, protection. 1. Pendahuluan Salah satu hal yang harus dihindari pada pengoperasian peralatan listrik ialah kelebihan tegangan (overvoltage) ataupun kekurangan tegangan (undervoltage). Kelebihan tegangan hampir dapat dipastikan akan merusak setiap peralatan listrik. Hal ini umumnya akan menyebabkan timbulnya panas yang belebihan sehingga dapat menyebabkan terbakarnya peralatan listrik tersebut. Sebaliknya, kekurangan tegangan belum tentu merusak peralatan listrik. Pada beberapa peralatan listrik seperti lampu pijar ataupun peralatan lain yang bersifat resistip, kekurangan tegangan tidak akan membahayakan peralatan tersebut. Tetapi bagi beberapa peralatan lain seperti motor induksi, kekurangan tegangan dapat menyebabkan faktor daya (cos-ϕ) yang terlalu rendah. Hal ini akan menyebabkan arus peralatan tersebut terlalu besar, sehingga menimbulkan panas yang berlebihan dan pada akhirnya akan merusak peralatan tersebut. Untuk menghindari hal-hal yang tidak diinginkan ini maka suatu panel distribusi tegangan rendah umumnya dilengkapi dengan rele tegangan yang berfungsi untuk memantau tegangan busbar. Jika nilai tegangan ini keluar dari batas-batas aman maka rele ini akan membuka pemutus CB utama sehingga catuan daya ke panel tersebut akan diputus. Selain rele tegangan panel ini juga dilengkapi dengan beberapa peralatan proteksi lain, seperti rele arus lebih (OCR), monitor fasa (RCP) dan lain sebagainya. Tulisan ini hanya membahas tentang rele tegangan. 2. Prinsip Kerja Dasar Rele tegangan elektronik umumnya mendeteksi besarnya tegangan melalui trafo tegangan atau yang lebih dikenal sebagai PT (potensial transformer). PT berfungsi untuk menurunkan tegangan yang masuk ke rele dan sekaligus mengisolasi rele dari tegangan rangkaian yang diukur. Masukan PT umumnya adalah 110V atau 220V sedangkan keluarannya adalah tegangan yang berkisar antara 12V hingga 24V, tergantung dari rangkaian yang digunakan. Tegangan keluaran PT ini selanjutnya dibandingkan dengan dua tegangan Rele Tegangan Elektronik (T. Ahri Bahriun) 15

22 acuan, sebut saja V A untuk tegangan acuan atas dan V B untuk tegangan acuan bawah. Jika tegangan keluaran PT lebih besar dari V A maka rele keluaran pertama akan diaktipkan. Sebaliknya jika tegangan keluaran PT lebih kecil dari V B maka rele keluaran kedua yang akan diaktipkan Untuk memudahkan proses perbandingan maka besaran yang dibandingkan adalah tegangan searah. Untuk itu maka tegangan keluaran PT harus terlebih dahulu diubah menjadi tegangan searah. Besarnya tegangan searah yang dihasilkan selanjutnya dibandingkan dengan tegangan acuan yang dapat diatur. Agar dapat mengabaikan kelebihan atau kekurangan tegangan yang berlangsung sesaat (transient), maka rele tegangan biasanya dilengkapi dengan rangkaian tunda (delay) yang dapat menunda kerja kontak keluaran. Lamanya tundaan waktu dapat diatur, umumnya berkisar antara 0 hingga 10 detik. 3. Rangkaian Rele Tegangan Seperti telah disebutkan sebelumnya, rele tegangan lebih ini mendeteksi tegangan melalui suatu PT. Agar sesuai dengan alat-alat ukur lain yang terpasang pada panel generator maka tegangan masukan nominal dari rele tegangan umumnya adalah 110V atau 220V. Karena rele ini hanya membutuhkan daya yang kecil maka PT yang digunakan adalah PT yang berdaya sangat rendah, umumnya berkisar antara 2 sampai 5VA. Untuk menghemat biaya pembuatan maka seringkali PT yang sama digunakan juga sebagai sumber daya bagi rangkaian elektronik yang digunakan. Untuk itu digunakan PT dengan dua buah belitan sekunder yang terpisah. Rancangan yang dibahas menggunakan dua buah trafo yang terpisah. Dengan demikian diharapkan agar tegangan yang dipantau tidak dipengaruhi oleh pembebanan dari catudaya rangkaian elektronik Rangkaian masukan Tegangan masukan diturunkan sekaligus diisolasi oleh trafo T1 dan disearahkan oleh dioda D1 dan D2, seperti yang diperlihatkan pada gambar-1. INPUT 220V T1 D1 D2 Gambar 1. Rangkaian masukan Selanjutnya tegangan ini ditapis oleh kapasitor C1 untuk menghilangkan kerut (ripple). Besarnya tegangan jepit dari C1 adalah : I V C1 Vm DC 4fC dan Vm 2 x V SEK dimana V SEK : tegangan sekunder trafo I DC : arus beban f : frekuensi jalajala C : kapasitansi C1 adalah tegangan sekunder dari trafo T1. Sebelum diteruskan ke rangkaian pembanding, tegangan ini disesuaikan oleh tahanan R1 dan R2 yang membentuk rangkaian pembagi tegangan reisitip. Besarnya tegangan yang diterima pembanding adalah : R2 V S =. V C1 R1+ R Rangkaian Pembanding Tegangan Sebagai pembanding tegangan digunakan opamp yang mempunyai faktor penguatan tegangan loop terbuka (A V ) yang mendekati tak terhingga. Oleh karena itu jika tegangan pada masukan tak-membalik sedikit lebih tinggi dari tegangan pada masukan membaliknya maka keluaran pembanding akan jenuh tinggi dan bernilai mendekati nilai V CC (tegangan catuan). Sebaliknya jika tegangan pada masukan membalik sedikit lebih tinggi dari tegangan pada masukan tak-membaliknya maka keluaran pembanding akan jenuh rendah sehingga tegangannya mendekati nol. Rangkaian dari pembanding tegangan ini diperlihatkan pada gambar-2. C1 R1 R2 V S 16 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (15-19)

23 VR1 V S VR2 +12V R3 R4 V A V B + A1 - + A2 - KE RANGKAIAN TUNDA Gambar 2. Rangkaian pembanding tegangan 3.3. Rangkaian Tunda Agar dapat mengabaikan kenaikan atau penurunan tegangan yang berlaku sesaat (transien), maka rele tegangan ini dilengkapi dengan rangkaian tunda. Untuk itu maka keluaran dari rangkaian pembanding selain diteruskan ke rangkaian penggerak rele keluaran, juga dilewatkan melalui suatu rangkaian tunda, seperti yang diperlihatkan pada gambar-3. DARI KELUARAN A1 D3 VR3 N1 N2 KE PENGGERAK RELE RL1 Penguat A1 membandingkan tegangan V S yang dihubungkan ke masukan tak membaliknya (non-inverting input) dengan tegangan acuan V A yang dihubungkan ke masukan membaliknya (inverting input). Tegangan acuan V A adalah ambang tegangan maksimum yang diperkenankan. Tegangan ini diperoleh dari kontak geser (wiper) potensiometer VR1. Jika V S > V A maka keluaran A1 akan jenuh positip sehingga tegangan keluaran A1 akan mendekati tegangan catu, yaitu 12V DC. Sebaliknya jika V S < V A maka keluaran A1 akan jenuh negatip sehingga tegangan keluarannya akan mendekati nol. Penguat A2 membandingkan tegangan V S yang dihubungkan ke masukan membaliknya dengan tegangan acuan V B yang dihubungkan ke masukan tak membaliknya. Tegangan acuan V B adalah ambang tegangan minimum yang diperkenankan. Tegangan ini diperoleh dari kontak geser potensiometer VR2. Jika V S < V B maka keluaran A1 akan jenuh positip sehingga tegangan keluaran A2 akan mendekati tegangan catu. Sebaliknya jika V S > V B maka keluaran A2 akan jenuh negatip sehingga tegangan keluarannya akan mendekati nol. Oleh karena itu agar tegangan keluaran dari penguat A1 dan A2 mendekati nol maka besarnya tegangan V S haruslah : V B < V S < V A Nilai tahanan R3, R4, VR1 dan VR2 ditentukan sedemikian rupa agar kisar pengaturan V A memungkinkan kisar tegangan masukan dari 220V hingga 240V dan kisar pengaturan V A memungkinkan kisar tegangan masukan dari 200V hingga 220V. DARI KELUARAN A2 D4 R5 C2 KE PENGGERAK RELE RL2 Gambar 3. Rangkaian tunda Rangkaian tunda ini terdiri dari VR3, C2 dan N1. Jika bernilai tinggi, keluaran penguat A1 dan A2 masing-masing akan meng-enable gerbang N2 dan N3. Selain itu, kedua keluaran ini juga akan mengisi kapasitor C2 melalui dioda D3 dan D4 dan VR3. Kapasitor C2 ini berfungsi untuk menunda pengaktipan (enable) gerbang-gerbang N2 dan N3 melalui gerbang N1. Ketiga gerbang ini adalah gerbang AND dari keluarga CMOS (Complementary Metal Oxide Semiconductor). Tujuan penggunaan CMOS adalah untuk mendapatkan nilai hambatan masukan yang mendekati tak terhingga agar tidak membebani kapasitor C2. Lamanya tundaan waktu adalah sama dengan waktu yang dibutuhkan untuk mengisi kapasitor C2 agar tegangan jepitnya mencapai tegangan ambang (treshold) logika tinggi dari gerbang N1. Lamanya tundaan waktu dapat dinyatakan sebagai : t D 0,7.VR3.C2 detik Dengan mengatur nilai VR3 maka tundaan waktu ini dapat disesuaikan dengan kebutuhan Rangkaian Penggerak Rele Keluaran Rele tegangan yang dibahas mempunyai dua buah rele keluaran. Satu untuk menyatakan tegangan lebih dan satu untuk menyatakan tegangan kurang. Masing-masing rele ini digerakkan oleh suatu transistor bipolar, seperti yang diperlihatkan pada gambar-4. N3 Rele Tegangan Elektronik (T. Ahri Bahriun) 17

24 DARI KELUARAN N2 DARI KELUARAN N3 +12V R6 R7 +12V R8 R9 D5 D6 Q1 Q2 RL1 RL2 Gambar 4. Rangkaian penggerak rele keluaran Jika keluaran A1 bernilai tinggi pada akhir tundaan waktu ini maka keluaran gerbang N2 akan tinggi sehingga memberikan arus basis pada transistor Q1. Besarnya arus basis ini adalah : VOH VBE VBE I B = R6 R7 dimana V OH : Tegangan keluaran logika tinggi N2 V BE : Tegangan basis-emiter Q1 Hal ini akan menyebabkan Q1 menghantar sehingga pada kolektornya akan mengalir arus sebesar : I C = h FE.I B dimana h FE adalah faktor penguatan arus searah dari transistor yang digunakan. Arus kolektor ini akan menyebabkan rele RL1 bekerja. Sebaliknya jika keluaran A2 yang bernilai tinggi pada akhir tundaan waktu ini maka keluaran gerbang N3 yang akan tinggi sehingga memberikan arus basis pada transistor Q2. Hal ini akan menyebabkan Q2 menghantar sehingga rele RL2 yang akan bekerja. Dengan demikian maka akan tersedia satu kontak untuk tegangan lebih dan satu kontak untuk tegangan kurang. Untuk mendapatkan sinyal yang menyatakan keduanya maka untuk rele-rele RL1 dan RL2 dapat digunakan rele dengan dua kontak, dimana kedua kontak tersebut dihubungkan paralel atau seri, tergantung pada kebutuhan Rangkaian Catu Daya Opamp umumnya membutuhkan catudaya ganda yang berkisar antara ±6V DC hingga ±18V DC atau catudaya tunggal yang berkisar antara +12V DC hingga +36V DC. Gerbang CMOS membutuhkan catudaya tunggal yang berkisar antara +3V DC hingga +15V DC. Rele arus searah tersedia untuk tegangan-tegangan 6, 12, 24, 110, dan 220V DC. Agar dapat mencatu seluruh komponen yang digunakan pada rangkaian maka catuan yang dipilih adalah +12V DC. Untuk itu maka rele keluaran yang digunakan adalah rele dengan kumparan 12V DC. Tegangan catuan sebesar +12V DC dapat diperoleh dari catudaya yang diperlihatkan pada gambar-7. Pada catudaya ini, tegangan jala-jala diturunkan oleh trafo tegangan T2 ke nilai yang sesuai. Trafo ini sekaligus berfungsi untuk mengisolasi rangkaian dari tegangan jala-jala. Selanjutnya tegangan sekunder dari T2 disearahkan oleh pasangan dioda D7 dan D8 yang membentuk penyearah gelombang penuh, untuk selanjutnya ditapis oleh kapasitor C3 untuk menghilangkan kerut. Tegangan yang dihasilkan masih dipengaruhi oleh pembebanan. Oleh karena itu untuk menstabilkan tegangan ini digunakan regulator seri berupa suatu rangkaian terpadu atau IC (integrated circuit) tipe LM7812. T2 D7 D8 C3 C4 IC Gambar 5. Rangkaian catudaya C5 +12V IC regulator ini akan mempertahankan tegangan keluarannya sebesar +12V DC untuk tegangan masukan yang berkisar dari +14V DC hingga +35V DC. Daya yang hilang atau disipasi daya pada regulator adalah : P D (V IN 12V).I L Watt dimana P D : disipasi daya V IN : tegangan masukan regulator I L : arus beban C6 18 Jurnal Teknik Elektro ENSIKOM Vol. 3, No. 1 JUNI 2005 (15-19)

25 Disipasi daya ini akan diubah menjadi panas. Agar regulator tidak menjadi terlalu panas maka panas ini harus dibuang dengan menggunakan pendingin atau heatsink. Agar daya yang hilang tidak terlalu banyak maka V IN harus dibuat serendah mungkin, namun dapat mengantisipasi turun naiknya V IN disebabkan oleh perubahan arus beban dan turun naiknya tegangan jala-jala. Keluaran dari regulator ini ditapis lebih lanjut oleh kapasitor C6 untuk menghiangkan kerut sehingga pada keluaran regulator akan diperoleh tegangan searah sebesar +12V DC yang benar-benar stabil dan bebas kerut. Kapasitor C4 dan C5 berfungsi untuk menjamin agar IC regulator tidak berosilasi, sesuai dengan yang dianjurkan oleh pabrik pembuatnya. 4. Kesimpulan Dari pembahasan diatas dapat diambil beberapa kesimpulan, antara lain ialah: 1. Rele arus lebih dapat dibuat dengan menggunakan rangkaian elektronik yang sederhana. 2. Besarnya arus nominal dapat diatur dengan menggunakan CT dengan perbandingan yang sesuai. 3. Pada rele yang dibahas, setting waktu dan arus adalah independen sehingga tidak saling mempengaruhi. 4. Pada rele arus lebih 3-fasa yang dibahas, setting arus dari setiap fasa adalah independen sehingga dapat diatur secara terpisah. Daftar Pustaka Deboo G. J., Burrous C. N., 1977, Integrated Circuits and Semiconductor Devices : Theory and Application, 2 nd edition, McGraw- Hill Kogakusha Ltd.,. Fairchild Semiconductor, 1988, CMOS Integrated Circuits Data Book. Jha, R. S., Switchgear and Protection, 1979, Dhanpat Rai & Sons, Delhi. Lowenberg, C. L., 1976, Electronic Circuits, McGraw-Hill, New York, page 50. Millman J., Halkias C. C., 1972, Integrated Electronics Analog and Digital Systems, McGraw-Hill, New York, page 233. Smith R. J., 1987, Electronics Circuits and Devices, 3 rd edition, John Wiley & Sons Rele Tegangan Elektronik (T. Ahri Bahriun) 19

IMPLEMENTASI SISTEM STEP by STEP SWITCHING MENGGUNAKAN KOMPONEN TERINTEGRASI

IMPLEMENTASI SISTEM STEP by STEP SWITCHING MENGGUNAKAN KOMPONEN TERINTEGRASI IMPLEMENTASI SISTEM STEP by STEP ING MENGGUNAKAN KOMPONEN TERINTEGRASI Suherman ) ) Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik USU Abstrak Sentral yang menggunakan sistem step by step switching

Lebih terperinci

RELE TEGANGAN ELEKTRONIK

RELE TEGANGAN ELEKTRONIK RELE TEGANGAN ELEKTRONIK T.Ahri Bahriun 1) 1) Staf Pengajar Jurusan Teknik Elektro, Fakultas Teknik USU Abstrak Salah satu alat proteksi yang sangat dibutuhkan untuk mengamankan peralatan listrik ialah

Lebih terperinci

IMPLEMENTASI RANGKAIAN ELEKTRONIKA MENGGUNAKAN TEKNOLOGI SURFACE MOUNT

IMPLEMENTASI RANGKAIAN ELEKTRONIKA MENGGUNAKAN TEKNOLOGI SURFACE MOUNT IMPLEMENTASI RANGKAIAN ELEKTRONIKA MENGGUNAKAN TEKNOLOGI SURFACE MOUNT Suherman 1) 1) Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik USU Abstrak Salahsatu perkembangan perangkat elektronika adalah

Lebih terperinci

Rele Tegangan Elektronik

Rele Tegangan Elektronik Rele Tegangan Elektronik Oleh: Erika Loniza Abstract One of the protection equipments which is needed for protecting the electrical instruments is avoltage relay. This relay function as to detect voltages

Lebih terperinci

Desain Mesin Penjawab Dan Penyimpan Pesan Telepon Otomatis

Desain Mesin Penjawab Dan Penyimpan Pesan Telepon Otomatis Desain Mesin Penjawab Dan Penyimpan Telepon Otomatis Suherman Jurusan Teknik Elektro Fakultas Teknik Universitas Sumatera Utara ABSTRAK Di negara maju, mesin penjawab telepon (telephone answering machine)

Lebih terperinci

Telepon secara konvensional adalah untuk komunikasi suara, namun demikian telah banyak telepon yang difungsikan untuk komunikasi data.

Telepon secara konvensional adalah untuk komunikasi suara, namun demikian telah banyak telepon yang difungsikan untuk komunikasi data. Telepon secara konvensional adalah untuk komunikasi suara, namun demikian telah banyak telepon yang difungsikan untuk komunikasi data. Pembahasan berikut ini akan ditekankan pada penggunaan telepon sebagai

Lebih terperinci

RANCANGAN ALAT UKUR WAKTU TUNDA RELE ARUS LEBIH

RANCANGAN ALAT UKUR WAKTU TUNDA RELE ARUS LEBIH RANCANGAN ALAT UKUR WAKTU TUNDA RELE ARUS LEBIH T. Ahri Bahriun 1) 1) Staf Pengajar Departemen Teknik Elektro, Fakultas Teknik USU Abstrak Rele arus lebih berfungsi untuk membuka circuit breaker jika terjadi

Lebih terperinci

PERCOBAAN 1 SUBSCRIBER MATCHING UNIT

PERCOBAAN 1 SUBSCRIBER MATCHING UNIT PERCOBAAN 1 SUBSCRIBER MATCHING UNIT 1.1. TUJUAN Memahami cara kerja Unit Penghubung Pelanggan (Subscriber Matching Unit). Memahami urutan kejadian yang dilakukan Unit Penghubung Pelanggan dalam proses

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015,

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015, III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015, pembuatan alat dan pengambilan data dilaksanakan di Laboratorium

Lebih terperinci

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA DEPARTEMEN ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2010 MODUL I DIODA SEMIKONDUKTOR DAN APLIKASINYA 1. RANGKAIAN PENYEARAH & FILTER A. TUJUAN PERCOBAAN

Lebih terperinci

ANALISA RANGKAIAN CENTRAL OFFICE LINE INTERFACE PADA PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX

ANALISA RANGKAIAN CENTRAL OFFICE LINE INTERFACE PADA PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX ANALISA RANGKAIAN CENTRAL OFFICE LINE INTERFACE PADA PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX http://www.gunadarma.ac.id/ Farrih Mustafid 10405286 Teknik Elektro Latar Belakang Kebutuhan

Lebih terperinci

PENGENDALI PERALATAN RUMAH TANGGA MENGGUNAKAN TELEPON SELULER BERBASIS MIKROKONTROLER

PENGENDALI PERALATAN RUMAH TANGGA MENGGUNAKAN TELEPON SELULER BERBASIS MIKROKONTROLER PENGENDALI PERALATAN RUMAH TANGGA MENGGUNAKAN TELEPON SELULER BERBASIS MIKROKONTROLER Tatyantoro Andrasto Teknik Elektro UNNES ABSTRAK Piranti Elektronik pada umumnya dikendalikan secara manual, banyaknya

Lebih terperinci

STUDI ANALISIS PERANGKAT SISTEM SWITCHING TELEPHONE TRAINER B4620 (Untuk Laboratorium Telematika Departemen Teknik Elektro)

STUDI ANALISIS PERANGKAT SISTEM SWITCHING TELEPHONE TRAINER B4620 (Untuk Laboratorium Telematika Departemen Teknik Elektro) STUDI ANALISIS PERANGKAT SISTEM SWITCHING TELEPHONE TRAINER B4620 (Untuk Laboratorium Telematika Departemen Teknik Elektro) Muhammad Syukur Hrp, Ir. M.Zulfin, MT Konsentrasi Teknik Telekomunikasi, Departemen

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN ANALISIS

BAB IV HASIL PERCOBAAN DAN ANALISIS BAB IV HASIL PERCOBAAN DAN ANALISIS 4.1. Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang Penuh). A. Penyearah Setengah Gelombang Gambar

Lebih terperinci

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan BAB III PERANCANGAN ALAT 3.1 PERANCANGAN PERANGKAT KERAS Setelah mempelajari teori yang menunjang dalam pembuatan alat, maka langkah berikutnya adalah membuat suatu rancangan dengan tujuan untuk mempermudah

Lebih terperinci

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA)

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA) SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA) 1. Komponen elektronik yang berfungsi untuk membatasi arus listrik yang lewat dinamakan A. Kapasitor D. Transistor B. Induktor

Lebih terperinci

ANALISA RANGKAIAN CENTRAL OFFICE LINE INTERFACE PADA PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX

ANALISA RANGKAIAN CENTRAL OFFICE LINE INTERFACE PADA PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX ANALISA RANGKAIAN CENTRAL OFFICE LINE INTERFACE PADA PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX Farrih Mustafid 10405286 ABSTRAKSI PABX atau private automatic branch exchange adalah suatu sistem

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) I. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai

Lebih terperinci

BAB II SISTEM PEMATRIAN KOMPONEN SMD

BAB II SISTEM PEMATRIAN KOMPONEN SMD BAB II SISTEM PEMATRIAN KOMPONEN SMD Dalam merancang suatu alat diperlukan dasar untuk menunjang alat yang akan dirancang, sehingga segala sesuatunya dapat diperhitungkan dan dipertanggungjawabkan. Pada

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Metode penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen murni. Eksperimen dilakukan untuk mengetahui pengaruh frekuensi medan eksitasi terhadap

Lebih terperinci

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1)

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1) TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1) DASAR ELEKTRONIKA KOMPONEN ELEKTRONIKA SISTEM BILANGAN KONVERSI DATA LOGIC HARDWARE KOMPONEN ELEKTRONIKA PASSIVE ELECTRONIC ACTIVE ELECTRONICS (DIODE

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Perangkat Keras ( Hardware) Dalam pembuatan tugas akhir ini diperlukan penguasaan materi yang digunakan untuk merancang kendali peralatan listrik rumah. Materi tersebut merupakan

Lebih terperinci

SISTEM KONVERTER DC. Desain Rangkaian Elektronika Daya. Mochamad Ashari. Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012

SISTEM KONVERTER DC. Desain Rangkaian Elektronika Daya. Mochamad Ashari. Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012 SISTEM KONVERTER DC Desain Rangkaian Elektronika Daya Oleh : Mochamad Ashari Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012 Diterbitkan oleh: ITS Press. Hak Cipta dilindungi Undang undang Dilarang

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas III. METODE PENELITIAN 3.1. Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung, dari bulan Februari 2014 Oktober 2014. 3.2. Alat dan Bahan Alat

Lebih terperinci

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan III-1 BAB III PERANCANGAN ALAT 3.1. Perancangan Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan menghasilkan suatu sistem yang dapat mengontrol cahaya pada lampu pijar untuk pencahayaanya

Lebih terperinci

BAB III PERANCANGAN SISTEM. perancangan mekanik alat dan modul elektronik sedangkan perancangan perangkat

BAB III PERANCANGAN SISTEM. perancangan mekanik alat dan modul elektronik sedangkan perancangan perangkat BAB III PERANCANGAN SISTEM 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras (hardware) dan perangkat lunak ( Software). Pembahasan perangkat keras meliputi perancangan mekanik

Lebih terperinci

TAKARIR. periode atau satu masa kerjanya dimana periodenya adalah nol.

TAKARIR. periode atau satu masa kerjanya dimana periodenya adalah nol. TAKARIR AC {Alternating Current) Adalah sistem arus listrik. Sistem AC adalah cara bekerjanya arus bolakbalik. Dimana arus yang berskala dengan harga rata-rata selama satu periode atau satu masa kerjanya

Lebih terperinci

JOBSHEET 2 PENGUAT INVERTING

JOBSHEET 2 PENGUAT INVERTING JOBSHEET 2 PENGUAT INVERTING A. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai aplikasi dari rangkaian Op-Amp.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1.

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. 23 BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram Modul Baby Incubator Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. PLN THERMOSTAT POWER SUPPLY FAN HEATER DRIVER HEATER DISPLAY

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

ANALISA JALUR EKSTENSION PADA PABX PANASONIC SERI KXT - 206SBX

ANALISA JALUR EKSTENSION PADA PABX PANASONIC SERI KXT - 206SBX ANALISA JALUR EKSTENSION PADA PABX PANASONIC SERI KXT - 206SBX Gilang Khrisna Satria 10405321 ABSTRAKSI Sebagai prototipe dari sebuah STO, dipergunakan sebuah PABX ( Private Automatic Branch Exchange ).

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai prinsip dasar pengukuran. Mengukur arus,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan perealisasian inductive wireless charger untuk telepon seluler. Teori-teori yang digunakan dalam skripsi

Lebih terperinci

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan,

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, 5 II. TINJAUAN PUSTAKA 2.1 Sistem kontrol (control system) Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, memerintah dan mengatur keadaan dari suatu sistem. [1] Sistem kontrol terbagi

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN 3.1 Diagram Blok Rangkaian Secara Detail Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

REKAYASA CATU DAYA MULTIGUNA SEBAGAI PENDUKUNG KEGIATAN PRAKTIKUM DI LABORATORIUM. M. Rahmad

REKAYASA CATU DAYA MULTIGUNA SEBAGAI PENDUKUNG KEGIATAN PRAKTIKUM DI LABORATORIUM. M. Rahmad REKAYASA CATU DAYA MULTIGUNA SEBAGAI PENDUKUNG KEGIATAN PRAKTIKUM DI LABORATORIUM M. Rahmad Laoratorium Pendidikan Fisika PMIPA FKIP UR e-mail: rahmadm10@yahoo.com ABSTRAK Penelitian ini adalah untuk merekayasa

Lebih terperinci

JOBSHEET 6 PENGUAT INSTRUMENTASI

JOBSHEET 6 PENGUAT INSTRUMENTASI JOBSHEET 6 PENGUAT INSTUMENTASI A. TUJUAN Tujuan dari pembuatan modul Penguat Instrumentasi ini adalah :. Mahasiswa mengetahui karakteristik rangkaian penguat instrumentasi sebagai aplikasi dari rangkaian

Lebih terperinci

SISTEM KONTROL LISTRIK MENGGUNAKAN MEDIA HANDPHONE BERBASIS MIKROKONTROLER AT89S51

SISTEM KONTROL LISTRIK MENGGUNAKAN MEDIA HANDPHONE BERBASIS MIKROKONTROLER AT89S51 SISTEM KONTROL LISTRIK MENGGUNAKAN MEDIA HANDPHONE BERBASIS MIKROKONTROLER AT89S51 Sun Purwandi 1) Haryanto 1) 1) Program Studi Sistem Komputer, Fakultas Ilmu Komputer Universitas Narotama Surabaya Email:

Lebih terperinci

TRANSISTOR 1. TK2092 Elektronika Dasar Semester Ganjil 2012/2013. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Politeknik Telkom

TRANSISTOR 1. TK2092 Elektronika Dasar Semester Ganjil 2012/2013. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Politeknik Telkom TK2092 Elektronika Dasar Semester Ganjil 2012/2013 Politeknik Telkom Bandung 2013 www.politekniktelkom.ac.id TRANSISTOR 1 Disusun oleh: Duddy Soegiarto, ST.,MT dds@politekniktelkom.ac.id Hanya dipergunakan

Lebih terperinci

III. METODE PENELITIAN. Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014.

III. METODE PENELITIAN. Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014. III. METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Teknik Elektro Fakultas Teknik Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014. 3.2 Alat

Lebih terperinci

BLOK DIAGRAM DAN GAMBAR RANGKAIAN

BLOK DIAGRAM DAN GAMBAR RANGKAIAN BAB III BLOK DIAGRAM DAN GAMBAR RANGKAIAN 3.1 Blok Diagram SWITCH BUZZER MIKROKONTROLLER AT89S52 DTMF DECODER KUNCI ELEKTRONIK POWER SUPPLY 1 2 3 4 5 6 7 8 9 * 0 # KEYPAD 43 3.2 Gambar Rangkaian 44 3.3

Lebih terperinci

MULTIPLEKSER BERBASIS PROGRAMMABLE LOGIC DEVICE (PLD)

MULTIPLEKSER BERBASIS PROGRAMMABLE LOGIC DEVICE (PLD) MULTIPLEKSER BERBASIS PROGRAMMABLE LOGIC DEVICE (PLD) Oleh Muhammad Irmansyah Staf Pengajar Teknik Elektro Politeknik Negeri Padang ABSTRACT In middle 1990, electronics industry had the evolution of personal

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode penelitian yang digunakan adalah research and development, dimana metode tersebut biasa dipakai untuk menghasilkan sebuah produk inovasi yang belum

Lebih terperinci

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) Tri Prasetya F. Ir. Yahya C A, MT. 2 Suhariningsih, S.ST MT. 3 Mahasiswa Jurusan Elektro Industri, Dosen Pembimbing 2 Dosen Pembimbing

Lebih terperinci

Sistem Pengukuran Data Akuisisi

Sistem Pengukuran Data Akuisisi Sistem Pengukuran Data Akuisisi Missa Lamsani Hal 1 Perkembangan Sistem Akuisisi Data Pada mulanya proses pengolahan data lebih banyak dilakukan secara manual oleh manusia, sehingga pada saat itu perubahan

Lebih terperinci

KISI KISI SOAL UKA TEKNIK ELEKTRONIKA (532)

KISI KISI SOAL UKA TEKNIK ELEKTRONIKA (532) KISI KISI SOAL UKA TEKNIK ELEKTRONIKA (532) No 1 2 3 4 5 6 7 Kompetensi Utama Profesional St. Inti/SK 1. Menguasai materi, struktur, konsep, dan pola pikir keilmuan yang mendukung mata pelajaran yang diampu.

Lebih terperinci

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Mochammad Abdillah, Endro Wahyono,SST, MT ¹, Ir.Hendik Eko H.S., MT ² 1 Mahasiswa D4 Jurusan Teknik Elektro Industri Dosen

Lebih terperinci

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 TUGAS UTS MATA KULIAH E-BUSSINES Dosen Pengampu : Prof. M.Suyanto,MM

Lebih terperinci

Pengenalan Komponen dan Teori Semikonduktor

Pengenalan Komponen dan Teori Semikonduktor - 1 Pengenalan Komponen dan Teori Semikonduktor Missa Lamsani Hal 1 SAP Pengelompokan bahan-bahan elektrik dari sifat-sifat listriknya. Pengertian resistivitas dan nilai resistivitas bahan listrik : konduktor,

Lebih terperinci

CATU DAYA MENGGUNAKAN SEVEN SEGMENT

CATU DAYA MENGGUNAKAN SEVEN SEGMENT CATU DAYA MENGGUNAKAN SEVEN SEGMENT Hendrickson 13410221 Jurusan Teknik Elektro Fakultas Teknologi Industri Universitas Gunadarma 2010 Dosen Pembimbing : Diah Nur Ainingsih, ST., MT. Latar Belakang Untuk

Lebih terperinci

KOMPONEN PASIF. TK2092 Elektronika Dasar Semester Ganjil 2015/2016. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Universitas Telkom 1

KOMPONEN PASIF. TK2092 Elektronika Dasar Semester Ganjil 2015/2016. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Universitas Telkom 1 TK2092 Elektronika Dasar Semester Ganjil 2015/2016 Fakultas Ilmu Terapan Universitas Telkom Bandung 2015 KOMPONEN PASIF Disusun oleh: Duddy Soegiarto, ST.,MT dds@politekniktelkom.ac.id Rini Handayani,

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Diagram Blok Sistem Blok diagram dibawah ini menjelaskan bahwa ketika juri dari salah satu bahkan ketiga juri diarea pertandingan menekan keypad pada alat pencatat

Lebih terperinci

Rancangan Awal Prototipe Miniatur Pembangkit Tegangan Tinggi Searah Tiga Tingkat dengan Modifikasi Rangkaian Pengali Cockroft-Walton

Rancangan Awal Prototipe Miniatur Pembangkit Tegangan Tinggi Searah Tiga Tingkat dengan Modifikasi Rangkaian Pengali Cockroft-Walton Rancangan Awal Prototipe Miniatur Pembangkit Tegangan Tinggi Searah Tiga Tingkat dengan Modifikasi Rangkaian Pengali Cockroft-Walton Waluyo 1, Syahrial 2, Sigit Nugraha 3, Yudhi Permana JR 4 Program Studi

Lebih terperinci

REALISASI KONVERTER DC-DC TIPE PUSH-PULL BERBASIS IC TL494 DENGAN UMPAN BALIK TEGANGAN

REALISASI KONVERTER DC-DC TIPE PUSH-PULL BERBASIS IC TL494 DENGAN UMPAN BALIK TEGANGAN REALISASI KONVERTER DC-DC TIPE PUSH-PULL BERBASIS IC TL9 DENGAN UMPAN BALIK TEGANGAN Argianka Satrio Putra *), Trias Andromeda, and Agung Warsito Departemen Teknik Elektro, Universitas Diponegoro Jl. Prof.

Lebih terperinci

BAB III SISTEM PENGUKURAN ARUS & TEGANGAN AC PADA WATTMETER DIGITAL

BAB III SISTEM PENGUKURAN ARUS & TEGANGAN AC PADA WATTMETER DIGITAL 34 BAB III SISTEM PENGUKURAN ARUS & TEGANGAN AC PADA WATTMETER DIGITAL Pada bab ini akan dijelaskan mengenai rancangan desain dan cara-cara kerja dari perangkat keras atau dalam hal ini adalah wattmeter

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT III.1. Diagram Blok Secara garis besar, diagram blok rangkaian pendeteksi kebakaran dapat ditunjukkan pada Gambar III.1 di bawah ini : Alarm Sensor Asap Mikrokontroler ATmega8535

Lebih terperinci

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt Jurnal Reka Elkomika 2337-439X Januari 2016 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.4 No.1 Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1

Lebih terperinci

ANALISIS SISTEM KONTROL MOTOR DC SEBAGAI FUNGSI DAYA DAN TEGANGAN TERHADAP KALOR

ANALISIS SISTEM KONTROL MOTOR DC SEBAGAI FUNGSI DAYA DAN TEGANGAN TERHADAP KALOR Akhmad Dzakwan, Analisis Sistem Kontrol ANALISIS SISTEM KONTROL MOTOR DC SEBAGAI FUNGSI DAYA DAN TEGANGAN TERHADAP KALOR (DC MOTOR CONTROL SYSTEMS ANALYSIS AS A FUNCTION OF POWER AND VOLTAGE OF HEAT) Akhmad

Lebih terperinci

TEORI DASAR. 2.1 Pengertian

TEORI DASAR. 2.1 Pengertian TEORI DASAR 2.1 Pengertian Dioda adalah piranti elektronik yang hanya dapat melewatkan arus/tegangan dalam satu arah saja, dimana dioda merupakan jenis VACUUM tube yang memiliki dua buah elektroda. Karena

Lebih terperinci

RANCANG BANGUN INVERTER PENGENDALI KECEPATAN MOTOR AC PADA KONVEYOR MENGGUNAKAN MIKROKONTROLER AT89S51

RANCANG BANGUN INVERTER PENGENDALI KECEPATAN MOTOR AC PADA KONVEYOR MENGGUNAKAN MIKROKONTROLER AT89S51 RANCANG BANGUN INVERTER PENGENDALI KECEPATAN MOTOR AC PADA KONVEYOR MENGGUNAKAN MIKROKONTROLER AT89S51 Tugas Akhir Untuk memenuhi persyaratan mencapai pendidikan Diploma III (DIII) Disusun oleh : SANYOTO

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB V SIGNALING. (CAS dan CCS7 Lihat Software) Oleh : Suherman, ST.

BAB V SIGNALING. (CAS dan CCS7 Lihat Software) Oleh : Suherman, ST. BAB V SIGNALING (CAS dan CCS7 Lihat Software) Oleh : Suherman, ST. Signaling Telepon Analog Signaling pada telepon analog adalah sinyal-sinyal yang terdengar pada saat melakukan panggilan telepon selain

Lebih terperinci

Bidang Information Technology and Communication 336 PERANCANGAN DAN REALISASI AUTOMATIC TIME SWITCH BERBASIS REAL TIME CLOCK DS1307 UNTUK SAKLAR LAMPU

Bidang Information Technology and Communication 336 PERANCANGAN DAN REALISASI AUTOMATIC TIME SWITCH BERBASIS REAL TIME CLOCK DS1307 UNTUK SAKLAR LAMPU Bidang Information Technology and Communication 336 PERANCANGAN DAN REALISASI AUTOMATIC TIME SWITCH BERBASIS REAL TIME CLOCK DS1307 UNTUK SAKLAR LAMPU Adhe Ninu Indriawan, Hendi Handian Rachmat Subjurusan

Lebih terperinci

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI Renny Rakhmawati, ST, MT Jurusan Teknik Elektro Industri PENS-ITS Kampus ITS Sukolilo Surabaya Phone 03-5947280

Lebih terperinci

Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya

Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya Peralatan Elektronika adalah sebuah peralatan yang terbentuk dari beberapa Jenis Komponen Elektronika dan masing-masing Komponen Elektronika tersebut

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

BAB III PERENCANAAN DAN PEMBUATAN ALAT

BAB III PERENCANAAN DAN PEMBUATAN ALAT BAB III PERENCANAAN DAN PEMBUATAN ALAT 3.1. Gambaran Umum Merupakan alat elektronika yang memiliki peranan penting dalam memudahkan pengendalian peralatan elektronik di rumah, kantor dan tempat lainnya.

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 21 BAB III PERANCANGAN SISTEM 3.1 Rangkaian Keseluruhan Sistem kendali yang dibuat ini terdiri dari beberapa blok bagian yaitu blok bagian plant (objek yang dikendalikan), blok bagian sensor, blok interface

Lebih terperinci

RANCANG BANGUN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA MENGGUNAKAN MODUL SURYA 50 WP SEBAGAI ENERGI CADANGAN PADA RUMAH TINGGAL

RANCANG BANGUN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA MENGGUNAKAN MODUL SURYA 50 WP SEBAGAI ENERGI CADANGAN PADA RUMAH TINGGAL RANCANG BANGUN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA MENGGUNAKAN MODUL SURYA 50 WP SEBAGAI ENERGI CADANGAN PADA RUMAH TINGGAL LAPORAN AKHIR Disusun Untuk Memenuhi Syarat Menyelesaikan Pendidikan Diploma

Lebih terperinci

III. METODE PENELITIAN. Pelaksanaan tugas akhir ini dilakukan di Laboratorium Terpadu Jurusan Teknik Elektro

III. METODE PENELITIAN. Pelaksanaan tugas akhir ini dilakukan di Laboratorium Terpadu Jurusan Teknik Elektro 22 III. METODE PENELITIAN A. Waktu dan Tempat. Pelaksanaan tugas akhir ini dilakukan di Laboratorium Terpadu Jurusan Teknik Elektro Fakultas Tekik, Universitas Lampung, yang dilaksanakan mulai bulan Oktober

Lebih terperinci

LAPORAN PRAKTIKUM SISTEM TELEKOMUNIKASI ANALOG PERCOBAAN OSILATOR. Disusun Oleh : Kelompok 2 DWI EDDY SANTOSA NIM

LAPORAN PRAKTIKUM SISTEM TELEKOMUNIKASI ANALOG PERCOBAAN OSILATOR. Disusun Oleh : Kelompok 2 DWI EDDY SANTOSA NIM LAPORAN PRAKTIKUM SISTEM TELEKOMUNIKASI ANALOG PERCOBAAN OSILATOR Disusun Oleh : Kelompok 2 DWI EDDY SANTOSA NIM. 1141160049 JARINGAN TELEKOMUNIKASI DIGITAL 2011/2012 POLITEKNIK NEGERI MALANG jl.soekarno

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1. Spesifikasi Sistem 4.1.1. Spesifikasi Baterai Berikut ini merupakan spesifikasi dari baterai yang digunakan: Merk: MF Jenis Konstruksi: Valve Regulated Lead Acid (VRLA)

Lebih terperinci

Oleh: Mike Yuliana PENS-ITS

Oleh: Mike Yuliana PENS-ITS Teknologi Switching Oleh: Mike Yuliana PENS-ITS TUJUAN DAN INSTRUKSIONAL KHUSUS Menjelaskan fungsi switching Menjelaskan fungsi dari sentral Telepon Membahas sejarah sentral Digital di Indonesia Menjelaskan

Lebih terperinci

PERCOBAAN 3 RANGKAIAN OP AMP

PERCOBAAN 3 RANGKAIAN OP AMP PERCOBAAN 3 RANGKAIAN OP AMP TUJUAN Mempelajari penggunaan operational amplifier Mempelajari rangkaian rangkaian standar operational amplifier PERSIAPAN Pelajari keseluruhan petunjuk praktikum untuk modul

Lebih terperinci

Tugas 01 Makalah Dasar Elektronika Komponen Elektronika

Tugas 01 Makalah Dasar Elektronika Komponen Elektronika Tugas 01 Makalah Dasar Elektronika Komponen Elektronika Disusun Oleh : Nama Jurusan : Rizkiansyah Rakhmadin : Teknik Elektro Mata Kuliah : Dasar Elektronika NPM : 132227024 Sekolah Tinggi Teknologi Jakarta

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode penelitian yang dilakukan pada tugas akhir ini adalah dengan metode eksperimen murni. Pada penelitian ini dilakukan perancangan alat ukur untuk mengukur

Lebih terperinci

BAB III KARAKTERISTIK SENSOR LDR

BAB III KARAKTERISTIK SENSOR LDR BAB III KARAKTERISTIK SENSOR LDR 3.1 Prinsip Kerja Sensor LDR LDR (Light Dependent Resistor) adalah suatu komponen elektronik yang resistansinya berubah ubah tergantung pada intensitas cahaya. Jika intensitas

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2012 sampai dengan Januari 2013.

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2012 sampai dengan Januari 2013. III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2012 sampai dengan Januari 2013. Perancangan alat penelitian dilakukan di Laboratorium Elektronika, Laboratorium

Lebih terperinci

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull BAB III RANCANGAN SMPS JENIS PUSH PULL 3.1 Pendahuluan Pada bab ini dijelaskan tentang perancangan power supply switching push pull konverter sebagai catu daya kontroler. Power supply switching akan mensupply

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Perancangan merupakan proses yang kita lakukan terhadap alat, mulai dari rancangan kerja rangkaian hingga hasil jadi yang akan difungsikan. Perancangan dan pembuatan alat merupakan

Lebih terperinci

BAB III PROSES PERANCANGAN

BAB III PROSES PERANCANGAN BAB III PROSES PERANCANGAN 3.1 Tinjauan Umum Perancangan prototipe sistem pengontrolan level air ini mengacu pada sistem pengambilan dan penampungan air pada umumnya yang terdapat di perumahan. Tujuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Programmable Logic Controller Proses di berbagai bidang industri manufaktur biasanya sangat kompleks dan melingkupi banyak subproses. Setiap subproses perlu dikontrol secara seksama

Lebih terperinci

KOMPONEN DASAR ELEKTRONIKA. Prakarya X

KOMPONEN DASAR ELEKTRONIKA. Prakarya X KOMPONEN DASAR ELEKTRONIKA Prakarya X Ukuran Komponen Elektronika Komponen Elektronika? Peralatan Elektronika adalah sebuah peralatan yang terbentuk dari beberapa Jenis Komponen Elektronika dan masing-masing

Lebih terperinci

DETEKTOR JUMLAH BARANG DI MINIMARKET MENGGUNAKAN SENSOR INFRARED DAN PPI 8255 SEBAGAI INTERFACE

DETEKTOR JUMLAH BARANG DI MINIMARKET MENGGUNAKAN SENSOR INFRARED DAN PPI 8255 SEBAGAI INTERFACE DETEKTOR JUMLAH BARANG DI MINIMARKET MENGGUNAKAN SENSOR INFRARED DAN PPI 8255 SEBAGAI INTERFACE Oleh : Ovi Nova Astria (04105001) Pembimbing : Didik Tristanto, S.Kom., M.Kom. PROGRAM STUDI SISTEM KOMPUTER

Lebih terperinci

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 sampai dengan

Lebih terperinci

LAPORAN. Oleh : NIM

LAPORAN. Oleh : NIM RANCANG BANGUN UPS KAPASITASS 300 WATT SELAMA 3 JAM LAPORAN TUGAS AKHIR Disusun Sebagai Syarat Menyelesaikann Pendidikan Program Diploma 3 Oleh : ANDIKA A. PASARIBU NIM. 1005031003 APRIMA A. MATONDANG

Lebih terperinci

BAB II KWH-METER ELEKTRONIK

BAB II KWH-METER ELEKTRONIK 3 BAB II KWH-METER ELEKTRONIK 2.1. UMUM Energi ialah besar daya terpakai oleh beban dikalikan dengan lamanya pemakaian daya tersebut atau daya yang dikeluarkan oleh pembangkit energi listrik dikalikan

Lebih terperinci

BAB I PENDAHULUAN. energi listrik yang memanfaatkan suatu kumparan arus untuk mengindra arus serta

BAB I PENDAHULUAN. energi listrik yang memanfaatkan suatu kumparan arus untuk mengindra arus serta BAB I PENDAHULUAN 1.1. LATAR BELAKANG Kilo Watt Hour Meter (KWH Meter) merupakan suatu alat ukur energi listrik yang memanfaatkan suatu kumparan arus untuk mengindra arus serta kumparan tegangan untuk

Lebih terperinci

BAB III METODOLOGI PENULISAN

BAB III METODOLOGI PENULISAN BAB III METODOLOGI PENULISAN 3.1 Blok Diagram Gambar 3.1 Blok Diagram Fungsi dari masing-masing blok diatas adalah sebagai berikut : 1. Finger Sensor Finger sensor berfungsi mendeteksi aliran darah yang

Lebih terperinci

APLIKASI MASTER SWITCH OTOMATIS BERBASIS MIKROKONTROLER AT89C51

APLIKASI MASTER SWITCH OTOMATIS BERBASIS MIKROKONTROLER AT89C51 ISSN: 1693-6930 113 APLIKASI MASTER SWITCH OTOMATIS BERBASIS MIKROKONTROLER AT89C51 Prastyono Eko Pambudi Jurusan Teknik Elektro Institut Sains & Teknologi (ISTA) AKPRIND Yogyakarta Kampus ISTA Jl. Kalisahak

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

Alat Uji Baterai 12V, 60AH Secara Elektronis

Alat Uji Baterai 12V, 60AH Secara Elektronis Alat Uji Baterai 12V, 60AH Secara Elektronis Hanny H Tumbelaka, Johannes Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra e-mail: tumbeh@petra.ac.id Abstrak Penelitian ini

Lebih terperinci

Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen

Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen Elektronik 2. Kompetensi Dasar : Memahami komponen dasar elektronika B. Pokok Bahasan : Komponen Dasar Elektronika

Lebih terperinci

Desain Repeater Saluran Telepon Kapasitas Satu Saluran

Desain Repeater Saluran Telepon Kapasitas Satu Saluran Desain Repeater Saluran Telepon Kapasitas Satu Saluran Suherman dan Hasdari Helmi Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik USU Abstrak: Pada jaringan telepon, sering terdapat parameter ideal

Lebih terperinci

PERANCANGAN RELE ARUS LEBIH DENGAN KARAKTERISTIK INVERS BERBASIS MIKROKONTROLER ATMEGA 8535

PERANCANGAN RELE ARUS LEBIH DENGAN KARAKTERISTIK INVERS BERBASIS MIKROKONTROLER ATMEGA 8535 No Vol: September 0 ISSN : 0-99 PERANCANGAN RELE ARUS LEBIH DENGAN KARAKTERISTIK INVERS BERBASIS MIKROKONTROLER ATMEGA 855 Cahayahati, Mirza Zoni Program Studi Teknik Elektro, Universitas Bung Hatta Program

Lebih terperinci

BAB III PERANCANGAN. Mikrokontroler ATMEGA Telepon Selular User. Gambar 3.1 Diagram Blok Sistem

BAB III PERANCANGAN. Mikrokontroler ATMEGA Telepon Selular User. Gambar 3.1 Diagram Blok Sistem BAB III PERANCANGAN 3.1 Prnsip Kerja Sistem Sistem yang akan dibangun, secara garis besar terdiri dari sub-sub sistem yang dikelompokan ke dalam blok-blok seperti terlihat pada blok diagram pada gambar

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Didalam merancang sistem yang akan dibuat ada beberapa hal yang perlu diperhatikan sebelumnya, pertama-tama mengetahui prinsip kerja secara umum dari sistem yang akan dibuat

Lebih terperinci

ANALYSIS OF CENTRAL OFFICE LINE INTERFACE CIRCUIT WITH PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX. Farrih Mustafid, Dr.

ANALYSIS OF CENTRAL OFFICE LINE INTERFACE CIRCUIT WITH PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX. Farrih Mustafid, Dr. ANALYSIS OF CENTRAL OFFICE LINE INTERFACE CIRCUIT WITH PRIVATE AUTOMATIC BRANCH EXCHANGE PANASONIC KX-T206SBX Farrih Mustafid, Dr. Denny Syarif S Undergraduate Program, 2009 Gunadarma University http://www.gunadarma.ac.id

Lebih terperinci