BAB II PENGKONDISI SINYAL ANALOG 2.2 PRINSIP-PRINSIP PENGKONDISI SINYAL ANALOG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II PENGKONDISI SINYAL ANALOG 2.2 PRINSIP-PRINSIP PENGKONDISI SINYAL ANALOG"

Transkripsi

1 BAB II PENGKONDISI SINYAL ANALOG TUJUAN PEMBELAJARAN Setelah mempelajari bab ini diharapkan pembaca mampu untuk:. Memndefinisikan tipe-tipe umum dari pengkondisi sinyal analog.. Mendesain sebuah jembatan Wheatstone untuk pengukuran tahanan. 3. Menggambarkan diagram jembatan arus seimbang dan menggambarkan operasinya. 4. Mendefinisikan prinsip-prinsip operasi sebuah rangkaian potensiometer. 5. Mendesain sebuah amplifier op amp d-c impedansi input tinggi untuk gain yang spesifik. 6. Menganalisa sebuah rangkaian op amp sesderhana untuk karakteristik transfernya. 7. Menjelaskan tujuan dari lead kompensasi dalam sebuah rangkaian jembatan. 8. Mendesain sebuah konverter tegangan ke arus untuk input tegangan dan output arus tertentu.. PENDAHULUAN Bermacam-macam transduser yang diperlukan untuk mantransformasi bermaca-macam variabel dinamik dalam sistem kontrol proses ke listrik analog menghasilkan bermacam-macam karakteristik sinyal resultan. Pengkondisi sinyal digunakan untuk mengkonversinya ke bentuk yang susuai dengan interface dengan elemen-elemen yang lain dalam loop kontrol proses. Dalam bab ini difokuskan pada konversi analog, dimana output dikondisikan pada sinyal analog.. PRINSIP-PRINSIP PENGKONDISI SINYAL ANALOG Sebuah transduser mengukur suatu variabel dinamik dengan mengkonversinya kedalam sinyal elektrik. Untuk mengembangkan transduser seperti ini, banyak dipengaruhi oleh kondisi alam sehingga hanya ada beberapa tipe yang dapat digunakan untuk mendapatkan hasil yang sesuai. Efek pengkondisi sinyal sering dinyatakan dengan fungsi alihnya (transfer function). Dengan istilah ini kita menghubungkan efek yang ditimbulkan dengan sinyal input. Jadi, sebuah amplifier sederhana mempunyai fungsi alih dari beberapa konstanta yang, ketika dikalikan dengan tegangan input, memberikan tegangan output... Perubahan Level Sinyal Metode paling sederhana dari pengkondisi sinyal adalah pengubahan level sinyal. Contoh yang paling umum adalah untuk penguatkan atau pelemahkan level tegangan. Secara umum, aplikasi kontrol proses dihasilkan dalam variasi sinyal 8

2 frekuensi rendah secara lambat dimana amplifier respon d-c atau frekuensi rendah bisa dipakai. Suatu faktor penting dalam pemilihan sebuah amplifier adalah impedansi input yang amplifier tawarkan kepada transduser (atau elemen-elemen lain yang menjadi input)... Linierisasi Linierisasi bisa dihasilkan oleh sebuah amplifier yang gainnya sebuah fungsi level tegangan untuk melinierkan semua variasi tegangan input ke tegangan output. Sebuah contoh sering terjadi pada sebuah transduser dimana outputnya adalah eksponensial berkenaan dengan variabel dinamik. Pada Gambar. dapat dilihat sebuah contoh yang dimaksud dimana tegangan transduser diasumsikan eksponensial terhadap intensitas cahaya I. Bisa dituliskan sebagai V I = V 0 e -αt+ (-) Dimana V I V 0 α I = tegangan output pada intensitas I = tegangan intensitas zero = konstanta eksponensial = intensitas cahaya Untuk melinierkan sinyal ini digunakan amplifier yang outputnya bervariasi secara logaritma terhadap input V A = K ln(v IN ) (-) Dimana V A = tegangan output amplifier K = konstanta kalibrasi V IN = tegangan input amplifier = V I [dalam Pers. (-)] Dengan substitusi Persamaan (-) ke Persamaan (-) dimana V IN = V I diperoleh V A = K ln(v 0 ) αki (-3) Gambar. Contoh sebuah output transduser nonlinier. Disini, intensitas cahaya diasumsikan untuk menghasilkan tegangan output. 9

3 Gambar. Pengkondisi sinyal yang bagus menghasilkan tegangan output yang berubah secara linier terhadap intensitas cahaya. Output amplifier berubah secara linier dengan intensitas tetapi dengan offset K ln V 0 dan faktor skala dari αk seperti diperlihatkan pada Gambar.. Untuk mengeliminasi offset dan menyediakan kalibrasi yang diinginkan dari tegangan versus intensitas dapat digunakan pengkondisi sinyal...3 Konversi Sering kali, pengkondisi sinyal digunakan untuk mengkonversi suatu tipe variasi elektrik kepada tipe lainnya. Sehingga, satu kelas besar dari transdusertransduser menyediakan perubahan tahanan dengan perubahan dalam variabe dinamik. Dalam kasus ini, adalah perlu dibuat sebuah rangkaian untuk mengkonversi perubahan tahanan ini baik kedalam sinyal tegangan maupun arus. Secara umum ini dipenuhi oleh jembatan-jembatan bila perubahan sebagian tahanan adalah kecil dan/atau dengan amplifier-amplifier yang gainnya berubah terhadap tahanan...4 Penapis dan Penyesuai Impedansi Sering sinyal-sinyal gangguan dari daya yang besar muncul dalam lingkungan industri, seperti sinyal-sinyal frekuensi saluran standar 60 Hz dan 400 Hz. Transien start motor juga dapat mengakibatkan pulsa-pulsa dan sinyal-sinyal yang tidak diperlukan lainnya dalam loop kontrol proses. Dalam banyak kasus, perlu digunakan high pass, low pass dan notch filter untuk mengurangi sinyalsinyal yang tidak diinginkan dari loop. Filter seperti ini dapat dipenuhi oleh filter pasif yang hanya menggunakan resistor, kapasitor, induktor, atau filter aktif, menggunakan gain dan feedback. Penyesuai impednsi adalah sebuah elemen penting dari pengkondisi sinyal ketika impedansi internal transduser atau impedansi saluran dapat mengakibatkan error dalam pengukuran variabel dinamik. Baik jaringan aktif maupun pasif juga dipakai untuk menghasilkan penyesuai seperti ini..3 RANGKAIAN JEMBATAN DAN POTENSIOMETER Rangkaian jembatan terutama digunakan sebagai sebuah alat pengukur perubahan tahanan yang akurat. Rangkaian seperti ini terutama berguna bila 0

4 perubahan fraksional dalam impedansi sangat kecil. Rangkaian potensiometerik digunakan untuk mengukur tegangan dengan akurasi yang baik dan impedansi sangat tinggi..3. Rangkaian Jembatan Rangkaian jembatan adalah rangkaian pasif yang digunakan untuk mengukur impedansi dengan teknik penyesuaian potensial. Dalam rangkaian ini, seperangkat impedansi yang telah diketahui secara akurat diatur nilaianya dalam hubungannya terhadap satu yang belum diketahui sampai suatu kondisi yang ada dimana perbedaan potensial antara dua titik dalam rangkaian adalah nol, yaitu setimbang. Kondisi ini menetapkan sebuah persamaan yang digunakan untuk menemukan impedansi yang tidak diketahui berkenaan dengan nilai-nilai yang diketahui. JEMBATAN WHEATSTONE Rangkaian jembatan yang paling sederhana dan paling umum adalah jembatan d-c Wheatstone seperti diperlihatkan pada Gambar.3. Rangkaian ini digunakan dalam aplikasi pengkondisi sinyal dimana transduser mengubah tahanan dengan perubahan variabel dinamik. Beberapa modifikasi dari jembatan dasar ini juga dipakai untuk aplikasi spesifik lainnya. Pada Gambar.3 obyek yang diberi label D adalah detektor setimbang yang digunakan untuk membandingkan potensial titik a dan b dari rangkaian. Dalam aplikasi paling modern detektor setimbang adalah amplifier diferensial impedansi input sangat tinggi. Dalam beberapa kasus, Galvanometer yang sensitif dengan impedansi yang relatif rendah bisa digunakan, khususnya untuk kalibrasi atau instrumeninstrumen pengukuran tunggal. Untuk analisis awal kita, anggap impedansi detektor setimbang adalah tak hingga, yaitu rangkaian terbuka. Gambar -3 Jembatan d-c Wheatstone Dalam kasus ini beda potensial, V antara titik a dan b, adalah V = V a V b (-4) Dimana

5 V a V b = potensial titik a terhadap c = potensial titik b terhadap c Nilai V a dan V b sekarang dapat dicari dengan memperhatikan bahwa V a adalah hanya tegangan sumber, V, dibagi antara R dan R 3 V VR a + 3 = (-5) R R3 Dengan cara yang sama V b adalah tegangan yang terbagi diberikan oleh V VR b R + R 4 = (-6) 4 Dimana V = tegangan sumber jembatan R,R,R3,R4 = resistor-resistor jembatan seperti diberikan oleh Gambar.3. Jika sekarang kita kombinasikan Persamaan (-4), (-5), (-6), beda tegangan atau offset tegangan, dapat ditulis VR VR 3 4 V = (-7) R + R3 R + R4 Setelah beberapa aljabar, pembaca dapat memperlihatkan bahwa persamaan ini berkurang menjadi RR3 RR 4 V = V (-8) R + R ).( R + R ) ( 3 4 Persamaan (-8) memperlihatkan bagaimana beda potensial melalui detektor adalah fungsi dari tegangan sumber dan nilai resistor. Karena tampilan yang berbeda dalam numerator Persamaan (-8), jelas bahwa kombinasi khusus dari resistor dapat ditemukan yang akan menghasilkan perbedaan nol dan tegangan nol melewati detektor, yaitu, setimbang. Jelas, kombinasi ini, dari pemeriksaan Persamaan (-8), adalah R 3 R = R R 4 (-9) Persamaan (-9) mengindikasikan bahwa kapan saja sebuah jembatan Wheatstone dipasang dan resistor diatur untuk setimbang detektor, nilai-nilai resistor harus memenuhi persamaan yang didindikasikan. Tidak masalah jika tegangan sumber berubah, kondisi setimbang dipertahankan. Persamaan (-8) dan (-9) menekankan aplikasi jembatan Wheatstone untuk aplikasi kontrol proses yang menggunakan detektor impedansi input tinggi.

6 DETEKTOR GALVANOMETER Penggunaan sebuah galvanometer sebagai detektor setimbang dalam rangkaian jembatan memeperkenalkan beberapa perbedaaan dalam perhitungannya karena tahanan detektor bisa rendah dan harus menentukan offset jembatan sebagai offset arus. Jika jembatan disetimbangkan, Persamaan (-9) masih mendefinisikan hubungan antara resistor-resistor dalam lengan-lengan jembatan. Persamaan (-8) harus dimodifikasi untuk membolehkan penentuan arus yang digambarkan dengan galvanometer jika kondisi setimbang tidak muncul. Mungkin cara yng paling mudah untuk menentukan arus offset adalah pertama menemukan rangkaian ekivalen Thevenin antara titik a dan b dari jembatan (seperti digambarkan dalam rangkaian Gambar.3 dengan galvanometer yang dihilangkan). Tegangan Thevenin dengan sederhana adalah perbedaan tegangan rangkaian antara titik a dan b dari rangkaian. Tapi Persamaan (-5) adalah tegangan rangkaian terbuka, sehingga, RR3 RR 4 V Th = V (-0) R + R ).( R + R ) ( 3 4 Tahanan Theveniun diperoleh dengan mengganti tegangan sumber dengan tahanan dalam dan menghitung tahanan antara terminal a dan b dari rangkaian. Kita dapat menasumsikan bahwa tahanan dalam dapat diabaikan dibandingkan dengan tahanan-tahanan lengan jembatan. Tahanan Thevenin yang terlihat pada titik a da b dari jembatan adalah R R R R R Th = + (-) R + R3 R R4 Rangkaian ekivalen Thevenin untuk jembatan memudahkan kita untuk menentukan arus yang melalui galvanometer dengan tahanan dalam R G seperti diperlihatkan pada Gambar -4. Sehingga, arus offset adalah I G V R + R Th = (-) Th G Menggunakan persamaan ini bersamaan dengan Persamaan (-9) menetapkan respons jembatan Wheatstone ketika digunakan sebuah detektor setimbang galvanometer. Gambar.4 Jika sebuah galvanometer digunakan untuk detektor setimbang adalah baik menggunakan rangkaian ekivalen Thevenin dari jembatan Wheatstone. 3

7 KOMPENSASI LEAD Kompensasi lead ditunjukkan pada Gambar.5. disini kita lihat bahwa R 4, yang dianggap sebagai transduser, dipindahkan ke tempat yang jauh dengan kabel lead (), (), dan (3). Kabel (3) adalah lead daya dan tiadak berpengaruh pada kondisi setimbang jembatan. Perhatikan bahwa jika kabel () mengubah tahanan karena pengaruh-pengaruh yang spurious/palsu, ini mengenalkan perubahan tersebut kepada kaki R 4 dari jembatan. Kabel () terbuka terhadap lingkungan yang sama dan berubah dengan jumlah yang sama tetapi dalam kaki R 3 dari jembatan. Secara efektif, R 3 dan R 4 kedua-duanya diubah secara identik, sehungga Persamaan (-9) memperlihatkan bahwa tidak terjadi perubahan dalam jembatan setimbang. Tipe kompensasi ini sering dipakai dimana rangkaian jembatan harus digunakan dengan lead yang panjang ke elemen aktif dari jembatan. Gambar.5 untuk aplikasi transduser jrak jauh sebuah sistem kompensasi digunakan untuk menghindari error dari tahanan lead. JEMBATAN SEIMBANG ARUS Gambar.6 jembatan setimbang arus Prinsip dasar dari jembatan setimbang arus diperlihatkan pada Gambar.6. Disini, jembatan Wheatstone standar dimodifikasi dengan memecah salah 4

8 satu resistor lengan kepada dua, R 4 dan R 5. arus I diberikan pada jembatan melalui pertemuan antara R 4 dan R 5 seperti yang ditunjukkan. Sekarang kita menetapkan bahwa besarnya tahanan-tahanan jembatan adala sedemikian sehingga arus terutama mengalir melalui R 5. ini dapat disediakan oleh beberapa syarat. Paling tidak harus terpenuhi R 4 >> R 5 (-3) Sering kali, jika detektor setimbang impedansi tinggi digunakan, maka batasan dari Persamaan (-3) menjadi (R + R 4 ) >> R 5 (-4) Dengan asumsi bahwa baik Persamaan (-3) ataupun (-4) adalah terpenuhi, tegangan pada titik b adalah penjumlahan dari tegangan sumber yang terbagi ditambah jatuh tegangan melelui R 5 dari arus I. V ( R4 + R5 ) V b = + IR5 R + R + R 4 5 (-5) Tegangan pada titik a masih diberikan oleh Persamaan (-5). Jadi tegangan offset jembatan deberikan oleh V = V a - V b atau V = VR3 R R + 3 V ( R + R R + R + R 4 5) 4 5 IR 5 (-6) Persamaan ini menunjukkan bahwa kondisi setimbang dicapai dengan mengatur besar dan polaritas arus I sehinnga IR 5 sama dengan beda tegangan dari dua suku pertama. Jika salah satu tahanan jembatan berubah, jembatan dapat disetimbangkan dengan perubahan arus I. Dalam cara ini, secara elektronis jembatan disetimbangkan dari sumber arus yang sesuai. Dalam kebanyakan aplikasi jembatan disetimbangkan pada bebrapa set nominal dari tahanan dengan arus nol. Perubahan satu resistor jembatan terdeteksi sebagai sinyal offset jembatan yang digunakan untuk memberikan arus penyeimbang ulang. PENGUKURAN TEGANGAN DENGAN MENGGUNAKAN JEMBATAN Sebuah rangkaian jembatan juga berguana untuk mengukur tegangan kecil pada impedansi yang sangat besar. Ini dapat dilakukan dengan menggunakan baik jembatan Wheatston konnvensional ataupun jembatan setimbang arus. Tipe pengukuran ini dilakukan dengan meletakkan tegangan yang diukur secara seri dengan detektor setimbang, sepaerti diperlihatkan pada Gambar.7. 5

9 Gambar.7 Menggunakan jembatan Whwatstone dasar untuk pengukuran tegangan Detektor setimbang merespons tegangan antara titik c dan b. Dalam keadaan ini, V b diberikan oleh Persamaan (-6) dan V c oleh Persamaan (-7) Vc = Vx + Va (-7) Dimana V a diberikan oleh Persamaan (-5), dan V x adalah tegangan yang diukur. Tegangan yang muncul melalui detektor setimbang adalah V = Vc Vb = Vx + Va Vb Kondisi setimbang didapat saat V = 0; selanjutnya, tidak ada arus yang mengalir melalui tegangan yang tidak diketahui tersebut jika kondisi setimbang demikian telah diperoleh. Sehingga, pengukuran V x dapat dibuat dengan variasi resistorresistor jembatan untuk menghasilkan keadaan setimbang dengan V x dalam rangkaian dan menyelesaikan V x dengan menggunakan kondisi setimbang Vx + VR3 R R + 3 VR4 R + R 4 = 0 (-8) Analisis serupa yang menggunakan sebuah jembatan setimbang arus dan resistorresistor jembatan tertentu memberikan kondisi setimbang yang dapat memberi penyelesaian untuk V x dalam hubungannya dengan arus penyebab setimbang I. Vx + VR3 R R + 3 V ( R + R R + R + R 4 5) 4 5 IR = 0 (-9) 5 perhatiokan bahwa jika resistor-resistor tertentu dipilih untul menyetimbangkan jembatan dengan I = 0 saat V x =0, lalu dua suku tengah dalam Persamaan (-3) hilang akan memberikan hubungan yang sangat sederhana antara V x dan arus penyeimbang Vx IR 5 = 0 (-0) JEMBATAN A-C Konsep jembatan yang dijelaskan dalam bagian ini dapat dipakai untuk penyesuaian impedansi secara umum seperti tahanan-tahanan. Dalam keadaan ini, 6

10 jembatan direpresentasikan seperti dalam Gambar.8 dan memakai sebuah eksitasi a-c, biasanya sebuah sinyal tegangan gelombang sinus. Analisa tingkah laku jembatan pada dasarnya sama seperti pada cara sebelumnya tetapi tahanan diganti impedansi. Kemudian tegangan offset jembatan direpresentasikan sebagai Dimana Z3Z ZZ4 E = E ( Z + Z + Z + Z4) 3 (-) E = tegangan eksitasi gelombang Z, Z, Z 3,Z 4 = impedansi jembatan Kondisi setimbang ditetapkan seperti sebelumnya dengan sebuah tegangan offset zero V = 0. Dari Persamaan (-) kondisi ini dijumpai jika impedansi memenuhi hubungan Z 3 Z = Z Z 4 (-) Perhatikan bahwa kondisi ini sama seperti Persamaan (-9) untuk jembatan resistif. Gambar.8 Sebuah jembatan a-c yang umum Catatan khusus adalah perlu berkenaan dengan pencapaian kondisi setimbang dalam jembatan a-c. Dalam beberapa kasus, sistem deteksi setimbang adalah phase sensitive mengenai sinyal eksitasi jembatan. Dalam hal ini, perlu untuk memberikan sebuah kondisi setimbang dari kedua sinyal inphase dan quadrature (keluaran fase 90 0 ) sebelum Persamaan (-) dipakai..3. Rangkaian Potensiometer Pada dasarnya, rangkaian potensiometer adalah sebuah pembagi tegangan yang mengukur tegangan yang tidak diketahui dengan mengatur yang telah diketahui, yaitu tegangan yang terbagi sampai sesuai/cocok dengan yang diketahui. Pembagi tegangan dikonstruksi oleh R, R dan R secara seri yang dihubungkan ke tegangan sumber kerja., V w. R adalah resistor presisi dan tertentu, sedangkan R adalah resistor yang presisi dan variabel linier. Resistor kalibrasi R adalah variabel (yang nilai sebenarnya belum pernah digunakan dalam 7

11 perhitungan apa pun), dan V w adalah sumber yang mempunyai tegangan yang memamadai (seperti yang akan ditetapkan nanti) dan stabil. Supply V REF adalah sebuah standar kalibrasi yang mempunyai tegangan yang telah diketahui secara akurat. Unit D dan D keduanya adalah detektor setimbang dan bisa berupa galvanometer ataupun detektor tegangan impedansi tinggi. V x adalah tegangan yang tidak diketahui yang akan diukur. Gambar.0 Sebuah rangkaian dasar potensiometer Kalibrasi dari pembagi tegangan dipenuhi dengan menutup saklar S dan mengatur R sampai detektor D mengindikasikan setimbang. Dalam kondisi ini kita akan menetapkan/membuktikan bahwa V a = V REF sesuai akurasi dari detektor kesetimbangan. Secara efektif ini mengkalibrasi rangkaian pembagi karena V a dibagi antara resistor presisi R dan R. Penyapu R menyapu tegangan antara zero pada bagian bawah dan V b pada bagian atas dari resistor variabel. Tegangan V b dicari dari Vb = RVa R + R (-3) Karena V a = V REF, kita mempunyai identifikasi V b secara langsung dalam hubungan V REF. Sekarang jika penyapu R adalah bagian/pecahan α dari sisi ground, tahanan diatas penyapu adalah (-α)r. Jika sebuah tegangan yang tidak diketahui diberikan sebagaimana diperlihatkan pada Gambar.0 dan penyapu diatur sampai detektor D menunjukkan nol, tegangan penyapu dan tegangan yang tidak diketahui adalah sama. Jadi, tegangan yang tidak diketahui diberikan oleh Dimana V x = αv b α = bagian/pecahan R untuk terjadinya kondisi setimbang V b = tegangan titik b yang diberikan oleh Persamaan (-3) Dalam beberapa kasus resitor variabel R diberi penskalaan dengan pembagian, seperti pembagian yang dapat dibaca 000. Dalam kasus ini, α adalah hanya sejumlah pembagian yang menghasilkan keadaan setimbang dari detektor 8

12 D. Perhatikan bahwa sekali pembagi dikalibrasi, tegangan acuan V REF dan detktor D tidak diperlukan lebih lama..4 OPERASIONAL AMPLIFIER Secara umum, aplikasi dari IC memerlukan pengetahuan tentang jalur yang tersedia dari peralatan yang demikian, spesifikasi dan batasannya, sebelum dapat diaplikasikan untuk masalah khusus. Terpisah dari IC-IC yang dikhususkan ada juga tipe dari amplifier yang mendapatkan aplikasi yang luas seperti blok pembentuk dari aplikasi pengkondisi sinyal. Peralatan ini, disebut operasi amplifier (op amp), telah ada selama bertahun-tahun, awalnya dibuat dari tabung, kemudian transistor diskrit, dan sekarang integrated circuit. Meski banyak jalur dari op amp dengan bermacam spesifikasi khusus ada dari beberapa pabrik, semuanya memiliki karakteristik umum dalam operasi yang dapat dipakai dalam rancangan dasar berkaitan dengan op amp umum..4. Karakteristik Op Amp Dengan sendirinya, op amp adalah amplifier elektronik yang sangat sederhana dan nampak tak berguna. Dalam Gambar.a kita dapat lihat simbol standar dari op amp dengan penandaan input (+) dan input (-), dan output. Input (+) juga disebut input noniverting (tidak membalik) dan (-)input inverting (membalik). Hubungan dari input op amp dan output sungguh sangat sederhana, seperti yang terlihat dengan menganggap dari deskripsi idealnya. OP AMP IDEAL Untuk menjelaskan respon dari op amp ideal, kita menamai V tegangan pada input (+), V tegangan pada terminal input (-), dan V 0 tegangan output. Idealnya, jika V-V adalah positif (V>V), maka V0 saturasi positif. Jika V- V adalah negatif (V>V), maka V0 saturasi negatif seperti ditunjukkan dalam Gambar.b. Input (-) disebut input inverting. Jika tegangan dalam input ini adalah lebih positif dibandingkan pada input (+), output saturasi negatif. Amplifier ideal ini mempunyai gain tak terbatas karena perbedaan yang sangat kecil antara V dan V hasilnya adalah output saturasi. Karakteristik lain dari op amp adalah () impedansi tak terhingga antar input-inputnya dan () impedansi output zero. Pada dasarnya, op amp adalah peralatan yang mempunyai hanya dua keadaan output, +Vsat dan Vsat. Dalam praakteknya, peralatan ini selalu digunakan dengan umpanbalik dari output ke input. Umpanbalik seperti ini menghasilkan implementasi dari berbagai hubungan khusus antara tegangan input dan output. 9

13 Vo +V SAT V - V -V SAT (a) (b) Gambar. Op amp. (a) Simbol. (b) Karakteristik ideal dari sebuah op amp AMPLIFIER INVERTING IDEAL Untuk melihat bagaimana op amp digunakan, perhatikan rangkaian pada Gambar.. Disini resistor R digunakan untuk umpan balik output ke input inverting dari op amp dan R menghubungkan tegangan input Vin dengan titik yang sama ini. Hubungan bersama disebut titik penjumlahan (summing point). Dapat dilihat bahwa dengan tanpa umpanbalik dan (+) digroundkan, Vin>0 menjadikan output saturasi negatif, sedangkan Vin<0 menjadikan output saturasi positif. Dengan umpanbalik, output menyesuaikan dengan tegangan sedemikian hingga:. Tegangan summing point sama dengan level input (+) op amp, dalam keadaan ini adalah nol/zero.. Tidak ada aliran arus melalui terminal-terminal input op amp karena anggapan impedansi tak hingga. Dalam keadaan ini, jumlah dari arus pada summing point harus nol. I +I = 0 (-4) Karena tegangan pada summing point dianggap nol, kita mempunyai Vin Vout + = 0 (-5) R R dari Persamaan (-5), kita dapat menuliskan respon rangkaian sebagai V out = - R Vin (-6) R Jadi, rangkaian pada Gambar. adalah amplifier inverting dengan gain R/R yang digeser 80 0 dalam fase (terbalik) dari input. Alat ini juga merupakan attenuator dengan menjadikan R < R. 0

14 Gambar. Amplifier inverting EFEK-EFEK NONIDEAL Analisis dari rangkaian op amp dengan respons nonideal dilakukan dengan memperhatikan parameter-parameter berikut:. Gain open loop berhingga. Op amp yang sebenarnya mempunyai gain tegangan seperti ditunjukkan oleh respons amplifier dalam Gambar.3a. Gain tegangan dinyatakan sebagai perubahan dalam tegangan output, V o, dihasilkan dengan perubahan dalam tegangan input differensial [V- V].. Impedansi input berhingga. Op amp yang sebenarnya mempunyai impedansi input dan, sebagai konsekuensi, tegangan berhingga dan arus melalui terminal input. 3. Impedansi output tidak nol. Op amp yang sebenarnya mempunyai impedansi output tidak nol, meskipun impedansi output rendah ini khsusunya hanya beberapa ohm. a) Karakteristik nonideal op amp b) Efek-efek nonideal Gambar.3 Tipe-tipe efek nonideal dalam analisis op amp dan rangkaian Dalam aplikasi modern efek nonideal ini dapat diabaikan dalam desian rangkaian op amp. Contohnya, anggap rangkaian dari Gambar.3b dimana impedansi berhingga dan gain dari op amp adalah sudah termasuk. Kita dapat menggunakan analisis rangkaian standar umtuk menemukan hubungan antara

15 tegangan input dan output untuk rangkaian ini. Penjumlahan arus pada titik penjumlan diberikan I + I + I s = 0 Kemudian, masing-masing arus dapat diidentifikasi dalam kaitannya dengan parameter-parameter rangkaian untuk memberikan Vin Vs Vo Vs + R R Vs Zin = 0 Akhirnya, dengan mengkombinasikan persamaan-persamaan di atas, kita cari Vo = - R Vin (-7) R µ Dimana µ = Zo R + R + + R R Zin Zo A + R (-8) Jika kita anggap bahwa µ sangat kecil bila dibandingkan dengan kesatuan, maka Persamaan (-7) terduksi ke keadaan ideal yang diberikan oleh Persamaan (- 6). Tentu, jika nilai khusus untuk IC op amp dipilih untuk satu keadaan dimana R/R = 00, kita dapat tunjukkan bahwa µ<<. Contohnya, biasnya, IC op amp untuk kegunaan umum menunjukkan A = Z 0 = 75 Ω Z in = MΩ Jika digunakan tahanan umpan balik R 00kΩ dan mensubstitusikan nilai diatas kedalam Persamaan (-8), didapatkan µ = 0,0005 yang menunjukkan bahwa gain untuk persamaan (-7) berbeda dari yang ideal dengan hanya 0,05%. Tentu saja, cara ini hanya satu contoh dari banyak rangkaian op amp yang digunakan, tetapi sebetulnya dalam semua kasus analisis yang sama menunjukkan bahwa karakteristik ideal dapat diasumsikan..4. Spesifikasi-Spesifikasi Op Amp Ada karakteristik-karakteristik lain dari op amp dibandingkan yang diberikan dalam bagian sebelumnya yang masuk dalam aplikasi desain. Karakteristik-karakteristik ini diberikan dalam spesifikasi untuk op amp khusus

16 bersama dengan gain open loop dan impedansi input dan output yang dijelaskan sebelumnya. Beberapa karakteristik tersebut adalah: Tegangan offset input. Dalam banyak kasus, tegangan output op amp tidak boleh nol ketika tegangan pada input adalah nol. Tegangan yang harus diterapkan dalam terminal input untuk menggerakkan output ke nol adalah tegangan offset input. Arus offset input. Seperti tegangan offset bisa diperlukan melalui input untuk men-zero-kan tegangan output, sehingga arus jala bisa diperlukan melalui input untuk men-zero-kan tegangan output. Arus yang demikian dijadikan acuan sebagai arus offset input. Ini diambil sebagai perbedaan dua arus input. Arus bias input. Ini adalah rata-rata dari dua arus input yang diperlukan untuk menggerakkan tegangan output ke nol. Slew rate. Jika tegangan diterapkan dengan cepat ke input dari op amp, output akan saturasi ke maksimum. Untuk input step slew rate adalah kecepatan dimana output berubah ke nilai saturasi. Ini khususnya dinyatakan sebagai tegangan per mikrosecond (V/µs). Bandwith frekuensi gain satuan. Respons frekuensi dari op amp khusus disefinisikan dengan bode plot dari gain tegangan open loop dengan frekuensi. Plot seperti ini sangat penting untuk rancangan rangkaian yang berhubungan dengan sinyal a-c. Adalah diluar jangkauan dari tulisan ini untuk menjelaskan detail dari desain seperti ini yang memakai bode plot..5 RANGKAIAN OP AMP DALAM INSTRUMENTASI Setelah op amp menjadi terkenal pada kerja individu dalam kontrol proses dan teknologi instrumentasi, banyak macam rangkaian dikembangkan dengan aplikasi langsung dalam bidang ini. Secara umum, lebih mudah untuk mengembangkan sebuah rangkaian untuk pelayanan khusus menggunakan op amp dibandingkan komponen-komponen diskrit; dengan pengembangan biaya rendah, IC op amp, juga adalah suatu desain yang praktis. Mungkin salah satu kerugian besar adalah diperlukannya sumber daya bipolar untuk op amp. Bagian ini menghadirkan sejumlah rangkaian khusus dan karakteristik dasarnya bersama dengan trurunan dari respons rangkaian dengan asumsi op amp ideal..5. Pengikut Tegangan (Voltage Follower) Pada Gambar.4 kita lihat sebuah rangkaian op amp yang mempunyai gain satuan dan impedansi input sangat tinggi. Pada dasarnya impedansi input ini adalah impedansi input dari op amp itu sendiri yang dapt lebih besar dari 00 MΩ. Output tegangan mengikuti input lebih dari range yang ditentukan dengan output tegangan saturasi plus dan minus. Output arus dibatasi sampai arus hubung singkat dari op amp, dan impedansi output khususnya kurang dari 00 Ω. Dalam banyak hal sebuah pabrik akan memasarkan sebuah pengikut tegangan op amp yang umpan baliknya disediakan secara internal. Unit seperti ini biasanya secara khusus didisain untuk impedansi input yang sangat tinggi. Pengikut tegangan gain satuan pada dasarnya adalah sebuah transformer impedansi dalam indera pengkonversi sebuah tegangan pada impedansi tinggi ke tegangan yang sama pada impedansi rendah. 3

17 Gambar.4 Sebuah pengikut tegangan op amp. Rangkaian ini mempunyai impedansi input yang sangat tinggi; sekitar Ω, tergantung pada op amp tersebut. Rangkaian ini berguna sebagai sebuah transformer impedansi..5. Amplifier Membalik (Invertung Amplifier) Rangkaian untuk amplifier ditunjukkan dalam Gambar.. Penting untuk memoperhatikan bahwa impedansi input dari rangkaian ini pada dasarnya sama dengan R, yaitu tahanan input. Pada umumnya, tahanan ini tidak besar, dan karena itu impedansi input tidak besar. AMPLIFIER PENJUMLAH (SUMMING AMPLIFIER) Modifikasi yang umum dari inverting amplifier adalah sebuah amplifier yang menjumlahkan atau menambahkan dua atau lebih tegangan yang diterapkan. Rangkaian ini ditunjukkan dalam Gambar.5 untuk kasus penjumlahan dua tegangan input. Fungsi transfer amplifier ini diberikan oleh Vout = - R R R V + V R3 (-9) Penjumlahan dapat diberi skala dengan pemilihan tahanan yang tepat. Contohnya, jika kita membuat R = R = R 3, maka outputnya adalah hanya jumlah (terbalik) dari V dan V. Rata-rata dapat dicari dengan menjadikan R = R 3 dan R = R /. Gambar.5 Summing amplifier.5.3 Amplifier Tidak Membalik (Noninverting Amplifier) Sebuah amplifier noninverting dapat dikonstruksi dari sebuah op amp seperti ditunjukkan dalam Gambar.6. Gain rangkaian ini dicari dengan menjumlahkan arus-arus pada summing point S, dan menggunakan kenyataan 4

18 bahwa tegangan summing point adalah V in sehingga tidak ada beda tegangan yang muncul melalui terminal-terminal input. Dimana I + I = 0 I = arus melalui R I = arus melalui R Tapi arus-arus ini dapat dicari dari hukum Ohm sedemikian sehingga persamaan ini menjadi Vout = R + Vin R (-30) Persamaan (-30) menunjukkan bahwa noninverting ampifier mempunyai gain yang tergantung pada rasio resistor umpan balik R dan resistor ground R, tapi gain ini tidak pernah dapat digunakan untuk pelemahan tegangan. Kita catat pula bahwa karena input diambil secara langsung ke input noninverting dari op amp, impedansi input adalah sangat tinggi karena secara efektif sama dengan impedansi input op amp. Gambar.6 Noninverting amplifier.5.4 Amplifier Diferensial Sering kali, dalam instrumentasi yang dihubungkan dengan kontrol proses, diperlukan amplifikasi tegangan diferensial, misalnya untuk rangkaian jembatan. Sebuah ampifier diferensial dibuat dengan mengguanakan sebuah op amp seperti ditunjukkan dalam Gambar.7a. Analisis rangkaian ini menunjukkan bahwa tegangan output diberikan oleh 5

19 R Vout = ( V ) (-3) R V Rangkaian ini mempunyai gain atau atenuasi variabel yang diberikan oleh rasio R dan R dan merespons diferensial dalam input tegangan sebagaimana diperlukan. Adalah sangat penting bahwa resistor dalam Gambar.7a yang diindikasikan mempunyai nilai yang sama secara hati-hati disesuaikan dengan tolakan yang pasti (assure rejetion) dari tegangan bersama ke kedua input. Kerugian yang signifikan dari rangkaian ini adalah bahwa impedansi input pada masing-masing terminal input adalah tidak besar, menjadi R + R pada input V dan R pada input V. Untuk memakai rangkaian ini saat diinginkan amplifikasi diferensial impedansi input yang tinggi, pengikut tegangan bisa dipakai sebelum masing-masing input seperti diperlihatkan pada Gambar.7b. Rangkaian ini memberikan gain yang sebaguna, amplifier diferensial impedansi input yang tinggi untuk penggunaan dalam sistem-sistem instrumentasi. Gambar.7 Amplifier diferensial. (a) Amplifier Diferensial (b) Amplifier Instrumentasi..5.5 Konverter Tegangan ke Arus Karena sinyal-sinyal dalam kontrol proses paling sering ditransmisikan sebagai arus, khususnya 4-0 ma, maka perlu untuk memakai sebuah konverter linier tegangan ke arus. Rangkaian seperti ini harus mampu memasukkan arus ke sejumlah beban yang berbeda tanpa mengubah karateristik-karateristik transfer tegangan ke arus. Sebuah rangkaian op amp untuk memberikan fungsi ini 6

20 diperlihatkan pada Gambar.8. Analisis rangkaian ini menunjukkan bahwa hubungan antara arus dan tegangan diberikan oleh I R = Vin (-3) R R asalkan tahanan-tahanan yang dipilih sehingga R (R 3 + R 5 ) = R R 4 (-33) rangkaian dapat mengirimkan arus ke salah satu arah, sebagimana diperlukan oleh sebuah aplikasi khusus. Tahanan beban maksimum dan arus maksimum adalah berhubungan dan ditentukan oleh kondisi bahwa output amplifier adalah saturasi dalam tegangan. Analisis rangkaian ini menunjukkan bahwa saat tegangan output op amp mencapai saturasi tahanan beban maksimum dan arus maksimum dihubungkan oleh R ML V SAT ( R4 + R5 ) R3 IM = (-34) R3 + R4 + R5 R ML = tahanan beban maksimum V SAT = tegangan saturasi op amp = arus maksimum I M Perhatikan bahwa penyelidikan Persamaan (-34) menunjukkan bahwa tahanan beban maksimum adalah selalu kurang dari V SAT /I M. Tahanan beban minimum adalah nol. Gambar.8 Konverter teganan ke arus 7

21 .5.6 Konverter Arus ke Tegangan Pada ujung penerima dari sistem trasnsmisi sinyal kontrol proses kita sering perlu untuk mengubah arus kembali ke tegangan. Ini paling mudah dilakukan dengan rangkaian yang diperlihatkan pada Gambar.9. Rangkaian ini menyediakan suatu tegangan output yang diberikan oleh Vout = IR (-35) asalkan tegangan saturasi op amp tidak tecapai. Resistor R pada terminal noninverting dipakai untuk memberikan stabilitas temperatur pada konfigurasi. Gambar.9 Konverter arus ke tegangan.5.7 Sample and Hold Ketika pengukuran harus antarmuka dengan sebuah proses digital dalam situasi kontrol atau pengukuran, seringkali perlu untuk menyediakan nilai tertentu pada konverter analog ke digital (ADC). Jadi, jika suatu pengukuran dibuat pada beberap waktu, bisa jadi selama prosedur konversi A/D nilai yang terukur berubah. Variasi seperti ini dapat menyebabkan error dalam proses konversi. Untuk mengurangi ini, sebuah op amp digunakan dalam konfigurasi sample-andhold. Rangkaian ini, diperlihatkan pada Gambar.0, dapat mengambil sampel yang sangat cepat dari sinyal tegangan input dan kemudian menahan nilai ini, meskipun sinyal input mungkin berubah, sampai sampel yang lain diperlukan. Metode ini memanfaatkan kemampuan mengisi-menyimpan (charge-storing ability) dari kapasitor dan impedansi tinggi dari op amp yang menjadi sifatnya. Serperti diperlihatkan pada contoh rangkaian sederhana Gambar.0, saat saklar ditutup, kapasitor dengan cepat berubah ke level tegangan input. Jika sekarang saklar dibuka, op amp tegangan pengikut mengijinkan ukuran tegangan kapasitor diambil pada output tanpa megubah muatan kapasitor. Saat sample baru harus diambil, pertama saklar ditutup untuk mengosongkan kapasitor dan karena itu merset rangkaian. Saklar-saklar yang digunakan biasanya saklar-saklar elektronik yang diaktifkan oleh level logika digital. 8

22 Gambar.0 Rangkaian sample and hold. Tutup S untuk mengambil sampel dan buka untuk menahan sampel. Tutup S untuk me-reset..5.8 Integrator Rangkaian op amp biasa yang terakhir yang menjadi pertimbangan adalah integrator. Konfigurasi ini, diperlihatkan pada Gambar., terdiri dari sebuah resistor input dan kapasitor umpan balik. Dengan menggunakan analisis ideal kita dapat mejumlahkan arus pada summing point sebagai Vin R + C dvout dt = 0 (-36) yang dapat diselesaikan dengan mengintegrasikan keduanya sehingga respons rangkaian adalah Vout = Vindt RC (-37) yang ini menunjukkan bahwa tegangan output berubah-ubah sebagai integral dari tegangan input dengan faktor skala /RC. Rangkaian ini digunakan dalam banyak kasus dimana dinginkan integrasi dari output transduser. Fungsi-fungsi lain juga dapat diimplementasikan, seperti sebuah tegangan ramp linier. Jika tegangan input adalah konstan, V in = K, maka peersamaan (-37) menjadi K Vout = t (-38) RC yang merupakan ramp linier, kemiringan negatif K/RC. Bebrapa mekanisme reset melalui pengosongan kapasitor harus diberikan karena jika tidak V out akat naik sampai nilai saturasi output dan tetap pada keadaan itu. 9

23 Gambar. Rangkaian integrator. Sebuah saklar ditempatkan melewati kapasitor untuk merset integrator..5.9 Linierisasi Op amp memberikan peranan divais yang sangat efektif untuk linierisasi peralatan. Secara umum, ini dicapai dengan menempatkan elemen nonlinier dalam loop umpan balik dari op amp sebagaimana diperlihatkan pada Gambar.. Penjumlahan arus memberikan bahwa Vin R + F( Vout) = 0 (-39) Dimana V in = tegangan input R = tahanan input F(V out ) = perubahan nonlinier arus dengan tegangan F(Vout) Gambar. Amplifier nonlinier dibuat dengan menempatkan elemen nonlinier dalam umpan balik dari op amp. Sekarang jika Persamaan (-39) diselesaikan untuk V out kita dapatkan Dimana Vin Vout = G (-40) R 30

24 V out = tegangan output V G in R = fungsi nonlinier tegangan input, sebenarnya fungsi invers dari F(V out ). Jadi, sebagai sebuah contoh, jika sebuah dioda diletakkan dalam umpan balik seperti diperlihatkan pada Gambar.3, maka fungsi F(V out ) adalah eksponensial Dimana F 0 = konstanta amplitudo Α = konstanta eksponensial F(Vout) = Fo exp (αvout) (-4) Invers dari fungsi ini adalah logaritma dan Persamaan (-40) demikian menjadi Vout = ln( Vin) ln( FoR) (-4) α α yang merupakan sebuah amplifier (linier) logaritmik. Divais umpan balik yeng berbeda dapat menghasilkan amplifier yang hanya meratakan variasi linier atau menyediakan operasi-operasi yang ditentukan seperti amplifier logaritmik. Gambar.3 Saat sebuah dioda ditempatkan di kaki umpan balik sebuah op amp, sebuah amplifier nonlinier dibentuk yang outputnya adalah proporsional ke logaritma natural dari input..5.0 Rangkaian-Rangkaian yang Terintegrasi Khusus (IC) Merek rangkaian terintegrasi (IC) yang sangat banyak adalah tesedia dari berbagi pabrik dan berguna untuk perancang instrumentasi kontrol proses. Divais untuk tujuan khusus seperti ini termasuk:. Amplifier instrumentasi diferensial gain tinggi.. Konverter arus ke tegangan. 3. Modulator/demodulator. 4. Jembatan dan detektor kesetimbangan. 5. Detektor phase sensitive. 3

25 Dalam bab berikutnya kita sering memerlukan pengkondisi sinyal yang akan diimplementasikan melalui penggunaan IC-IC khusus ini. Secara umum, kita akan menunjukkan perincian rancangan pengkondisi sinyal, tetapi pembaca seharusnya selalu sadar bahwa IC-IC untuk kegunaan khusus ini bisa membuat seperti tidak diperlukannya desain yeng teperinci. 3

Modul 2. Pengkondisian Sinyal.

Modul 2. Pengkondisian Sinyal. Modul 2. Pengkondisian Sinyal. Beragam transduser diperlukan untuk konversi besaran umum menjadi besaran listrik. Tetapi ini pun belum cukup, biasanya sinyal yang berasal dari ransduser belum layak untuk

Lebih terperinci

PENGKONDISI SINYAL ANALOG 2.2 PRINSIP-PRINSIP PENGKONDISI SINYAL ANALOG

PENGKONDISI SINYAL ANALOG 2.2 PRINSIP-PRINSIP PENGKONDISI SINYAL ANALOG PENGKONDISI SINYAL ANALOG 2. PENDAHULUAN Bermacam-macam transduser yang diperlukan untuk mantransformasi bermacam-macam variabel dinamik dalam sistem kontrol proses ke listrik analog menghasilkan bermacam-macam

Lebih terperinci

BAB II ANALOG SIGNAL CONDITIONING

BAB II ANALOG SIGNAL CONDITIONING BAB II ANALOG SIGNAL CONDITIONING 2.1 Pendahuluan Signal Conditioning ialah operasi untuk mengkonversi sinyal ke dalam bentuk yang cocok untuk interface dengan elemen lain dalam sistem kontrol. Process

Lebih terperinci

TUJUAN Setelah menyelesaikan perkuliahan ini peserta mampu:

TUJUAN Setelah menyelesaikan perkuliahan ini peserta mampu: TUJUAN Setelah menyelesaikan perkuliahan ini peserta mampu: Menggunakan rumus-rumus dalam rangkaian elektronika untuk menganalisis rangkaian pengkondisi sinyal pasif Menggunakan kaidah, hukum, dan rumus

Lebih terperinci

Pengkondisian Sinyal. Rudi Susanto

Pengkondisian Sinyal. Rudi Susanto Pengkondisian Sinyal Rudi Susanto Tujuan Perkuliahan Mahasiswa dapat menjelasakan rangkaian pengkondisi sinyal sensor Mahasiswa dapat menerapkan penggunaan rangkaian pengkondisi sinyal sensor Pendahuluan

Lebih terperinci

BAB VI INSTRUMEN PENGKONDISI SINYAL

BAB VI INSTRUMEN PENGKONDISI SINYAL BAB VI INSTRUMEN PENGKONDISI SINYAL Pengkondisian sinyal merupakan suatu konversi sinyal menjadi bentuk yang lebih sesuai yang merupakan antarmuka dengan elemen-elemen lain dalam suatu kontrol proses.

Lebih terperinci

Penguat Operasional OP-AMP ASRI-FILE

Penguat Operasional OP-AMP ASRI-FILE Penguat Operasional OPAMP Penguat Operasional atau disingkat Opamp adalah merupakan suatu penguat differensial berperolehan sangat tinggi yang terkopel DC langsung, yang dilengkapi dengan umpan balik untuk

Lebih terperinci

ANALOG SIGNAL PROCESSING USING OPERASIONAL AMPLIFIERS

ANALOG SIGNAL PROCESSING USING OPERASIONAL AMPLIFIERS ANALOG SIGNAL PROCESSING USING OPERASIONAL AMPLIFIERS (PEMROSESAN SINYAL ANALOG MENGGUNAKAN PENGUAT OPERASIONAL) A. PENDAHULUAN Sinyal keluaran dari sebuah tranduser atau sensor sangat kecil hampir mendekati

Lebih terperinci

LVDT (Linear Variable Differensial Transformer)

LVDT (Linear Variable Differensial Transformer) LVDT (Linear Variable Differensial Transformer) LVDT merupakan sebuah transformator yang memiliki satu kumparan primer dan dua kumparan sekunder. Ketiga buah kumparan tadi, diletakkan simetris pada sebuah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas dasar teori yang berhubungan dengan perancangan skripsi antara lain fungsi dari function generator, osilator, MAX038, rangkaian operasional amplifier, Mikrokontroler

Lebih terperinci

Bab III. Operational Amplifier

Bab III. Operational Amplifier Bab III Operational Amplifier 30 3.1. Masalah Interfacing Interfacing sebagai cara untuk menggabungkan antara setiap komponen sensor dengan pengontrol. Dalam diagram blok terlihat hanya berupa garis saja

Lebih terperinci

OPERASIONAL AMPLIFIER (OP-AMP) Oleh : Sri Supatmi

OPERASIONAL AMPLIFIER (OP-AMP) Oleh : Sri Supatmi 1 OPERASIONAL AMPLIFIER (OP-AMP) Oleh : Sri Supatmi Operasional Amplifier (OP-AMP) 2 Operasi Amplifier adalah suatu penguat linier dengan penguatan tinggi. Simbol 3 Terminal-terminal luar di samping power

Lebih terperinci

Elektronika Lanjut. Penguat Instrumen. Elektronika Lanjut Missa Lamsani Hal 1

Elektronika Lanjut. Penguat Instrumen. Elektronika Lanjut Missa Lamsani Hal 1 Penguat Instrumen Missa Lamsani Hal 1 . Missa Lamsani Hal 2 / 28 Penguat Instrumentasi Penguat instrumentasi adalah suatu loop tertutup (close loop) dengan masukan differensial dan penguatannya dapat diatur

Lebih terperinci

PENGUAT OPERASIONAL. ❶ Karakteristik dan Pemodelan. ❷ Operasi pada Daerah Linear. ❸ Operasi pada Daerah NonLinear

PENGUAT OPERASIONAL. ❶ Karakteristik dan Pemodelan. ❷ Operasi pada Daerah Linear. ❸ Operasi pada Daerah NonLinear PENGUAT OPERASIONAL ⓿ Pendahuluan ❶ Karakteristik dan Pemodelan ❷ Operasi pada Daerah Linear Model Virtual Short Circuit Metoda Inspeksi Metoda Sistematik ❸ Operasi pada Daerah NonLinear Rangkaian Ekivalen

Lebih terperinci

BABV INSTRUMEN PENGUAT

BABV INSTRUMEN PENGUAT BABV INSTRUMEN PENGUAT Operasional Amplifier (Op-Amp) merupakan rangkaian terpadu (IC) linier yang hampir setiap hari terlibat dalam pemakaian peralatan elektronik yang semakin bertambah di berbagai bidang

Lebih terperinci

BAB II DASAR TEORI. Sistem pengukur pada umumnya terbentuk atas 3 bagian, yaitu:

BAB II DASAR TEORI. Sistem pengukur pada umumnya terbentuk atas 3 bagian, yaitu: BAB II DASAR TEORI 2.1 Instrumentasi Pengukuran Dalam hal ini, instrumentasi merupakan alat bantu yang digunakan dalam pengukuran dan kontrol pada proses industri. Sedangkan pengukuran merupakan suatu

Lebih terperinci

Elektronika Lanjut. Pengkondisian Sinyal. Elektronika Lanjut Missa Lamsani Hal 1

Elektronika Lanjut. Pengkondisian Sinyal. Elektronika Lanjut Missa Lamsani Hal 1 Pengkondisian Sinyal Missa Lamsani Hal 1 Instrumen Pengkondisi Sinyal Pengkondisian sinyal merupakan suatu konversi sinyal menjadi bentuk yang lebih sesuai yang merupakan antarmuka dengan elemen-elemen

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA Bagian II

MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA Bagian II MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA Bagian II DEPARTEMEN ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK A. OP-AMP Sebagai Peguat TUJUAN PERCOBAAN PERCOBAAN VII OP-AMP SEBAGAI PENGUAT DAN KOMPARATOR

Lebih terperinci

Gambar 2.1. simbol op amp

Gambar 2.1. simbol op amp BAB II. PENGUAT OP AMP II.1. Pengenalan Op Amp Penguat Op Amp (Operating Amplifier) adalah chip IC yang digunakan sebagai penguat sinyal yang nilai penguatannya dapat dikontrol melalui penggunaan resistor

Lebih terperinci

Elektronika. Pertemuan 8

Elektronika. Pertemuan 8 Elektronika Pertemuan 8 OP-AMP Op-Amp adalah singkatan dari Operational Amplifier IC Op-Amp adalah piranti solid-state yang mampu mengindera dan memperkuat sinyal, baik sinyal DC maupun sinyal AC. Tiga

Lebih terperinci

Penguat Inverting dan Non Inverting

Penguat Inverting dan Non Inverting 1. Tujuan 1. Mahasiswa mengetahui karakteristik rangkaian op-amp sebagai penguat inverting dan non inverting. 2. Mengamati fungsi kerja dari masing-masing penguat 3. Mahasiswa dapat menghitung penguatan

Lebih terperinci

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS OPERATIONAL AMPLIFIERS DASAR OP-AMP Simbol dan Terminal Gambar 1a: Simbol Gambar 1b: Simbol dengan dc supply Standar operasi amplifier (op-amp) memiliki; a) V out adalah tegangan output, b) V adalah tegangan

Lebih terperinci

Tipe op-amp yang digunakan pada tugas akir ini adalah LT-1227 buatan dari Linear Technology dengan konfigurasi pin-nya sebagai berikut:

Tipe op-amp yang digunakan pada tugas akir ini adalah LT-1227 buatan dari Linear Technology dengan konfigurasi pin-nya sebagai berikut: BAB III PERANCANGAN Pada bab ini berisi perancangan pedoman praktikum dan perancangan pengujian pedoman praktikum dengan menggunakan current feedback op-amp. 3.. Perancangan pedoman praktikum Pada pelaksanaan

Lebih terperinci

Operational Amplifier Karakteristik Op-Amp (Bagian ke-satu) oleh : aswan hamonangan

Operational Amplifier Karakteristik Op-Amp (Bagian ke-satu) oleh : aswan hamonangan Operational Amplifier Karakteristik Op-Amp (Bagian ke-satu) oleh : aswan hamonangan Kalau perlu mendesain sinyal level meter, histeresis pengatur suhu, osilator, pembangkit sinyal, penguat audio, penguat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp )

BAB I PENDAHULUAN. 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp ) BAB I PENDAHULUAN 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp ) 1.2 Alat Alat Yang Digunakan Kit praktikum karakteristik opamp Voltmeter DC Sumber daya searah ( DC

Lebih terperinci

BAB 4. Rangkaian Pengolah Sinyal Analog

BAB 4. Rangkaian Pengolah Sinyal Analog DIKTAT KULIAH Elektronika Industri & Otomasi (IE-204) BAB 4. Rangkaian Pengolah Sinyal Analog Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha JURUSAN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN 3.1 Tahap Proses Perancangan Alat Perancangan rangkaian daya Proteksi perangkat daya Penentuan strategi kontrol Perancangan rangkaian logika dan nilai nominal Gambar 3.1 Proses

Lebih terperinci

BAB II TEORI DASAR SISTEM C-V METER PENGUKUR KARAKTERISTIK KAPASITANSI-TEGANGAN

BAB II TEORI DASAR SISTEM C-V METER PENGUKUR KARAKTERISTIK KAPASITANSI-TEGANGAN BAB II TEORI DASAR SISTEM C-V METER PENGUKUR KARAKTERISTIK KAPASITANSI-TEGANGAN 2.1. C-V Meter Karakteristik kapasitansi-tegangan (C-V characteristic) biasa digunakan untuk mengetahui karakteristik suatu

Lebih terperinci

Percobaan 3 Rangkaian OPAMP

Percobaan 3 Rangkaian OPAMP Percobaan 3 Rangkaian OPAMP EL2193 Praktikum Rangkaian Elektrik Penguat Noninverting Penguatan = 1 1/1 = 2 12V 2k2Ω 2k2Ω V in 2k2Ω Posisi V in (V) Vout (V) Vout ukur (V) A 6 12 11,7 B 2 4 4 C 2 4 4 D 6

Lebih terperinci

PERCOBAAN 3 RANGKAIAN OP AMP

PERCOBAAN 3 RANGKAIAN OP AMP PERCOBAAN 3 RANGKAIAN OP AMP TUJUAN Mempelajari penggunaan operational amplifier Mempelajari rangkaian rangkaian standar operational amplifier PERSIAPAN Pelajari keseluruhan petunjuk praktikum untuk modul

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang BAB III PERANCANGAN DAN REALISASI 3.1 Perancangan Alat Blok diagram carrier recovery dengan metode costas loop yang direncanakan diperlihatkan pada Gambar 3.1. Sinyal masukan carrier recovery yang berasal

Lebih terperinci

Penguat Oprasional FE UDINUS

Penguat Oprasional FE UDINUS Minggu ke -8 8 Maret 2013 Penguat Oprasional FE UDINUS 2 RANGKAIAN PENGUAT DIFERENSIAL Rangkaian Penguat Diferensial Rangkaian Penguat Instrumentasi 3 Rangkaian Penguat Diferensial R1 R2 V1 - Vout V2 R1

Lebih terperinci

PENGUAT OPERASIONAL AMPLIFIER (OP-AMP) Laporan Praktikum

PENGUAT OPERASIONAL AMPLIFIER (OP-AMP) Laporan Praktikum PENGUAT OPERASIONAL AMPLIFIER (OP-AMP) Laporan Praktikum ditujukan untuk memenuhi salah satu tugas mata kuliah Elektronika Dasar yang diampu oleh Drs. Agus Danawan, M.Si Disusun oleh Anisa Fitri Mandagi

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan mengenai perancangan dari perangkat keras dan perangkat lunak yang digunakan pada alat ini. Dimulai dari uraian perangkat keras lalu uraian perancangan

Lebih terperinci

PENGENALAN OPERATIONAL AMPLIFIER (OP-AMP)

PENGENALAN OPERATIONAL AMPLIFIER (OP-AMP) + PENGENALAN OPERATIONAL AMPLIFIER (OPAMP) Penguat operasional atau Operational Amplifier (OPAMP) yaitu sebuah penguat tegangan DC yang memiliki 2 masukan diferensial. OPAMP pada dasarnya merupakan sebuah

Lebih terperinci

LAPORAN PRAKTIKUM ELEKTRONIKA MERANGKAI DAN MENGUJI OPERASIONAL AMPLIFIER UNIT : VI

LAPORAN PRAKTIKUM ELEKTRONIKA MERANGKAI DAN MENGUJI OPERASIONAL AMPLIFIER UNIT : VI LAPORAN PRAKTIKUM ELEKTRONIKA MERANGKAI DAN MENGUJI OPERASIONAL AMPLIFIER UNIT : VI NAMA : REZA GALIH SATRIAJI NOMOR MHS : 37623 HARI PRAKTIKUM : SENIN TANGGAL PRAKTIKUM : 3 Desember 2012 LABORATORIUM

Lebih terperinci

DIGITAL TO ANALOG CONVERTER

DIGITAL TO ANALOG CONVERTER PERCOBAAN 9 DIGITAL TO ANALOG CONVERTER 9.1. TUJUAN : Setelah melakukan percobaan ini mahasiswa diharapkan mampu Menjelaskan proses perubahan dari sistim digital ke analog Membuat rangkaian DAC Binary-weighted

Lebih terperinci

Modul VIII Filter Aktif

Modul VIII Filter Aktif Modul VIII Filter Aktif. Tujuan Praktikum Praktikan dapat mengetahui fungsi dan kegunaan dari sebuah filter. Praktikan dapat mengetahui karakteristik sebuah filter. Praktikan dapat membuat suatu filter

Lebih terperinci

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA DEPARTEMEN ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2010 MODUL I DIODA SEMIKONDUKTOR DAN APLIKASINYA 1. RANGKAIAN PENYEARAH & FILTER A. TUJUAN PERCOBAAN

Lebih terperinci

MODUL 09 PENGUAT OPERATIONAL (OPERATIONAL AMPLIFIER) PRAKTIKUM ELEKTRONIKA TA 2017/2018

MODUL 09 PENGUAT OPERATIONAL (OPERATIONAL AMPLIFIER) PRAKTIKUM ELEKTRONIKA TA 2017/2018 MODUL 09 PENGUAT OPERATIONAL (OPERATIONAL AMPLIFIER) PRAKTIKUM ELEKTRONIKA TA 2017/2018 LABORATORIUM ELEKTRONIKA & INSTRUMENTASI PROGRAM STUDI FISIKA, INSTITUT TEKNOLOGI BANDUNG Riwayat Revisi Rev. 07-06-2017

Lebih terperinci

Modul 04: Op-Amp. Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis. 1 Alat dan Komponen. 2 Teori Singkat

Modul 04: Op-Amp. Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis. 1 Alat dan Komponen. 2 Teori Singkat Modul 04: Op-Amp Penguat Inverting, Non-Inverting, dan Comparator dengan Histeresis Reza Rendian Septiawan March 3, 2015 Op-amp merupakan suatu komponen elektronika aktif yang dapat menguatkan sinyal dengan

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) I. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sensor/Tranduser Sensor adalah elemen yang menghasilkan suatu sinyal yang tergantung pada kuantitas yang diukur. Sedangkan tranduser adalah suatu piranti yang mengubah suatu sinyal

Lebih terperinci

Workshop Instrumentasi Industri Page 1

Workshop Instrumentasi Industri Page 1 INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 1 (PENGUAT NON-INVERTING) I. Tujuan a. Mahasiswa dapat mengetahui pengertian, prinsip kerja, dan karakteristik penguat non-inverting b. Mahasiswa dapat merancang,

Lebih terperinci

BAB II Dasar Teori. Gambar 2.1. Model CFA [2]

BAB II Dasar Teori. Gambar 2.1. Model CFA [2] BAB II Dasar Teori Pada bab ini berisi dasar teori dari current feedback op-amp yang menjelaskan perbedaanperbedaannya dengan voltage feedback op-amp. 2.1. Current Feedback Operational Amplifier Op-amp

Lebih terperinci

MODUL - 04 Op Amp ABSTRAK

MODUL - 04 Op Amp ABSTRAK MODUL - 04 Op Amp Yuri Yogaswara, Asri Setyaningrum 90216301 Program Studi Magister Pengajaran Fisika Institut Teknologi Bandung yogaswarayuri@gmail.com ABSTRAK Pada percobaan praktikum Op Amp ini digunakan

Lebih terperinci

PENGKONDISI SINYAL OLEH : AHMAD AMINUDIN

PENGKONDISI SINYAL OLEH : AHMAD AMINUDIN PENGKONDISI SINYAL OLEH : AHMAD AMINUDIN Pengkondisi Sinyal Ada 6 pengkondisi sinyal Penguat Filter Konverter Kompensator Diferensiator dan Integrator Elemen transmisi data Penguat Sinyal Macam-macam Penguat

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka 59 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Flow Chart Perancangan dan Pembuatan Alat Mulai Tinjauan pustaka Simulasi dan perancangan alat untuk pengendali kecepatan motor DC dengan kontroler PID analog

Lebih terperinci

PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP

PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP 9.1 Tujuan : 1) Mendemonstrasikan prinsip kerja dari rangkaian comparator inverting dan non inverting dengan menggunakan op-amp 741. 2) Rangkaian comparator menentukan

Lebih terperinci

DAC - ADC Digital to Analog Converter Analog to Digital Converter

DAC - ADC Digital to Analog Converter Analog to Digital Converter DAC - ADC Digital to Analog Converter Analog to Digital Converter Missa Lamsani Hal 1 Konverter Alat bantu digital yang paling penting untuk teknologi kontrol proses adalah yang menerjemahkan informasi

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Seperti yang telah dijelaskan sebelumnya, pengukuran resistivitas dikhususkan pada bahan yang bebentuk silinder. Rancangan alat ukur ini dibuat untuk mengukur tegangan dan arus

Lebih terperinci

JOBSHEET 2 PENGUAT INVERTING

JOBSHEET 2 PENGUAT INVERTING JOBSHEET 2 PENGUAT INVERTING A. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai aplikasi dari rangkaian Op-Amp.

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Tujuan Perancangan Tujuan dari perancangan ini adalah untuk menentukan spesifikasi kerja alat yang akan direalisasikan melalui suatu pendekatan analisa perhitungan, analisa

Lebih terperinci

PENERAPAN DARI OP-AMP (OPERATIONAL AMPLIFIER)

PENERAPAN DARI OP-AMP (OPERATIONAL AMPLIFIER) ORBITH VOL. 13 NO. 1 Maret 2017 : 43 50 PENERAPAN DARI OP-AMP (OPERATIONAL AMPLIFIER) Oleh : Lilik Eko Nuryanto Staf Pengajar Jurusan Teknik Elektro, Politeknik Negeri Semarang Jl. Prof. H. Soedarto. SH,

Lebih terperinci

RANGKAIAN KONVERTER ZERO & Semester 3

RANGKAIAN KONVERTER ZERO & Semester 3 No.LST/TE/EKA5228/09 Revisi : 00 Tgl : 8 Sept 2015 Hal 1 dari 5 1. Kompetensi : Menjelaskan karakteristik konverter zero & span 2. Sub Kompetensi : 1) Menjelaskan cara kerja rangkaian konverter zero-span

Lebih terperinci

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1)

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1) TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1) DASAR ELEKTRONIKA KOMPONEN ELEKTRONIKA SISTEM BILANGAN KONVERSI DATA LOGIC HARDWARE KOMPONEN ELEKTRONIKA PASSIVE ELECTRONIC ACTIVE ELECTRONICS (DIODE

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi PWM Sinyal PWM pada umumnya memiliki amplitudo dan frekuensi dasar yang tetap, namun, lebar pulsanya bervariasi. Lebar pulsa PWM berbanding lurus dengan amplitudo sinyal

Lebih terperinci

PERCOBAAN VII PENGUAT OPERASI ( OPERATIONAL AMPLIFIER )

PERCOBAAN VII PENGUAT OPERASI ( OPERATIONAL AMPLIFIER ) PERCOBAAN VII PENGUAT OPERASI ( OPERATIONAL AMPLIFIER ) A. Tujuan 1. Menyelidiki penguatan penguat operasi 2. Menyelidiki beda fase antara tegangan input dan output B. Dasar Teori Penguat operasi (operational

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERACAGA SISTEM Pada bab ini penulis akan menjelaskan mengenai perencanaan modul pengatur mas pada mobile x-ray berbasis mikrokontroller atmega8535 yang meliputi perencanaan dan pembuatan rangkaian

Lebih terperinci

ANALOG TO DIGITAL CONVERTER

ANALOG TO DIGITAL CONVERTER PERCOBAAN 10 ANALOG TO DIGITAL CONVERTER 10.1. TUJUAN : Setelah melakukan percobaan ini mahasiswa diharapkan mampu Menjelaskan proses perubahan dari sistim analog ke digital Membuat rangkaian ADC dari

Lebih terperinci

Tujuan Mempelajari penggunaan penguat operasional (OPAMP) Mempelajari rangkaian dasar dengan OPAMP

Tujuan Mempelajari penggunaan penguat operasional (OPAMP) Mempelajari rangkaian dasar dengan OPAMP Percobaan 3 angkaian OPAMP EL2193 Praktikum angkaian Elektrik Tujuan Mempelajari penggunaan penguat operasional (OPAMP) Mempelajari rangkaian dasar dengan OPAMP eiew OPAMP Apakah OPAMP itu? Penguat diferensial

Lebih terperinci

MODUL 08 OPERATIONAL AMPLIFIER

MODUL 08 OPERATIONAL AMPLIFIER MODUL 08 OPERATIONAL AMPLIFIER 1. Tujuan Memahami op-amp sebagai penguat inverting dan non-inverting Memahami op-amp sebagai differensiator dan integrator Memahami op-amp sebagai penguat jumlah 2. Alat

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN MATA KULIAH : ELEKTRONIKA DASAR KODE : TSK-210 SKS/SEMESTER : 2/2 Pertemuan Pokok Bahasan & ke TIU 1 Pengenalan Komponen dan Teori Semikonduktor TIU : - Mahasiswa mengenal Jenis-jenis

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan perancangan alat, yaitu perancangan perangkat keras dan perancangan perangkat lunak. Perancangan perangkat keras terdiri dari perangkat elektronik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sensor Sebuah transduser secara umum didefinisikan sebagai sebuah alat yang mengubah sinyal dari satu bentuk menjadi sinyal yang sesuai dan memiliki bentuk yang berbeda. Transduser

Lebih terperinci

PRAKTIKUM II PENGKONDISI SINYAL 1

PRAKTIKUM II PENGKONDISI SINYAL 1 PRAKTIKUM II PENGKONDISI SINYAL 1 Tujuan: Mahasiswa mampu memahami cara kerja rangkaian-rangkaian sinyal pengkondisi berupa penguat (amplifier/attenuator) dan penjumlah (summing/adder). Alat dan Bahan

Lebih terperinci

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP PERCOBAAN 0 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP 0. Tujuan : ) Mendemonstrasikan prinsip kerja dari suatu rangkaian diffrensiator dan integrator, dengan menggunakan op-amp 74. 2) Rangkaian differensiator

Lebih terperinci

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia bidang TEKNIK VOLTAGE PROTECTOR SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia Listrik merupakan kebutuhan yang sangat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret - Mei 2015 dan tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret - Mei 2015 dan tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan dari bulan Maret - Mei 205 dan tempat pelaksanaan penelitian ini di Laboratorium Elektronika Jurusan Fisika Fakultas Matematika

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI ALAT. modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok Diagram Modulator 8-QAM

BAB III PERANCANGAN DAN REALISASI ALAT. modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok Diagram Modulator 8-QAM BAB III PERANCANGAN DAN REALISASI ALAT 3.1 Pembuatan Modulator 8-QAM Dalam Pembuatan Modulator 8-QAM ini, berdasarkan pada blok diagram modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah Kode / SKS Program Studi Fakultas : Elektronika Dasar : IT012346 / 3 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Pengenalan Komponen dan Teori Semikonduktor TIU : - Mahasiswa

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Metode penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen murni. Eksperimen dilakukan untuk mengetahui pengaruh frekuensi medan eksitasi terhadap

Lebih terperinci

PRAKTIKUM TEKNIK TELEKOMUNIKASI 1 / RANGKAIAN LISTRIK / 2015 PERATURAN PRAKTIKUM. 1. Peserta dan asisten memakai kemeja pada saat praktikum

PRAKTIKUM TEKNIK TELEKOMUNIKASI 1 / RANGKAIAN LISTRIK / 2015 PERATURAN PRAKTIKUM. 1. Peserta dan asisten memakai kemeja pada saat praktikum PERATURAN PRAKTIKUM 1. Peserta dan asisten memakai kemeja pada saat praktikum 2. Peserta dan asisten memakai sepatu tertutup (untuk perempuan diizinkan menggunakan flat shoes) 3. Peserta mengerjakan dan

Lebih terperinci

JOBSHEET 6 PENGUAT INSTRUMENTASI

JOBSHEET 6 PENGUAT INSTRUMENTASI JOBSHEET 6 PENGUAT INSTUMENTASI A. TUJUAN Tujuan dari pembuatan modul Penguat Instrumentasi ini adalah :. Mahasiswa mengetahui karakteristik rangkaian penguat instrumentasi sebagai aplikasi dari rangkaian

Lebih terperinci

Perancangan Sistim Elektronika Analog

Perancangan Sistim Elektronika Analog Petunjuk Praktikum Perancangan Sistim Elektronika Analog Lab. Elektronika Industri Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Lab 1. Amplifier Penguat Dengan

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

BAB III PERENCANAAN. Pada bab ini akan dijelaskan langkah-langkah yang digunakan dalam

BAB III PERENCANAAN. Pada bab ini akan dijelaskan langkah-langkah yang digunakan dalam BAB III PERENCANAAN Pada bab ini akan dijelaskan langkah-langkah yang digunakan dalam merencanakan alat yang dibuat. Adapun pelaksanaannya adalah dengan menentukan spesifikasi dan mengimplementasikan dari

Lebih terperinci

JEMBATAN SCHERING. Cx C 3 Rx

JEMBATAN SCHERING. Cx C 3 Rx JEMBATAN SHEING x x Jembatan Schering, salah satu jembatan arus bolak-balik yang paling penting, di pakai secara luas untuk pengukuran kapasitor. Dia memberikan beberapa keuntungan nyata atas jembatan

Lebih terperinci

Modul 4. Asisten : Catra Novendia Utama ( ) : M. Mufti Muflihun ( )

Modul 4.   Asisten : Catra Novendia Utama ( ) : M. Mufti Muflihun ( ) Modul 4 OPERATIONAL AMPLIFIER Nama : Muhammad Ilham NIM : 10211078 E-mail : ilham_atlantis@hotmail.com Shift/Minggu : III/2 Asisten : Catra Novendia Utama (10208074) : M. Mufti Muflihun (10208039) Tanggal

Lebih terperinci

'$&'LJLWDOWR$QDORJ&RQYHUWLRQ

'$&'LJLWDOWR$QDORJ&RQYHUWLRQ '$&'LJLWDOWR$QDORJ&RQYHUWLRQ TEORI DASAR Rangkaian penjumlah op-amp (summing amplifier) dapat digunakan untuk menyusun suatu konverter D/A dengan memakai sejumlah hambatan masukan yang diberi bobot dalam

Lebih terperinci

BAB II DASAR TEORI. Modulasi adalah proses yang dilakukan pada sisi pemancar untuk. memperoleh transmisi yang efisien dan handal.

BAB II DASAR TEORI. Modulasi adalah proses yang dilakukan pada sisi pemancar untuk. memperoleh transmisi yang efisien dan handal. BAB II DASAR TEORI 2.1 Modulasi Modulasi adalah proses yang dilakukan pada sisi pemancar untuk memperoleh transmisi yang efisien dan handal. Pemodulasi yang merepresentasikan pesan yang akan dikirim, dan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Dalam penelitian ini, penulis menganalisa data hubungan tegangan dengan

BAB III METODOLOGI PENELITIAN. Dalam penelitian ini, penulis menganalisa data hubungan tegangan dengan BAB III METODOLOGI PENELITIAN 3.1. Metode Penelitian Dalam penelitian ini, penulis menganalisa data hubungan tegangan dengan medan magnet untuk mengetahui karakteristik sistem sensor magnetik. Tahapan

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) I. TUJUAN 1. Mahasiswa dapat memahami karakteristik pengkondisi sinyal DAC 0808 2. Mahasiswa dapat merancang rangkaian pengkondisi sinyal DAC 0808

Lebih terperinci

MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN

MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN 1. PENDAHULUAN 1.1 Rencana Perkuliahan Mata Kuliah : Rangkaian Listrik 2 Dosen : Trie Maya Kadarina ST, MT. Perkuliahan : PKK Semester

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN ANALISIS

BAB IV HASIL PERCOBAAN DAN ANALISIS BAB IV HASIL PERCOBAAN DAN ANALISIS 4.1. Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang Penuh). A. Penyearah Setengah Gelombang Gambar

Lebih terperinci

OP-AMP 2. by. Risa Farrid Christianti, M.T.

OP-AMP 2. by. Risa Farrid Christianti, M.T. OP-AMP 2 by. Risa Farrid Christianti, M.T. SLEW RATE Slew Rate adalah kemiringan awal bentuk Gelombang eksponensial akibat dari kapasitor kompensasi di dalam OP-AMP S R = V t out Contoh : Slew Rate IC

Lebih terperinci

PENDAHULUAN. Modul Praktikum Rangkaian Linear Aktif. Lab. Elektronika Fakultas Teknik UNISKA

PENDAHULUAN. Modul Praktikum Rangkaian Linear Aktif. Lab. Elektronika Fakultas Teknik UNISKA MODUL PRAKTIKUM RANGKAIAN LINEAR AKTIF LABORATORIUM TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS ISLAM KADIRI KEDIRI PENDAHULUAN A. UMUM Sesuai dengan tujuan pendidikan di UNISKA,

Lebih terperinci

BAB II LANDASAN SISTEM

BAB II LANDASAN SISTEM BAB II LANDASAN SISTEM Berikut adalah penjabaran mengenai sistem yang dibuat dan teori-teori ilmiah yang mendukung sehingga dapat terealisasi dengan baik. Pada latar belakang penulisan sudah dituliskan

Lebih terperinci

Materi-2 SENSOR DAN TRANSDUSER (2 SKS / TEORI) SEMESTER 106 TA 2016/2017

Materi-2 SENSOR DAN TRANSDUSER (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 Materi-2 SENSOR DAN TRANSDUSER 52150802 (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 KONSEP AKUISISI DATA DAN KONVERSI PENGERTIAN Akuisisi data adalah pengukuran sinyal elektrik dari transduser dan peralatan

Lebih terperinci

POLITEKNIK NEGERI JAKARTA

POLITEKNIK NEGERI JAKARTA LAPORAN PRAKTIKUM LABORATORIUM KOMUNIKASI RADIO SEMESTER V TH 2013/2014 JUDUL REJECTION BAND AMPLIFIER GRUP 06 5B PROGRAM STUDI TEKNIK TELEKOMUNIKASI JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI JAKARTA PEMBUAT

Lebih terperinci

Lampiran A. Praktikum Current Feedback OP-AMP. Percobaan I Karakteristik Op-Amp CFA(R in,vo max. Slew rate)

Lampiran A. Praktikum Current Feedback OP-AMP. Percobaan I Karakteristik Op-Amp CFA(R in,vo max. Slew rate) Lampiran A Praktikum Current Feedback OP-AMP Percobaan I Karakteristik Op-Amp CFA(R in,vo max. Slew rate) Waktu : 3 jam (praktikum dan pembuatan laporan) dipersiapkan oleh: Reinhard A. TUJUAN Menganalisa

Lebih terperinci

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012)

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012) BAB II TINJAUAN PUSTAKA 2.1 Digital Signal Processing Pada masa sekarang ini, pengolahan sinyal secara digital yang merupakan alternatif dalam pengolahan sinyal analog telah diterapkan begitu luas. Dari

Lebih terperinci

PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER)

PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER) PERTEMUAN 4 RANGKAIAN PENYEARAH DIODA (DIODE RECTIFIER) Rangkaian Penyearah Dioda (Diode Rectifier) Peralatan kecil portabel kebanyakan menggunakan baterai sebagai sumber dayanya, namun sebagian besar

Lebih terperinci

RANGKAIAN ELEKTRONIKA ANALOG

RANGKAIAN ELEKTRONIKA ANALOG Pendahuluan i iv Rangkaian Elektronika Analog RANGKAIAN ELEKTRONIKA ANALOG Oleh : Pujiono Edisi Pertama Cetakan Pertama, 2012 Hak Cipta 2012 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang

Lebih terperinci

PENULISAN ILMIAH LAMPU KEDIP

PENULISAN ILMIAH LAMPU KEDIP PENULISAN ILMIAH LAMPU KEDIP BAB 2 TINJAUAN PUSTAKA 2.1 Integrated Circuit 4017 Integrated Circuit 4017 adalah jenis integrated circuit dari keluarga Complentary Metal Oxide Semiconductor (CMOS). Beroperasi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Kegiatan penelitian ini dilakukan pada bulan Desember 2011 sampai dengan bulan Juli 2012 yang dilaksanakan di laboratorium Elektronika dan Robotika

Lebih terperinci

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI Renny Rakhmawati, ST, MT Jurusan Teknik Elektro Industri PENS-ITS Kampus ITS Sukolilo Surabaya Phone 03-5947280

Lebih terperinci

09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK

09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK 09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK 9.1 Pendahuluan Jembatan arus bolak balik bentuk dasarnya terdiri dari : - empat lengan jembatan - sumber eksitasi dan - sebuah detektor nol Pada

Lebih terperinci