BAB IV HASIL PERCOBAAN DAN ANALISIS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV HASIL PERCOBAAN DAN ANALISIS"

Transkripsi

1 BAB IV HASIL PERCOBAAN DAN ANALISIS 4.1. Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang Penuh). A. Penyearah Setengah Gelombang Gambar 4.1. Tegangan Keluaran Kondisi Potensiometer Minimum (Penyearah Setengah Gelombang). 21

2 22 Gambar 4.2. Tegangan Keluaran Kondisi Potensiometer Tengah (Penyearah Setengah Gelombang). Gambar 4.3. Tegangan Keluaran Kondisi Potensiometer Maksimum (Penyearah Setengah Gelombang).

3 23 Gambar 4.4. Tegangan Thyristor Kondisi Potensiometer Minimum (Penyearah Setengah Gelombang). Gambar 4.5. Tegangan Thyristor Kondisi Potensiometer Tengah (Penyearah Setengah Gelombang).

4 24 Gambar 4.6. Tegangan Thyristor Kondisi Potensiometer Maksimum (Penyearah Setengah Gelombang). Percobaan ini menghasilkan bentuk penyearah setengah gelombang dengan sudut picu tertentu yang dikarenakan efek thyristor. Bentuk tegangan keluaran pada resistor beban dan tegangan thyristor yang diharapkan terlihat pada Gambar 4.7. Gambar 4.7. Tegangan Keluaran Resistor Beban dan Tegangan Thyristor. Hasil percobaan yang didapat sesuai dengan yang diharapkan dengan analisis berikut. Dari Gambar 3.1 tegangan masukan berupa tegangan AC 220 volt. Tegangan ini diperlemah dengan menggunakan Trafo menjadi 12 Vpp pada keluarannya.

5 25 Thyristor dapat diaktifkan dengan cara memicu kaki gerbang dengan pulsa pada saat kaki anoda Thyristor lebih positif dari kaki katoda. Pada rangkaian Gambar 3.1 tersebut, saat t=0 yang terjadi adalah kaki anoda Thyristor lebih positif dari kaki katoda. Tetapi Thyristor belum aktif karena belum dipicu. Jalan pemicuannya adalah arus yang mengalir melalui resistor 100 ohm 20 watt, mengalir juga menuju resistor 100 ohm lalu ke potensiometer dan mulai mengisi kapasitor. Setelah kapasitor penuh, maka arus menuju ke dioda. Dioda mengalami bias maju yang memberikan tegangan pada kaki gerbang sehingga Thyristor mulai terpicu. Thyristor yang dalam kondisi aktif ini menyebab rangkaian menjadi hubung singkat sehingga tegangan thyristor sama dengan nol. Untuk grafik tegangan Thyristor dapat dilihat pada Gambar 4.4, ini saat kondisi potensiometer bernilai minimum. Tetapi pada resistor beban (100 ohm 20 watt) berupa tegangan masukan mulai dari thyristor terpicu sampai kondisi tidak aktifnya yang dapat dilihat pada Gambar 4.1. Jika nilai potensiometer diubah, maka saat pemicuan pun juga akan berubah. Perubahan waktu pemicuan dengan besarnya potensiometer berbanding lurus, yaitu jika nilai potensiometer diperbesar maka pemicuan menjadi lama. Pada percobaan ini, pemicuan berada diantara 0 dan 90 derajat (Gambar 4.2), dikarenakan jika lebih dari 90 derajat tegangan kaki gerbang thyristor kecil dan tidak mampu membuat thyristor aktif (Gambar 4.3). Ini terjadi saat tegangan masukan pada siklus positif. Pada siklus negatif, Thyristor mengalami kondisi tidak aktif dengan sendirinya dikarenakan arus pada kaki katoda lebih positif daripada kaki anoda. Thyristor yang tidak aktif dapat dianalogikan sebagai hubung buka sehingga tegangan thyristor sama dengan tegangan masukan (Gambar 4.6) dan tegangan pada resistor beban sama dengan nol (Gambar 4.3).

6 26 B. Penyearah Gelombang Penuh Gambar 4.8. Tegangan Keluaran Kondisi Potensiometer Minimum (Penyearah Gelombang Penuh). Gambar 4.9. Tegangan Keluaran Kondisi Potensiometer Tengah (Penyearah Gelombang Penuh).

7 27 Gambar Tegangan Keluaran Kondisi Potensiometer Maksimum (Penyearah Gelombang Penuh). Gambar Tegangan Thyristor Kondisi Potensiometer Minimum (Penyearah Gelombang Penuh).

8 28 Gambar Tegangan Thyristor Kondisi Potensiometer Tengah (Penyearah Gelombang Penuh). Gambar Tegangan Thyristor Kondisi Potensiometer Maksimum (Penyearah Gelombang Penuh).

9 29 Pada percobaan ini, hasil yang diharapkan berbentuk penyearah gelombang penuh dengan sudut picu tertentu. Bentuk gelombangnya dapat dilihat pada Gambar 4.14 berikut. Gambar Tegangan Keluaran Resistor Beban dan Tegangan Thyristor. Hasil percobaan sesuai dengan yang diharapkan dengan analisis berikut. Baik saat siklus positif maupun negatif tegangan masukan, arus tetap mengalir melalui rangkaian dioda-dioda 1N4007 yang dapat juga disebut rangkaian diode-bridge penyearah. Sehingga untuk kedua siklus ini, kaki anoda thyristor selalu lebih positif dari kaki katodanya tiap pergantian siklus. Tegangan keluaran (tegangan resistor beban) berbentuk sinus yang sudah disearahkan (Gambar 4.8, Gambar 4.9, Gambar 4.10). Thyristor akan aktif saat pemicuan terjadi. Namun tidak sepenuhnya thyristor berada pada kondisi aktif secara terus menerus. Pada saat terjadi pergantian siklus sesaat (saat beda tegangan anoda dan katoda thyristor bernilai 0 V), menyebabkan thyristor tidak aktif sesaat. Setelah itu kaki anoda bernilai lebih positif dari kaki katoda pada siklus selanjutnya (siklus negatif tegangan masukan) dan hanya menunggu pemicuan untuk membuat thyristor aktif. Tegangan yang dapat memicu kaki gerbang bergantung pada nilai potensiometer. Untuk Gambar 4.8 didapatkan bila nilai potensiometer diambil minimum. Gambar 4.9 didapat saat potensiometer bernilai sekitar 14 kilo ohm. Dan Gambar 4.10 didapat saat potensiometer bernilai lebih dari 14 kilo ohm. Tegangan Thyristor membentuk grafik kebalikan dari

10 30 tegangan resistor beban. Ini terlihat pada Gambar 4.11, dimana tegangan thyristor bernilai nol yang menunjukkan kondisi Thyristor aktif atau bisa dianggap sebagai hubung singkat. Begitu juga dengan analisis grafik tegangan Thyristor pada Gambar 4.12 dan Gambar Topik 2. Rangkaian Osilasi Pencuplik. Percobaan ini menghasilkan gelombang DC yang berosilasi atau dapat juga dikatakan sebagai gelombang kotak seperti keluaran timer. Bentuk gelombang DC dan gelombang keluaran yang diharapkan terlihat pada Gambar Gambar Tegangan DC dan Tegangan Resistor Beban. Hasil percobaan menunjukkan bahwa tegangan resistor beban berosilasi dan membentuk gelombang kotak dengan analisis berikut. Pada rangkaian Gambar 3.3 dapat dibagi menjadi 2 bagian, yaitu rangkaian yang berfungsi sebagai pembangkit pulsa dan rangkaian yang berfungsi sebagai penghasil gelombang kotak.

11 31 Gambar Rangkaian Pembangkit Pulsa. Dari Gambar 4.16 dapat dianalisis bahwa saat pertama (t = 0s) UJT tidak aktif. Arus tidak mengalir dari kaki E menuju kaki B1 pada UJT. Arus mengalir dari sumber tegangan V bb menuju resistor 100 ohm menuju potensiometer kemudian mengisi kapasitor C1. Lama pengisian kapasitor dapat dilihat pada rumus 4.1. Pengisian Pengisian RC ( 100 R )(0.1uF) Potensiometer (4.1) Beda tegangan pada kaki B1 UJT terhadap bidang bumi menghasilkan tegangan 0 Volt (tidak ada tegangan). Setelah kapasitor C1 penuh, kapasitor C1 mengosongkan muatannya. Arus kemudian mengalir melalui kaki E menuju kaki B1 (UJT). Kondisi UJT menjadi aktif. Waktu yang dibutuhkan untuk mengosongkan kapasitor C1 dapat dilihat pada rumus 4.2. Pengosongan Pengosongan RC (4.2) RB 1(0.1uF) Nilai hambatan pada kaki B1 (R B1 ) dapat dihitung melalui lebar pulsa yang keluar dari UJT (tegangan V B1g ) terhadap bidang bumi. Rumus 4.2 yang merupakan waktu untuk membuat 1 pulsa V B1g sama dengan juga waktu pengosongan kapasitor

12 32 C1. Beda tegangan kaki B1 (UJT) terhadap bidang bumi memiliki nilai walaupun kecil. Dari rangkaian Gambar 3.3, variabel resitor (potensiometer) berfungsi sebagai pengatur lamanya pengisian kapasitor C1. Jika nilai variabel resistor tersebut diperbesar maka pengisian kapasitor berlangsung secara lama. Begitu pula sebaliknya, jika nilai variabel resistor diubah minimum, maka pengisian kapasitor berlangsung secara lebih cepat. Oleh karena itu, perubahan nilai potensiometer akan mengubah lebar sempitnya pulsa (waktu). Rangkaian pada Gambar 4.16 dapat dianalogikan dengan rangkaian timer yang menghasilkan nilai 1 (V cc ) dan nilai 0 (0 Volt). Namun yang membedakan dengan rangkaian timer adalah fasanya. Perbedaan ini akan dibahas pada topik peragaan selanjutnya. Bentuk gelombangnya dapat dilihat pada Gambar Gambar Gelombang pulsa yang merupakan keluaran rangkaian Gambar 4.16.

13 33 Gambar Rangkaian Penghasil Gelombang Kotak. Gambar 4.18 menunjukkan rangkaian penghasil gelombang kotak. Ini dikarenakan adanya thyristor yang berfungsi sebagai saklar. Saat kaki gerbang dipicu yang membuat thyristor aktif, maka tegangan keluaran (tegangan pada resistor beban) menjadi sama dengan Va. Tegangan ini dipertahankan sampai saat pengosongan induktor (dengan arus balik) dan kapasitor. Hal ini membuat thyristor tidak aktif dan nilai tegangan thyristor menjadi 0 Volt. Pengosongan induktor (dengan arus balik) dan kapasitor menyebabkan tegangan pada kaki anoda thyristor menjadi negatif daripada kaki katodanya. Kondisi ini dinamakan komutasi sendiri. Bentuk tegangan keluaran saat thyristor tidak aktif menjadi negatif karena tegangan pengosongan kapasitor dijumlahkan dengan tegangan pengosongan induktor lebih besar daripada tegangan supply. Duty-cycle Gambar 4.18 dapat diubah lebar sempitnya dengan cara mengubah nilai kapasitor atau induktor. Namun nilai kapasitor dan induktor pada peraga tetap karena tujuan dari percobaan ini adalah untuk menunjukkan osilasi Pencuplik. Agar membuat thyristor aktif, kaki gerbang membutuhkan suatu tegangan yang cukup. Namun keluaran dari rangkaian pulsa masih belum dapat mampu membuat thyristor on. Oleh karena itu, dibutuhkan transformator yang membuat tegangan pulsa menjadi lebih besar. Selain itu, fungsi dari transformator ini juga untuk membedakan bidang bumi dengan tujuan menyelamatkan komponen yang membutuhkan ground yang berbeda nilainya. Sedangkan dioda pada Gambar 3.3 berfungsi melindungi UJT

14 34 karena efek dari pengisian dan pengosongan arus balik induktor. Gambar 4.19 merupakan gelombang pada resistor beban. Gambar Gelombang keluaran pada resistor beban Topik 3. Rangkaian Pemicu Thyristor dengan Menggunakan UJT. Gambar 3.4 dan 3.5 dapat dibagi menjadi 2 bagian rangkaian, yaitu rangkaian penghasil pulsa dan rangkaian pemicuan thyristor. Gambar Rangkaian Penghasil Pulsa.

15 35 Tegangan Vin (220 Volt AC) pada Gambar 4.20 dikecilkan dengan menggunakan trafo. Kemudian sinyal AC yang telah diperkecil tersebut disearahkan menggunakan rangkaian diode-bridge. Itulah yang menjadi keluaran grafik tegangan V 1g. Gambar Tegangan V 1g. Setelah disearahkan, sinyal tersebut dibatasi sampai nilai puncak tegangan hanya 24 Volt. Seandainya nilai puncak tegangan lebih dari 24 Volt maka sinyal tersebut akan dipotong. Inilah fungsi dari dioda zener. Namun pada percobaan grafik tegangan V 1g tidak memiliki puncak lebih atau sama dengan 24 Volt, jadi tidak ada sinyal yang terpotong. Sinyal keluaran tersebut kemudian memasuki bagian terakhir yang menghasilkan pulsa dengan menggunakan komponen UJT. Awalnya UJT belum dapat diaktifkan karena arus mengalir untuk mengisi kapasitor. Setelah kapasitor penuh, kapasitor akan mengosongkan muatan. Inilah yang membuat UJT aktif. Kemudian sinyal keluaran V B1g menjadi berbentuk pulsa-pulsa. Grafik tegangan V 2g berbentuk sinyal gigi gergaji ini dikarenakan dampak pengisian pengosongan

16 36 kapasitor. Cara perhitungan lamanya pengisian dan pengosongan kapasitor dapat dilihat pada Persamaan 4.1 dan 4.2. Dari Persamaan 4.1 didapatkan waktu pengisian minimum 0.01 ms (saat potensiometer 0 ohm) dan waktu pengisian maksimum 50 ms (saat potensiometer 500 kilo ohm). Untuk pengosongan kapasitor karena nilai hambatan dalam UJT begitu kecil maka jika dijumlahkan dengan pengisian kapasitor dapat diabaikan. Perhitungan ini sesuai dengan hasil pada Gambar 4.22 dimana proses pengisian dan pengosongan kapasitor diperkirakan diantara 0.01 ms dan 50 ms. Pada Gambar 4.22 proses pengisian dan pengosongan kapasitor berlangsung selama 10 ms. Gambar Tegangan V 2g.

17 37 Gambar Tegangan V B1g. Kemudian grafik tegangan V B1g ini akan diperkuat dengan menggunakan transformer yang nantinya masuk melalui kaki gerbang thyristor. Tujuan perlu adanya transformer ini adalah untuk menguatkan tegangan V B1g dikarenakan adanya tegangan minimal yang harus dipenuhi kaki gerbang. Selain itu juga untuk membedakan bidang bumi atau tegangan minimum antara rangkaian penghasil pulsa dengan rangkaian pemicu thyristor. Dimana rangkaian penghasil pulsa memiliki tegangan minimum 0 Volt, sedangkan rangkaian pemicu thyristor memiliki tegangan minimum lebih kecil dari 0 Volt. Jika tidak menggunakan transformer ini maka rangkaian penghasil pulsa akan mengalami gangguan yang dapat merusak komponen. Dioda disebelah transformer bertujuan untuk mengantisipasi arus balik yang datang menuju UJT. Jika tidak ada dioda ini menyebabkan UJT menjadi panas, dan kelamaan UJT akan meledak karena arus berlebih. Rangkaian pemicu thyristor pada topik ini dapat dibedakan menjadi 2, yaitu penyearah setengah gelombang dan penyearah gelombang penuh. Ini bergantung

18 38 pada masukan tegangan awalnya. Walaupun memiliki bentuk gelombang yang berbeda, tetapi rangkaian pemicu thyristornya sama. Hal ini berarti bukan rangkaian tersebut yang mempengaruhi tetapi bergantung pada masukan yang disearahkan terlebih dahulu atau tidaknya. Gambar Rangkaian Pemicuan Thyristor. Pada penyearah setengah gelombang dan penyearah gelombang penuh dengan menggunakan UJT untuk memicu thyristor mendapatkan hasil yang sama dengan menggunakan rangkaian RC. Bentuk gelombang keluaran berupa penyearah setengah gelombang dengan sudut pemicuan tertentu. Bentuk gelombang keluaran resistor beban dan thyristor yang diharapkan dapat dilihat pada Gambar 4.25.

19 39 Gambar Tegangan Keluaran Resistor Beban dan Tegangan Thyristor Penyearah Gelombang Penuh dan Penyearah Setengah Gelombang. Pada percobaan ini hasilnya sama dengan yang diinginkan. Untuk analisisnya masing-masing antara penyearah setengah gelombang dan penyearah gelombang penuh dapat dilihat berikut. A. Penyearah Setengah Gelombang Penyearah setengah gelombang terjadi karena grafik tegangan keluaran mempunyai setengah siklus dari gelombang masukan. Ini dikarenakan siklus negatif tegangan masukan menghasilkan tegangan keluaran bernilai 0 Volt. Hal ini dapat dilihat pada Gambar 3.4, dimana sinyal tegangan masukan yang belum disearahkan masuk kedalam rangkaian pemicu thyristor melalui resistor beban 100 ohm 20 watt. Nilai 0 Volt ini karena thyristor tidak dapat aktif karena nilai tegangan pada kaki katodanya lebih besar daripada kaki anoda. Sehingga thyristor mendapat arus bias balik. Oleh karena itu, thyristor dapat dianggap hilang. Pada kondisi ini tegangan

20 40 keluaran (tegangan pada resistor beban) menjadi 0 Volt karena dapat dianggap hubung singkat. Sedangkan tegangan thyristor sama dengan tegangan masukan. Pada siklus positif, thyristor dapat aktif karena kaki anoda lebih positif daripada kaki katodanya. Sehingga thyristor mendapat arus bias maju dan thyristor dapat dianggap sebagai hubung singkat. Sementara itu grafik tegangan resistor beban sama dengan tegangan masukan. Tegangan thyristor sama dengan 0 Volt. Sudut picu ini bergantung dari letak pulsa yang diatur oleh variabel resistor atau potensiometer. Dimana variabel resistor ini menentukan waktu yang dibutuhkan untuk pengisian ataupun pengosongan. Berikut ini adalah gambar grafik tegangan thyristor dan tegangan resistor beban untuk 3 kondisi nilai variabel resistor. Sudut picu pada percobaan ini berada pada 0 derajat sampai dengan 180 derajat. Ini disebabkan efek dari UJT. Jika tanpa UJT hasil yang sama dengan Topik 1 akan didapatkan. Gambar Tegangan resistor beban saat potensiometer minimum.

21 41 Gambar Tegangan resistor beban saat potensiometer ditengah-tengah. Gambar Tegangan resistor beban saat potensiometer maksimum.

22 42 Gambar Tegangan thyristor saat potensiometer minimum. Gambar Tegangan thyristor saat potensiometer ditengah-tengah.

23 43 Gambar Tegangan thyristor saat potensiometer maksimum. B. Penyearah Gelombang Penuh Penyearah gelombang penuh memiliki bentuk gelombang positif baik dalam siklus positif maupun siklus negatif dari tegangan masukan. Ini dapat dilihat pada Gambar 3.5, dimana sinyal masukan yang berbentuk sinusoidal disearahkan terlebih dahulu sebelum masuk pada rangkaian pemicuan thyristor. Baik siklus positif maupun negatif tegangan pada kaki anoda lebih besar daripada kaki katoda sehingga thyristor mengalami bias maju yang membuat thyristor aktif. Saat tegangan thyristor bernilai 0 Volt, maka thyristor menjadi tidak aktif. Pada penyearah gelombang penuh ini juga memiliki sudut picu yang sama dengan penyearah setengah gelombang yaitu antara 0 derajat sampai dengan 180 derajat. Ini dikarenakan peranan UJT. Untuk memperbesar atau memperkecil sudut picu dilakukan dengan mengubah nilai variabel resistor. Berikut gambar grafik tegangan keluaran dan tegangan thyristor untuk 3 nilai variabel resistor yang berbeda.

24 44 Gambar Tegangan resistor beban saat potensiometer minimum. Gambar Tegangan resistor beban saat potensiometer ditengah-tengah.

25 45 Gambar Tegangan resistor beban saat potensiometer maksimum. Gambar Tegangan thyristor saat potensiometer minimum.

26 46 Gambar Tegangan thyristor saat potensiometer ditengah-tengah. Gambar Tegangan thyristor saat potensiometer maksimum.

27 Topik 4. Rangkaian Pemicuan Digital. Pada percobaan ini, thyristor dapat dipicu dengan menggunakan suatu rangkaian digital dengan bentuk tegangan thyristor yang diharapkan terlihat pada Gambar Gambar Tegangan Thyristor. Hasil yang didapat saat percobaan hampir sama bergantung dengan frekuensi yang diberikan akibat keluaran rangkaian timer. Untuk analisisnya dapat dilihat berikut. Dari Gambar 3.6, dapat dilihat bahwa pemicu thyristor berupa rangkaian digital. Rangkaian digital yang dipakai adalah rangkaian timer yang menggunakan IC NE555. Tegangan keluaran yang dihasilkan dari rangkaian timer berupa sinyal kotak. Tegangan yang digunakan pada rangkaian timer tersebut diantara 5 Volt dan 10 Volt. Batas minimum ini digunakan dengan tujuan agar keluaran rangkaian timer tersebut dapat membuat thyristor aktif. Sedangkan batas maksimum 10 Volt dengan tujuan agar tidak merusak IC NE555. Grafik tegangan SCR yang dihasilkan berupa grafik sinusoidal yang terkadang nilai positifnya terpotong. Ini karena frekuensi antara sinyal masukan dan sinyal timer tidak sama. Gambar Rangkaian Timer.

28 48 Pada Gambar 4.39, resistor RA berupa potensiometer dengan nilai batas kω, resistor RB 51 kω, dan kapasitor C bernilai 0.1uF. Dari ketiga nilai tersebut dapat digunakan untuk menghitung frekuensi gelombang kotak yang akan dikerluarkan dengan menggunakan Persamaan 4.3. f 1 ln 2*( RA 2RB)* C (4.3) Dari Persamaan 4.3 dapat diketahui frekuensi minimum dan maksimum yang bekerja pada rangkaian timer Gambar 4.39 secara teoritis yaitu sebagai berikut. f min ln 2*( *51000)*10 7 f min 23.97Hz f f max max 1 ln 2*(0 2*51000)* Hz 7 Namun pada praktek frekuensi maksimum melebihi teori dikarenakan toleransi komponen yang digunakan.

29 49 Gambar Tegangan keluaran timer dengan frekuensi 200 Hz. Gambar Tegangan SCR dengan frekuensi timer 200 Hz. Gambar Tegangan keluaran timer dengan frekuensi 100 Hz.

30 50 Gambar Tegangan SCR dengan frekuensi timer 100 Hz. Dari rangkaian Gambar 3.6 dapat dianalisis saat siklus positif, SCR aktif (tergantung dengan frekuensi timer) sehingga SCR dapat dianggap hubung singkat. Sehingga tegangan SCR (V SCR ) bernilai 0 Volt. Saat masukan berada pada siklus negatif maka SCR berada pada kondisi tidak aktif dan SCR dianggap sebagai hubung buka. Ini memberikan nilai tegangan SCR sama dengan tegangan masukan. Dutycycle pada percobaan ini tidak berpengaruh pada bentuk gelombang yang dikeluarkan Topik 5. Rangkaian Pengendali Tegangan AC dengan Menggunakan Kombinasi TRIAC-DIAC. Percobaan ini menghasilkan gelombang sinusoidal dengan sudut picu tertentu. Ini dikarenakan untuk kedua siklus yaitu positif dan negatif dari gelombang masukan dilanjutkan atau disearahkan pada siklus masing-masing dengan sudut picu yang sama. Gelombang keluaran resistor beban dan TRIAC yang diinginkan pada percobaan ini dapat dilihat pada Gambar 4.44.

31 51 Gambar Tegangan Keluaran Resistor Beban dan Tegangan TRIAC. Hasil yang didapat dari percobaan sesuai dengan yang diharapkan dengan analisis berikut. Rangkaian pada Gambar 3.7 menghasilkan grafik tegangan penyearah gelombang penuh yang dikendalikan dengan sebuah sudut picu TRIAC. Baik siklus positif maupun siklus negatif sinyal masukan yang melewati DIAC akan disearahkan menjadi berada pada siklus positif sebelum masuk menuju kaki gerbang TRIAC. Dengan kata lain sinyal masukan yang tadinya berbentuk sinusoidal disearahkan oleh DIAC. Saat kaki gerbang TRIAC terpicu maka TRIAC dapat dianggap sebagai hubung singkat. Jadi tegangan keluaran (tegangan resistor beban) sama dengan tegangan masukan. Di sini juga TRIAC selalu aktif baik pada siklus masukan positif maupun negatif setelah kaki gerbangnya terpicu. Bentuk tegangan keluaran juga berada sama dengan siklus tegangan masukan. Besar sudut picu dipengaruhi oleh lamanya pengisian dan pengosongan kapasitor yang dikendalikan oleh besarnya variabel resistor. Sudut picu yang dapat ditempuh pada percobaan ini 0 derajat sampai dengan 180 derajat. Terlebih dari itu tegangan gerbang TRIAC tidak memenuhi syarat untuk membuat TRIAC aktif. Sehingga TRIAC pada kondisi ini dapat dianggap sebagai hubung buka. Nilai tegangan keluaran menjadi 0 Volt. Sedangkan tegangan TRIAC sama dengan tegangan masukan.

32 52 Gambar Tegangan resistor beban saat potensiometer minimum. Gambar Tegangan resistor beban saat potensiometer ditengah-tengah.

33 53 Gambar Tegangan resistor beban saat potensiometer maksimum. Gambar Tegangan TRIAC saat potensiometer minimum.

34 54 Gambar Tegangan TRIAC saat potensiometer ditengah-tengah. Gambar Tegangan TRIAC saat potensiometer maksimum.

35 Topik 6. Penyearah Kendali Gelombang Penuh Fasa Tunggal. Penyearah kendali gelombang penuh fasa tunggal merupakan gabungan dari 2 penyearah setengah gelombang yang berbeda 180 derajat sehingga mendapatkan bentuk penyearah gelombang penuh. Hasil keluarannya sama dengan penyearah gelombang penuh murni. Bentuk gelombang tegangan keluaran resistor beban yang diharapkan terlihat pada Gambar Gambar Tegangan Keluaran Resistor Beban. Hasil percobaan ini sesuai dengan yang diharapkan Gambar 4.51 dengan analisis berikut. Pada rangkaian Gambar 3.8 dapat dibagi menjadi 2 bagian yaitu rangkaian penghasil pulsa dan rangkaian penyearah gelombang seperti Gambar 4.20 dan Pada percobaan ini ada 2 buah rangkaian penyearah setengah gelombang. Karena pada percobaan ini menggunakan 2 buah thyristor yang berjalan secara berkebalikan. Thyristor yang pertama berfungsi untuk menyearahkan siklus positif sinyal masukan dan memblokir siklus negatif. Sedangkan thyristor ke-2 memiliki peranan yang berkebalikan yaitu menyearahkan siklus negatif sinyal masukan dan memblokir siklus positifnya. Rangkaian penghasil pulsa terdiri dari penyearah gelombang, pemotong gelombang, dan pembentuk pulsa dengan menggunakan UJT. Pertama sinyal masukan yang berupa sinusoidal disearahkan terlebih dahulu. Dengan tujuan untuk membangkitkan 2 pulsa dalam 1 periodik. Pulsa inilah yang digunakan untuk memicu kaki gerbang pada thyristor agar dapat menghasilkan rangkaian penyearah gelombang penuh. Namun untuk memicu thyristor, kaki gerbang diberi sinyal impuls bukan sinyal sinusoidal yang telah disearahkan. Agar mendapatkan sinyal impuls tersebut maka sinyal sinusoidal yang telah disearahkan tersebut dibatasi nilai puncaknya. Dengan tujuan UJT yang digunakan tidak mendapatkan daya besar karena dapat membahayakan UJT tersebut. Sebagai

36 56 pengaman dipakai dioda zener 24 Volt. Jadi jika grafik tegangan masukan yang telah disearahkan melebihi 24 Volt akan dipotong sampai bernilai 24 Volt. Jika tegangan tersebut dibawah 24 Volt maka akan diloloskan. Kemudian barulah diproses untuk mendapatkan sinyal impuls atau dalam percobaan ini menyerupai impuls untuk memicu thyristor. Awalnya karena kapasitor baru memulai pengisian sehingga kapasitor dapat dianggap sebagai hubung singkat, maka arus mengalir menuju kapasitor dan mengisi kapasitor. Setelah batas pengisian kapasitor, kapasitor akan mengosongkan sehingga UJT mengalami bias maju. Ini membuat UJT menjadi aktif dan kapasitor mengalami pengosongan muatan. UJT yang aktif ini membuat tegangan yang masuk transformer menjadi ada (tidak 0). Namun karena bernilai kecil maka harus diperkuat agar kaki gerbang thyristor menjadi terpicu. Selain itu transformer ini juga berfungsi untuk membedakan bidang bumi atau nilai minimum yang berbeda antara rangkaian penghasil pulsa dan rangkaian penyearah gelombang. Dengan tujuan untuk melindungi UJT dari arus balik. Gambar Tegangan kapasitor.

37 57 Gambar Tegangan resistor beban saat potensiometer minimum. Karena tujuan dari percobaan topik ini adalah untuk mendapatkan penyearah gelombang penuh maka tidak cukup dengan menggunakan 1 thyristor saja. 1 thyristor hanya mengambil peranan pada setengah gelombangnya saja. Sedangkan thyristor yang lain berperan dalam setengah gelombang yang lainnya. Masukan thyristor ini juga berbeda karena yang satu berfungsi untuk menyearahkan siklus positif sinyal masukan dan yang lain menyearahkan siklus negatif masukan. Namun pulsa yang diberikan pada tiap kaki gerbang sama. Bila potensiometer diubah nilainya maka yang berubah hanya 1 buah thyristor saja karena kedua thyristor tersebut tidak sinkron.

38 58 Gambar Tegangan resistor beban saat potensiometer minimum. Gambar Tegangan resistor beban saat potensiometer ditengah-tengah.

39 59 Gambar Tegangan resistor beban saat potensiometer maksimum Topik 7. Tugas Rancang : Step-Down Chopper. Step-Down Chopper berfungsi mengubah tegangan masukan DC menjadi tegangan keluaran DC yang lebih kecil. Rangkaian Step-Down Chopper dapat direalisasikan dengan menggunakan IC MC Dengan gambar rangkaian seperti yang ditunjukkan pada Gambar 4.57.

40 60 Gambar Rangkaian Step-Down Chopper. MC34063 berfungsi sebagai pengatur dengan memvariasikan waktu t on dan siklus waktu switching keseluruhan. Analisis rangkaian Gambar 4.57 sebagai berikut. Awalnya transistor Q 1 dianggap tidak aktif, arus induktor I L menjadi 0, dan tegangan keluaran sama dengan tegangan keluaran yang seharusnya. Tegangan keluaran yang melalui kapasitor C o akan menurun dibawah nilai seharusnya karena arus itu adalah komponen yang satu-satunya menyuplai arus ke beban R L. Penurunan tegangan dipantau oleh rangkaian pengendali switching dan menyebabkan Q 1 saturasi. Arus induktor akan mengalir dari V in melalui Q 1 lalu induktor L kemudian menuju C o yang paralel dengan R L. Saat transistor Q 1 tidak aktif, medan magnet pada induktor mulai mengosongkan muatan sehingga membangkitkan tegangan balik yang membuat

41 61 dioda Schotkey menjadi bias maju. Arus puncak akan menurun seiring dengan energi yang disuplai untuk C o dan R L. Untuk merancang sebuah step-down yang dapat menghasilkan tegangan keluaran sebesar 15 V dari tegangan masukan 30 V, harus menentukan nilai-nilai resistor ( R 1, R 2, dan R SC ), kapasitor ( C T dan C O ), dan induktor ( L ). Sebelum menentukan nilai-nilai komponen tersebut, terlebih dahulu menentukan lama waktu siklus on ( t on menggunakan persamaan-persamaan berikut. ) dan siklus off ( t off ) berlangsung dengan t t on off V V in(min) out V V sat F V out (4.4) t on t off 1 f (4.5) ton toff t off (4.6) ton 1 t off t t t t (4.7) on on off off Nilai-nilai komponen dapat dihitung dengan menggunakan persamaanpersamaan berikut. I (4.8) pk 2 I out(max) R sc 0,3 I pk (4.9)

42 62 5 C T 4 10 t on (4.10) I PK ( ton toff ) C O (4.11) 8 V ripple ( Vpp) L V V V in(min) sat out min ton (4.12) I pk Nilai resistor R 1 dan R 2 ditentukan sendiri agar dapat menghasilkan tegangan keluaran yang sesuai dengan yang dikehendaki. Nilai tegangan keluaran dihitung dengan Persamaan (4.13) berikut. R R 2 V out 1,25 1 (4.13) 1 Dengan menggunakan Persamaan 4.4 hingga Persamaan 4.13 tersebut, diperoleh penghitungan dengan hasil sebagai berikut.

43 63 V V I V t t t t t C I R L C V in out 30V out( maz) ripple on off on off on T pk sc min O out t 15V V off t t t t 4 2 0,3 I I 100mV on on off pk V on PK 250mA I V in(min) 1 f t t 10 out off off in(min) ( t 1,25 1 V on V V I 1 20KHz t out(max) 8 10% 1 5 0,3 0,5 V sat R R 0,05ms 1, t on pk ripple 2 1 off sat t 27V F 2 off V 4 0,6 ) 250mA V out 33V 0,05ms 0,05ms 10 out t on 0,021ms 0,5A 0,5 0,05ms 8 0,1 1, ,4 27 0, ,376 28, K 10K ,5 0,5 6 15,4 11,5 s 0,028624ms ,03125mF 1,25 0,021376ms 1144,96 0,028624ms 12 1, V F 1,1 nf 0, mH Karena nilai-nilai komponen yang diperoleh dari hasil penghitungan tidak tersedia di pasaran dengan nilai yang sama persis, maka nilainya disesuaikan dengan yang ada di pasaran. Nilai-nilai komponen yang digunakan: R sc 0,5 C T 1, 1nF

44 64 C O 33 uf Lmin 0, 625mH Hasil tugas rancang dengan tegangan masukan (V in ) bernilai 28.6 Volt dapat membuat tegangan keluaran (V out ) bernilai 15 Volt. Begitu tegangan masukan diturunkan sampai diatas 15 Volt, tegangan keluaran masih bernilai 15 Volt. Setelah tegangan masukan berada kurang dari 15 Volt, maka tegangan keluaran juga akan turun dibawah 15 Volt. Bila diberi beban resistif, tidak ada dampak pada tegangan keluaran. Hal ini berarti tegangan keluaran berubah bila tegangan masukan berada dibawah spesifikasi tegangan keluaran yang diharapkan.

BAB III PERAGAAN Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang penuh).

BAB III PERAGAAN Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang penuh). BAB III PERAGAAN 3.1. Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang penuh). 3.1.1. Tujuan Mempelajari bentuk gelombang penyearah setengah

Lebih terperinci

Gambar 2.1. Rangkaian Komutasi Alami.

Gambar 2.1. Rangkaian Komutasi Alami. BAB II DASAR TEORI Thyristor merupakan komponen utama dalam peragaan ini. Untuk dapat membuat thyristor aktif yang utama dilakukan adalah membuat tegangan pada kaki anodanya lebih besar daripada kaki katoda.

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN ANALISIS

BAB IV HASIL PERCOBAAN DAN ANALISIS 48 BAB I HASIL PERCOBAAN DAN ANALISIS 4.1. HASIL PERCOBAAN 4.1.1. KARAKTERISTIK DIODA Karakteristik Dioda dengan Masukan DC Tabel 4.1. Karakteristik Dioda 1N4007 Bias Maju. S () L () I D (A) S () L ()

Lebih terperinci

PENYUSUNAN ALAT PERAGA UNTUK MATAKULIAH ELEKTRONIKA DAYA. oleh Robby Wijaya Wiminto NIM :

PENYUSUNAN ALAT PERAGA UNTUK MATAKULIAH ELEKTRONIKA DAYA. oleh Robby Wijaya Wiminto NIM : PENYUSUNAN ALAT PERAGA UNTUK MATAKULIAH ELEKTRONIKA DAYA oleh Robby Wijaya Wiminto NIM : 612006005 Skripsi Untuk melengkapi salah satu syarat memperoleh Gelar Sarjana Teknik Program Studi Teknik Elektronika

Lebih terperinci

BAB VI PEMANGKAS (CHOPPER)

BAB VI PEMANGKAS (CHOPPER) BAB VI PEMANGKAS (CHOPPER) Elektronika Daya ALMTDRS 2014 KOMPETENSI DASAR Setelah mengikuti materi ini diharapkan mahasiswa memiliki kompetensi: Menguasai dasar prinsip kerja chopper penaik tegangan (step-up),

Lebih terperinci

Mekatronika Modul 8 Praktikum Komponen Elektronika

Mekatronika Modul 8 Praktikum Komponen Elektronika Mekatronika Modul 8 Praktikum Komponen Elektronika Hasil Pembelajaran : Mahasiswa dapat memahami dan melaksanakan praktikum komponen elektronika Tujuan Bagian ini memberikan informasi mengenai penerapan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka 59 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Flow Chart Perancangan dan Pembuatan Alat Mulai Tinjauan pustaka Simulasi dan perancangan alat untuk pengendali kecepatan motor DC dengan kontroler PID analog

Lebih terperinci

DIODA KHUSUS. Pertemuan V Program Studi S1 Informatika ST3 Telkom

DIODA KHUSUS. Pertemuan V Program Studi S1 Informatika ST3 Telkom DIODA KHUSUS Pertemuan V Program Studi S1 Informatika ST3 Telkom Tujuan Pembelajaran Setelah mengikuti kuliah ini, mahasiswa mampu: mengetahui, memahami dan menganalisis karakteristik dioda khusus Memahami

Lebih terperinci

Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa

Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa Indah Pratiwi Surya #1, Hafidh Hasan *2, Rakhmad Syafutra Lubis #3 # Teknik Elektro dan Komputer, Universitas Syiah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

Solusi Ujian 1 EL2005 Elektronika. Sabtu, 15 Maret 2014

Solusi Ujian 1 EL2005 Elektronika. Sabtu, 15 Maret 2014 Solusi Ujian 1 EL2005 Elektronika Sabtu, 15 Maret 2014 1. Pendahuluan: Model Penguat (nilai 15) Rangkaian penguat pada Gambar di bawah ini memiliki tegangan output v o sebesar 100 mv pada saat saklar dihubungkan.

Lebih terperinci

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan III-1 BAB III PERANCANGAN ALAT 3.1. Perancangan Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan menghasilkan suatu sistem yang dapat mengontrol cahaya pada lampu pijar untuk pencahayaanya

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN RANGKAIAN

BAB III ANALISA DAN PERANCANGAN RANGKAIAN BAB III ANALISA DAN PERANCANGAN RANGKAIAN 3.1. Blok Diagram Sistem Untuk mempermudah penjelasan dan cara kerja alat ini, maka dibuat blok diagram. Masing-masing blok diagram akan dijelaskan lebih rinci

Lebih terperinci

BAB II LANDASAN SISTEM

BAB II LANDASAN SISTEM BAB II LANDASAN SISTEM Berikut adalah penjabaran mengenai sistem yang dibuat dan teori-teori ilmiah yang mendukung sehingga dapat terealisasi dengan baik. Pada latar belakang penulisan sudah dituliskan

Lebih terperinci

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali BAB III PERANCANGAN 3.1. Blok Diagram Pada dasarnya rangkaian elektronik penggerak kamera ini menggunakan beberapa rangkaian analok yang terbagi menjadi beberapa blok rangkaian utama, yaitu, rangkaian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

BAB I SEMIKONDUKTOR DAYA

BAB I SEMIKONDUKTOR DAYA BAB I SEMIKONDUKTOR DAYA KOMPETENSI DASAR Setelah mengikuti materi ini diharapkan mahasiswa memiliki kompetensi: Menguasai karakteristik semikonduktor daya yang dioperasikan sebagai pensakelaran, pengubah,

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan mengenai perancangan dari perangkat keras dan perangkat lunak yang digunakan pada alat ini. Dimulai dari uraian perangkat keras lalu uraian perancangan

Lebih terperinci

1. PRINSIP KERJA CATU DAYA LINEAR

1. PRINSIP KERJA CATU DAYA LINEAR 1. PRINSIP KERJA CATU DAYA LINEAR Perangkat elektronika mestinya dicatu oleh suplai arus searah DC (direct current) yang stabil agar dapat bekerja dengan baik. Baterai atau accu adalah sumber catu daya

Lebih terperinci

SOLUSI PR-08 (Thyristor dan UJT)

SOLUSI PR-08 (Thyristor dan UJT) SOLUSI PR-08 (Thyristor dan UJT) SOAL- Tinjau rangkaian listrik di bawah ini. Sumber tegangan V i (t) = V m sin ωt merupakan tegangan jala-jala listrik (PLN) di mana Vm = 220 2 volt, dan RL mewakili resistansi

Lebih terperinci

Politeknik Negeri Bandung

Politeknik Negeri Bandung LAPORAN PRAKTIKUM 6 CLIPPER Anggota Kelompok Kelas Jurusan Program Studi : 1. M. Ridwan Al Idrus 2. Zuhud Islam Shofari : 1A TEL : Teknik Elektro : D3 Teknik Elektronika Politeknik Negeri Bandung 2017

Lebih terperinci

TUJUAN ALAT DAN BAHAN

TUJUAN ALAT DAN BAHAN TUJUAN 1. Mengetahui prinsip penyearah setengah gelombang tanpa menggunakan kapasitor 2. Mengetahui prinsip penyearah setengah gelombang menggunakan kapasitor. ALAT DAN BAHAN 1. Dioda 1N4007 1 buah 2.

Lebih terperinci

NAMA : VICTOR WELLYATER NPM : : DR. SETIYONO,ST,.MT : BAMBANG DWINANTO,ST,.MT

NAMA : VICTOR WELLYATER NPM : : DR. SETIYONO,ST,.MT : BAMBANG DWINANTO,ST,.MT RANCANG BANGUN PENGENDALIAN MOTOR DC BERBASIS UNIJUNCTION TRANSISTOR (UJT) SEBAGAI PENGATUR KONDUKTIVITAS SILICON CONTROLLED RECTIFIER (SCR) DALAM SUPLAI TEGANGAN INPUT NAMA : VICTOR WELLYATER NPM : 18410369

Lebih terperinci

PENYEARAH SATU FASA TERKENDALI

PENYEARAH SATU FASA TERKENDALI FAKULTAS TEKNIK UNP PENYEARAH SATU FASA TERKENDALI JOBSHEET/LABSHEET JURUSAN : TEKNIK ELEKTRO NOMOR : VI PROGRAM STUDI :DIV WAKTU : x 50 MENIT MATA KULIAH /KODE : ELEKTRONIKA DAYA / TEI05 TOPIK : PENYEARAH

Lebih terperinci

TUGAS DAN EVALUASI. 2. Tuliska macam macam thyristor dan jelaskan dengan gambar cara kerjanya!

TUGAS DAN EVALUASI. 2. Tuliska macam macam thyristor dan jelaskan dengan gambar cara kerjanya! TUGAS DAN EVALUASI 1. Apa yang dimaksud dengan elektronika daya? Elektronika daya dapat didefinisikan sebagai penerapan elektronika solid-state untuk pengendalian dan konversi tenaga listrik. Elektronika

Lebih terperinci

Simulasi Karakteristik Inverter IC 555

Simulasi Karakteristik Inverter IC 555 Simulasi Karakteristik Inverter IC 555 Affan Bachri *) *) Dosen Program Studi Teknik Elektro Universitas Islam Lamongan Makalah ini menyajikan sebuah rangkaian inverter yang dibangun dari multivibrator

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tahap Proses Perancangan Alat Penelitian ini didasarkan pada masalah yang bersifat aplikatif, yang dapat dirumuskan menjadi 3 permasalahan utama, yaitu bagaimana merancang

Lebih terperinci

PENYEARAH SATU FASA TERKENDALI

PENYEARAH SATU FASA TERKENDALI FAKULTAS TEKNIK UNP PENYEARAH SATU FASA TERKENDALI JOBSHEET/LABSHEET JURUSAN : TEKNIK ELEKTRO NOMOR : VIII PROGRAM STUDI :DIV WAKTU : x 5 MENIT MATA KULIAH /KODE : ELEKTRONIKA DAYA 1/ TEI51 TOPIK : PENYEARAH

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. Gambar 4.1 Blok Diagram Sistem. bau gas yang akan mempengaruhi nilai hambatan internal pada sensor gas

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. Gambar 4.1 Blok Diagram Sistem. bau gas yang akan mempengaruhi nilai hambatan internal pada sensor gas BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Blok Diagram Sistem Sensor Gas Komparator Osilator Penyangga/ Buffer Buzzer Multivibrator Bistabil Multivibrator Astabil Motor Servo Gambar 4.1 Blok Diagram

Lebih terperinci

Herlambang Sigit Pramono Staf Pengajar Fakultas Teknik Universitas Negeri Yogyakarta

Herlambang Sigit Pramono Staf Pengajar Fakultas Teknik Universitas Negeri Yogyakarta SISTEM PEMICU OPTIS IC 555-MOC 3 SEBAGAI PENGENDALI DAYA LISTRIK Herlambang Sigit Pramono Staf Pengajar Fakultas Teknik Universitas Negeri Yogyakarta herlambangpramono@yahoo.com Abstrak Pada rangkaian

Lebih terperinci

PERCOBAAN 5 REGULATOR TEGANGAN MODE SWITCHING. 1. Tujuan. 2. Pengetahuan Pendukung dan Bacaan Lanjut. Konverter Buck

PERCOBAAN 5 REGULATOR TEGANGAN MODE SWITCHING. 1. Tujuan. 2. Pengetahuan Pendukung dan Bacaan Lanjut. Konverter Buck PEROBAAN 5 REGUATOR TEGANGAN MODE SWITHING 1. Tujuan a. Mengamati dan mengenali prinsip regulasi tegangan mode switching b. Mengindetifikasi pengaruh komponen pada regulator tegangan mode switching c.

Lebih terperinci

Elektronika Daya ALMTDRS 2014

Elektronika Daya ALMTDRS 2014 12 13 Gambar 1.1 Diode: (a) simbol diode, (b) karakteristik diode, (c) karakteristik ideal diode sebagai sakaler 14 2. Thyristor Semikonduktor daya yang termasuk dalam keluarga thyristor ini, antara lain:

Lebih terperinci

controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas

controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas SCR, TRIAC dan DIAC Thyristor berakar kata dari bahasa Yunani yang berarti pintu'. Dinamakan demikian barangkali karena sifat dari komponen ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk

Lebih terperinci

BAHAN PERKULIAHAN. Disusun Oleh : Istanto W. Djatmiko

BAHAN PERKULIAHAN. Disusun Oleh : Istanto W. Djatmiko BAHAN PERKULIAHAN Disusun Oleh : Istanto W. Djatmiko PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA JANUARI 2007 KATA PENGANTAR Praktik Kendali Elektronis (DEL 230) dalam Kurikulum

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI. Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu baik secara

BAB III PERANCANGAN DAN REALISASI. Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu baik secara BAB III PERANCANGAN DAN REALISASI 3.1. Gambaran Umum Sistem Sistem yang dirancang merupakan sistem pengatur intensitas cahaya lampu Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu

Lebih terperinci

KENDALI FASA THYRISTOR DAN TRIAC TANPA TEGANGAN EKSTERNAL UNTUK PRAKTIKUM ELEKTRONIKA DAYA. Oleh: Drs. S u n o m o, M.T.

KENDALI FASA THYRISTOR DAN TRIAC TANPA TEGANGAN EKSTERNAL UNTUK PRAKTIKUM ELEKTRONIKA DAYA. Oleh: Drs. S u n o m o, M.T. KENDALI FASA THYRISTOR DAN TRIAC TANPA TEGANGAN EKSTERNAL UNTUK PRAKTIKUM ELEKTRONIKA DAYA Oleh: Drs. S u n o m o, M.T. Jurusan Pendidikan Teknik Elektro FT UNY ABSTRAK Penggunaan IC TCA 785 dan trafo

Lebih terperinci

KENDALI FASA THYRISTOR SEBAGAI SISTEM PENYEARAH TIGA FASA DENGAN PENYINKRON DISKRIT UNTUK PRAKTIKUM ELEKTRONIKA DAYA

KENDALI FASA THYRISTOR SEBAGAI SISTEM PENYEARAH TIGA FASA DENGAN PENYINKRON DISKRIT UNTUK PRAKTIKUM ELEKTRONIKA DAYA 1 KENDALI FASA THYRISTOR SEBAGAI SISTEM PENYEARAH TIGA FASA DENGAN PENYINKRON DISKRIT UNTUK PRAKTIKUM ELEKTRONIKA DAYA OLEH S U N O M O, ARIADIE CHANDRA NUGRAHA Praktikum Eletronika Daya untuk sistem tiga

Lebih terperinci

BAB I SEMIKONDUKTOR DAYA

BAB I SEMIKONDUKTOR DAYA Semikonduktor Daya 2010 BAB I SEMIKONDUKTOR DAYA KOMPETENSI DASAR Setelah mengikuti materi ini diharapkan mahasiswa memiliki kompetensi: Menguasai karakteristik semikonduktor daya yang dioperasikan sebagai

Lebih terperinci

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt

Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1 Fasa 125 Watt Jurnal Reka Elkomika 2337-439X Januari 2016 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.4 No.1 Perancangan Dan Realisasi Converter Satu Fasa untuk Baterai Menjalankan Motor AC 1

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Inverter dan Aplikasi Inverter daya adalah sebuah perangkat yang dapat mengkonversikan energi listrik dari bentuk DC menjadi bentuk AC. Diproduksi dengan segala bentuk dan ukuran,

Lebih terperinci

PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER)

PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER) PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER) Rangkaian Penyearah Dioda (Diode Rectifier) Peralatan kecil portabel kebanyakan menggunakan baterai sebagai sumber dayanya, namun sebagian besar

Lebih terperinci

BAB III RANGKAIAN PEMICU DAN KOMUTASI

BAB III RANGKAIAN PEMICU DAN KOMUTASI BAB III RANGKAIAN PEMICU DAN KOMUTASI KOMPETENSI DASAR Setelah mengikuti materi ini diharapkan mahasiswa memiliki kompetensi: Menguasai prinsip kerja rangkaian pemicu dan rangkaian komutasi. Menguasai

Lebih terperinci

Mekatronika Modul 5 Triode AC (TRIAC)

Mekatronika Modul 5 Triode AC (TRIAC) Mekatronika Modul 5 Triode AC (TRIAC) Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Triode AC (TRIAC) Tujuan Bagian ini memberikan informasi mengenai karakteristik dan

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

PENDIDIKAN PROFESI GURU PENDIDIKAN TEKNIK ELEKTRO

PENDIDIKAN PROFESI GURU PENDIDIKAN TEKNIK ELEKTRO PENDIDIKAN PROFESI GURU PENDIDIKAN TEKNIK ELEKTRO KEMENTERIAN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRO 2010 KATA PENGANTAR Syukur Alhamdulillah, penulis

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian dan penulisan laporan tugas akhir dilakukan di Laboratorium

BAB III METODE PENELITIAN. Penelitian dan penulisan laporan tugas akhir dilakukan di Laboratorium BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dan penulisan laporan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dan mulai dilaksanakan pada Bulan

Lebih terperinci

THYRISTOR. SCR, TRIAC dan DIAC. by aswan hamonangan

THYRISTOR. SCR, TRIAC dan DIAC. by aswan hamonangan THYRISTOR SCR, TRIAC dan DIAC by aswan hamonangan Thyristor berakar kata dari bahasa Yunani yang berarti pintu'. Dinamakan demikian barangkali karena sifat dari komponen ini yang mirip dengan pintu yang

Lebih terperinci

BAB I 1. BAB I PENDAHULUAN

BAB I 1. BAB I PENDAHULUAN BAB I 1. BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan konverter daya yang efisien dan berukuran kecil terus berkembang di berbagai bidang. Mulai dari charger baterai, catu daya komputer, hingga

Lebih terperinci

EKSPERIMEN VIII PEMBANGKIT GELOMBANG (OSILATOR)

EKSPERIMEN VIII PEMBANGKIT GELOMBANG (OSILATOR) EKSPERIMEN VIII PEMBANGKIT GELOMBANG (OSILATOR) PENGANTAR Banyak sistem elektronik menggunakan rangkaian yang mengubah energi DC menjadi berbagai bentuk AC yang bermanfaat. Osilator, generator, lonceng

Lebih terperinci

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA)

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA) SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA) 1. Komponen elektronik yang berfungsi untuk membatasi arus listrik yang lewat dinamakan A. Kapasitor D. Transistor B. Induktor

Lebih terperinci

LAB SHEET ILMU BAHAN DAN PIRANTI

LAB SHEET ILMU BAHAN DAN PIRANTI JURUSAN TEKNIK ELEKTRO NOMOR : O1 MATA KULIAH ILMU BAHAN DAN PIRANTI TOPIK :KARAKTERISTIK DIODA I. TUJUAN 1. Pengenalan komponen elektronika dioda semi konduktor 2. Mengetahui karakteristik dioda semi

Lebih terperinci

KONVERTER AC-DC (PENYEARAH)

KONVERTER AC-DC (PENYEARAH) KONVERTER AC-DC (PENYEARAH) Penyearah Setengah Gelombang, 1- Fasa Tidak terkontrol (Uncontrolled) Beban Resistif (R) Beban Resistif-Induktif (R-L) Beban Resistif-Kapasitif (R-C) Terkontrol (Controlled)

Lebih terperinci

Penyusun: Isdawimah,ST.,MT dan Ismujianto,ST.,MT Prodi D-IV Teknik Otomasi Listrik Industri

Penyusun: Isdawimah,ST.,MT dan Ismujianto,ST.,MT Prodi D-IV Teknik Otomasi Listrik Industri Penyusun: Isdawimah,ST.,MT dan Ismujianto,ST.,MT Prodi D-IV Teknik Otomasi Listrik Industri Jurusan Teknik Elektro Politeknik Negeri Jakarta-Tahun 2013 DAFTAR ISI Modul Pokok Bahasan Halaman 1 Rangkaian

Lebih terperinci

JOBSHEET SENSOR ULTRASONIC

JOBSHEET SENSOR ULTRASONIC JOBSHEET SENSOR ULTRASONIC A. TUJUAN 1) Mempelajari prinsip kerja dari ultrasonic ranging module HC-SR04. 2) Menguji ultrasonic ranging module HC-SR04 terhadap besaran fisis. 3) Menganalisis susunan rangkaian

Lebih terperinci

Nama Praktikan :... NIM :... Program Studi :... Kelas :... Dosen Pengampu :...

Nama Praktikan :... NIM :... Program Studi :... Kelas :... Dosen Pengampu :... Nama Praktikan :... NIM :... Program Studi :... Kelas :... Dosen Pengampu :... LABORATORIUM ELEKTRONIKA DAYA JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA 2015 Tatap Muka

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 32 3.1 Langkah-langkah Perancangan Langkah dalam membuat rancangan alat kontrol menormalkan fungsi sein pada mobil saat lampu hazard difungsikan ini dilandasi dengan ide awal karena

Lebih terperinci

BAB 10 ELEKTRONIKA DAYA

BAB 10 ELEKTRONIKA DAYA 10.1 Konversi Daya BAB 10 ELEKTRONIKA DAYA Ada empat tipe konversi daya atau ada empat jenis pemanfatan energi yang berbedabeda Gambar 10.1. Pertama dari listrik PLN 220 V melalui penyearah yang mengubah

Lebih terperinci

Adaptor/catu daya/ Power Supply

Adaptor/catu daya/ Power Supply Adaptor/catu daya/ merupakan sumber tegangan DC. Sumber tegangan DC ini dibutuhkan oleh berbagai macam rangkaian elektronika untuk dapat dioperasikan. Rangkaian inti dari catu daya / Power Supply ini adalah

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Metode penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen murni. Eksperimen dilakukan untuk mengetahui pengaruh frekuensi medan eksitasi terhadap

Lebih terperinci

PENYEARAH ARUS S1 INFORMATIKA ST3 TELKOM PURWOKERTO

PENYEARAH ARUS S1 INFORMATIKA ST3 TELKOM PURWOKERTO PENYEARAH ARUS S1 INFORMATIKA ST3 TELKOM PURWOKERTO 1. Gelombang Sinus Bentuk gelombang sinus ditunjukkan seperti pada Gambar dibawah ini. Gelombang sinus tersebut sesuai dengan persamaan v = p sin θ dimana

Lebih terperinci

BAB IV PENGUKURAN DAN ANALISA. Pengukuran dan analisa dilakukan bertujuan untuk mendapatkan

BAB IV PENGUKURAN DAN ANALISA. Pengukuran dan analisa dilakukan bertujuan untuk mendapatkan BAB IV PENGUKURAN DAN ANALISA Pengukuran dan analisa dilakukan bertujuan untuk mendapatkan spesifikasi alat sehingga memudahkan menganalisa rangkaian. Pengukuran dilakukan pada setiap titik pengukuran

Lebih terperinci

VERONICA ERNITA K. ST., MT. Pertemuan ke - 5

VERONICA ERNITA K. ST., MT. Pertemuan ke - 5 VERONICA ERNITA K. ST., MT Pertemuan ke - 5 DIODA SEMIKONDUKTOR Resistor merupakan sebuah piranti linear karena grafik arus terhadap tegangan merupakan garis lurus. Berbeda dengan dioda. Dioda merupakan

Lebih terperinci

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam)

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam) Kumpulan Soal Fisika Dasar II Universitas Pertamina (16-04-2017, 2 jam) Materi Hukum Biot-Savart Hukum Ampere GGL imbas Rangkaian AC 16-04-2017 Tutorial FiDas II [Agus Suroso] 2 Hukum Biot-Savart Hukum

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Pengujian dan Analisis Pengujian ini bertujuan untuk mengukur fungsional hardware dan software dalam sistem yang akan dibangun. Pengujian ini untuk memeriksa fungsi dari

Lebih terperinci

Materi 2: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

Materi 2: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA Materi 2: ELEKTRONIKA DAYA 52150492 (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA KONVERTER AC KE DC Rangkaian Penyearah Dioda (Rectifier) PENYEARAH SETENGAH GELOMBANG

Lebih terperinci

MODUL 03 RANGKAIAN DIODA PRAKTIKUM ELEKTRONIKA TA 2017/2018

MODUL 03 RANGKAIAN DIODA PRAKTIKUM ELEKTRONIKA TA 2017/2018 MOUL 03 RANGKAIAN IOA PRAKTIKUM ELEKTRONIKA TA 2017/2018 LABORATORIUM ELEKTRONIKA AN INSTRUMENTASI PROGRAM STUI FISIKA FAKULTAS MATEMATIKA AN PENGETAHUAN ALAM INSTITUT TEKNOLOGI BANUNG Riwayat Revisi Rev.

Lebih terperinci

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan BAB III PERANCANGAN ALAT 3.1 PERANCANGAN PERANGKAT KERAS Setelah mempelajari teori yang menunjang dalam pembuatan alat, maka langkah berikutnya adalah membuat suatu rancangan dengan tujuan untuk mempermudah

Lebih terperinci

MODUL PRAKTIKUM ELEKTRONIKA DAYA

MODUL PRAKTIKUM ELEKTRONIKA DAYA MODUL RAKTKUM ELEKTRONKA DAYA Laboratorium Sistem Tenaga - Teknik Elektro MODUL RANGKAAN DODA & ENYEARAH 1. endahuluan Dioda semikonduktor merupakan komponen utama yang digunakan untuk mengubah tegangan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Perancangan Dan Pembuatan Mesin preheat pengelasan gesek dua buah logam berbeda jenis yang telah selesai dibuat dan siap untuk dilakukan pengujian dengan beberapa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas dasar teori yang berhubungan dengan perancangan skripsi antara lain fungsi dari function generator, osilator, MAX038, rangkaian operasional amplifier, Mikrokontroler

Lebih terperinci

hubungan frekuensi sumber tegangan persegi dengan konstanta waktu ( RC )?

hubungan frekuensi sumber tegangan persegi dengan konstanta waktu ( RC )? 1. a. Gambarkan rangkaian pengintegral RC (RC Integrator)! b. Mengapa rangkaian RC diatas disebut sebagai pengintegral RC dan bagaimana hubungan frekuensi sumber tegangan persegi dengan konstanta waktu

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1. Blok diagram Dibawah ini adalah gambar blok diagram dari sistem audio wireless transmitter menggunakan laser yang akan di buat : Audio player Transmitter Speaker Receiver

Lebih terperinci

PERCOBAAN 3a MULTIVIBRATOR

PERCOBAAN 3a MULTIVIBRATOR PERCOBAAN 3a MULTIVIBRATOR 3.1. TUJUAN : Setelah melaksanakan percobaan ini mahasiswa diharapkan mampu : Menjelaskan prinsip kerja rangkaian multivibrator sebagai pembangkit clock Membedakan rangkaian

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN ANALISA

BAB IV HASIL PERCOBAAN DAN ANALISA BAB IV HASIL PERCOBAAN DAN ANALISA 4.1 Amplitude Modulation and Demodulation 4.1.1 Hasil Percobaan Tabel 4.1. Hasil percobaan dengan f m = 1 KHz, f c = 4 KHz, A c = 15 Vpp No V m (Volt) E max (mvolt) E

Lebih terperinci

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan,

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, 5 II. TINJAUAN PUSTAKA 2.1 Sistem kontrol (control system) Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, memerintah dan mengatur keadaan dari suatu sistem. [1] Sistem kontrol terbagi

Lebih terperinci

Adaptor. Rate This PRINSIP DASAR POWER SUPPLY UMUM

Adaptor. Rate This PRINSIP DASAR POWER SUPPLY UMUM Adaptor Rate This Alat-alat elektronika yang kita gunakan hampir semuanya membutuhkan sumber energi listrik untuk bekerja. Perangkat elektronika mestinya dicatu oleh suplai arus searah DC (direct current)

Lebih terperinci

BAB II DASAR TEORI 2.1. Teori Catu Daya Tak Terputus

BAB II DASAR TEORI 2.1. Teori Catu Daya Tak Terputus BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini adalah teori catu

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN ANALISA. Pada bab ini akan dibahas hasil pengujian dan analisa dari system buck chopper

BAB IV HASIL PENGUJIAN DAN ANALISA. Pada bab ini akan dibahas hasil pengujian dan analisa dari system buck chopper BAB IV HASIL PENGUJIAN DAN ANALISA Pada bab ini akan dibahas hasil pengujian dan analisa dari system buck chopper dengan metode constant current untuk menghidupkan high power led berbasis microcontroller

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN Pada bab ini dilakukan proses akhir dari pembuatan alat Tugas Akhir, yaitu pengujian alat yang telah selesai dirancang. Tujuan dari proses ini yaitu agar

Lebih terperinci

semiconductor devices

semiconductor devices Overview of power semiconductor devices Asnil Elektro FT-UNP 1 Voltage Controller electronic switching I > R 1 V 1 R 2 V 2 V 1 V 2 Gambar 1. Pengaturan tegangan dengan potensiometer Gambar 2. Pengaturan

Lebih terperinci

RANGKAIAN PENYEARAH ARUS OLEH : DANNY KURNIANTO,ST ST3 TELKOM PURWOKERTO

RANGKAIAN PENYEARAH ARUS OLEH : DANNY KURNIANTO,ST ST3 TELKOM PURWOKERTO RANGKAIAN PENYEARAH ARUS OLEH : DANNY KURNIANTO,ST ST3 TELKOM PURWOKERTO 1. Gelombang Sinus Bentuk gelombang sinus ditunjukkan seperti pada Gambar dibawah ini. Gelombang sinus tersebut sesuai dengan persamaan

Lebih terperinci

[LAPORAN PENGUAT DAYA KELAS A] BAB I PENDAHULUAN

[LAPORAN PENGUAT DAYA KELAS A] BAB I PENDAHULUAN BAB I PENDAHULUAN.. Latar Belakang Dalam matakuliah Elektronika II telah dipelajari beberapa teori tentang rangkaian common seperti common basis, common emitter, dan common collector. Salah satu penerapan

Lebih terperinci

Dioda Semikonduktor dan Rangkaiannya

Dioda Semikonduktor dan Rangkaiannya - 2 Dioda Semikonduktor dan Rangkaiannya Missa Lamsani Hal 1 SAP Semikonduktor tipe P dan tipe N, pembawa mayoritas dan pembawa minoritas pada kedua jenis bahan tersebut. Sambungan P-N, daerah deplesi

Lebih terperinci

Pengkonversi DC-DC (Pemotong) Mengubah masukan DC tidak teratur ke keluaran DC terkendali dengan level tegangan yang diinginkan.

Pengkonversi DC-DC (Pemotong) Mengubah masukan DC tidak teratur ke keluaran DC terkendali dengan level tegangan yang diinginkan. Pengkonversi DC-DC (Pemotong) Definisi : Mengubah masukan DC tidak teratur ke keluaran DC terkendali dengan level tegangan yang diinginkan. Diagram blok yang umum : Aplikasi : - Mode saklar penyuplai daya,

Lebih terperinci

BAB III KARAKTERISTIK SENSOR LDR

BAB III KARAKTERISTIK SENSOR LDR BAB III KARAKTERISTIK SENSOR LDR 3.1 Prinsip Kerja Sensor LDR LDR (Light Dependent Resistor) adalah suatu komponen elektronik yang resistansinya berubah ubah tergantung pada intensitas cahaya. Jika intensitas

Lebih terperinci

kali tombol ON ditekan untuk memulai proses menghidupkan alat. Setting

kali tombol ON ditekan untuk memulai proses menghidupkan alat. Setting 27 BAB III METODOLOGI 3.1 Diagram Blok dan Cara Kerja Diagram blok dan cara kerja dapat dilihat pada gambar 3.1. Gambar 3.1. Blok diagram Prototipe Blood warmer Tegangan PLN diturunkan dan disearahkan

Lebih terperinci

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI Renny Rakhmawati, ST, MT Jurusan Teknik Elektro Industri PENS-ITS Kampus ITS Sukolilo Surabaya Phone 03-5947280

Lebih terperinci

BAB III LANGKAH PERCOBAAN

BAB III LANGKAH PERCOBAAN 28 BAB III LANGKAH PERCOBAAN 31 KARAKTERISTIK DIODA 311 Tujuan ahasiswa mengetahui dan memahami karakteristik dioda yang meliputi daerah kerja dioda, dioda dengan masukan gelombang kotak, dan waktu pemulihan

Lebih terperinci

SISTEM KONVERTER DC. Desain Rangkaian Elektronika Daya. Mochamad Ashari. Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012

SISTEM KONVERTER DC. Desain Rangkaian Elektronika Daya. Mochamad Ashari. Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012 SISTEM KONVERTER DC Desain Rangkaian Elektronika Daya Oleh : Mochamad Ashari Profesor, Ir., M.Eng., PhD. Edisi I : cetakan I tahun 2012 Diterbitkan oleh: ITS Press. Hak Cipta dilindungi Undang undang Dilarang

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

BAB I PENDAHULUAN. Tenaga listrik memegang peranan yang penting dalam industri. Pada aplikasi

BAB I PENDAHULUAN. Tenaga listrik memegang peranan yang penting dalam industri. Pada aplikasi BAB I PENDAHULUAN 1.1 Latar Belakang Tenaga listrik memegang peranan yang penting dalam industri. Pada aplikasi industri bahwa tenaga listrik ini harus dikontrol terlebih dahulu sebelum diberikan ke beban.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan perealisasian inductive wireless charger untuk telepon seluler. Teori-teori yang digunakan dalam skripsi

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1. Perangkat Keras Sistem Perangkat Keras Sistem terdiri dari 5 modul, yaitu Modul Sumber, Modul Mikrokontroler, Modul Pemanas, Modul Sensor Suhu, dan Modul Pilihan Menu. 3.1.1.

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi

Lebih terperinci

Mekatronika Modul 2 Silicon Controlled Rectifier (SCR)

Mekatronika Modul 2 Silicon Controlled Rectifier (SCR) Mekatronika Modul 2 Silicon Controlled Rectifier (SCR) Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Silicon Controlled Rectifier (SCR) Tujuan Bagian ini memberikan informasi

Lebih terperinci

A. KOMPETENSI YANG DIHARAPKAN

A. KOMPETENSI YANG DIHARAPKAN ELEKTRONIKA DAYA A. KOMPETENSI YANG DIHARAPKAN Setelah mengikuti materi ini diharapkan peserta memiliki kompetensi antara lain sebagai berikut: 1. Menguasai karakteristik komponen elektronika daya sebagai

Lebih terperinci

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL. Diagram Blok Diagram blok merupakan gambaran dasar membahas tentang perancangan dan pembuatan alat pendeteksi kerusakan kabel, dari rangkaian sistem

Lebih terperinci

Materi. Pengenalan elektronika Dasar. Pertemuan ke II. By: Khairil Anwar, ST.,M.Kom. Create: Khairil Anwar, ST., M.Kom

Materi. Pengenalan elektronika Dasar. Pertemuan ke II. By: Khairil Anwar, ST.,M.Kom. Create: Khairil Anwar, ST., M.Kom Materi Pengenalan elektronika Dasar Pertemuan ke II Create: Khairil Anwar, ST., M.Kom By: Khairil Anwar, ST.,M.Kom 1 Penilaian KOMPONEN-KOMPONEN ELEKTRONIKA Absensi = 15 % Quiz = 10 % Tugas = 30 % UTS

Lebih terperinci

BAB III PERANCANGAN. pembuatan tugas akhir. Maka untuk memenuhi syarat tersebut, penulis mencoba

BAB III PERANCANGAN. pembuatan tugas akhir. Maka untuk memenuhi syarat tersebut, penulis mencoba BAB III PERANCANGAN 3.1 Tujuan Perancangan Sebagai tahap akhir dalam perkuliahan yang mana setiap mahasiswa wajib memenuhi salah satu syarat untuk mengikuti sidang yudisium yaitu dengan pembuatan tugas

Lebih terperinci

Desain dan Simulasi Konverter Buck Sebagai Pengontrol Tegangan AC Satu Tingkat dengan Perbaikan Faktor Daya

Desain dan Simulasi Konverter Buck Sebagai Pengontrol Tegangan AC Satu Tingkat dengan Perbaikan Faktor Daya 1 Desain dan Simulasi Konverter Buck Sebagai Pengontrol Tegangan AC Satu Tingkat dengan Perbaikan Faktor Daya Dimas Setiyo Wibowo, Mochamad Ashari dan Heri Suryoatmojo Teknik Elektro, Fakultas Teknologi

Lebih terperinci