BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka"

Transkripsi

1 59 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Flow Chart Perancangan dan Pembuatan Alat Mulai Tinjauan pustaka Simulasi dan perancangan alat untuk pengendali kecepatan motor DC dengan kontroler PID analog Pembuatan alat untuk pengendali kecepatan motor DC dengan kontroler PID analog Hasil dan pembahasan Selesai Gambar 3.1. Flow Chart Perancangan dan Pembuatan Alat

2 Perancangan Sistem Sistem yang akan dibuat adalah suatu sistem pengendali kecepatan motor DC yang digunakan untuk menjaga agar putaran kecepatan motor DC tidak turun pada saat diberi beban. Plant yang digunakan adalah motor DC 0,75 KW 160 volt yang akan dikendalikan kecepatan putaranya dengan mengatur tegangan masukan dari belitan medan. Untuk mengendalikan kecepatan putar motor memerlukan kontroler, kontroler yang digunakan yaitu kontroler PID analog dengan menggunakan op-amp. Kontroler PID akan memberikan parameter kontroler yang dapat diatur besar nilainya. Output dari kontroler PID itu dihubungkan dengan kaki gate pada SCR. SCR ini berfungsi sebagai driver motor untuk memberikan suplai tegangan pada motor DC. Sensor optocoupler digunakan sebagai sensor kecepatan yang memberikan suatu besaran tegangan dari besarnya kecepatan putar pada motor. Sensor optocoupler ini digunakan untuk umpan balik / feedback untuk masukan bagi rangkaian error detector pada kontroler PID. Berikut adalah diagram blok dari pengendali kecepatan motor DC dengan kontroler PID. Set Point Error Detector KONTROLER PID Rangkaian Driver Motor DC MOTOR DC Optocoupler / Sensor Kecepatan Gambar 3.2. Diagram Blok Pengendali Kecepatan Motor DC

3 Perancangan dan Pembuatan Power Supply ±15 Volt DC Dalam tugas akhir ini menggunakan power supply ±15 volt DC untuk memberikan sumber listrik ke error detector, kontroler PID, dan juga sensor optocoupler. Sebelum realisasi pembuatan alat terlebih dahulu dilakukan simulasi pembuatan power supply ±15 volt DC menggunakan software Multisim. Tujuan dari pembuatan simulasi ini yaitu untuk mengetahui apakah rangkaian power supply yang akan dibuat akan berjalan atau tidak pada saat pengujian alat. Berikut gambar rangkaian dan simulasi power supply ±15 volt DC menggunakan Multisim. Gambar 3.3. Rangkaian Power Supply ±15 Volt DC Komponen yang diperlukan dalam pembuatan power supply ±15 volt DC adalah : 1. Transformator CT step down 18 volt 3 ampere. 2. Dioda 1N Kapasitor 2200μF 35 volt atau 50 volt.

4 62 4. Kapasitor 100nF. 5. IC voltage regulator LM7815 dan LM7915. Prinsip kerja dari power supply diatas yaitu arus listik masuk dari PLN sebesar 220 volt AC, kemudian diturunkan oleh trafo CT step down menjadi 18 volt. Tegangan yang dihasilkan oleh trafo masih berbentuk tegangan AC dan perlu disearahkan menjadi gelombang DC (hanya meloloskan gelombang satu arah saja) oleh 4 buah dioda 1N4004. Arus DC dari dioda kemudian mengalir ke kapasitor 2200μF dan kapasitor 100nF. Fungsi dari kapasitor yaitu sebagai pengaman dan penghilang riak gelombang yang telah disearahkan oleh dioda. Hal ini dikarenakan dioda hanya menghilangkan siklus negatif menjadikannya siklus positif tetapi tidak merubah bentuk gelombang sama sekali dimana masih memiliki lembah dan bukit. Sehingga menggunakan kapasitor dengan kapasitas yang besar untuk membuat rata gelombang. Tegangan dari trafo step down masih 18 volt, sehingga menggunakan IC regulator LM7815 untuk menstabilkan tegangan menjadi 15 volt postif dan IC regulator LM7915 untuk menstabilkan tegangan menjadi 15 volt negatif.

5 63 Gambar 3.4. Realisasi Power Supply ±15 Volt DC 3.4. Perancangan dan Pembuatan Kontroler PID Bagian terpenting dari tugas akhir ini yaitu pembuatan kontroler PID. Kontroler PID ini akan memberikan aksi pengontrolan terhadap plant berupa motor DC 750 watt 160 volt. Kontroler yang digunakan yaitu kontroler PID analog menggunakan op-amp. Sedangkan op-amp yang digunakan adalah LM741 yang akan didesain dan membentuk kontroler proportional, integral dan derivative. IC op-amp LM741 ini mendapatkan suplai tegangan sebesar + 15 volt dan -15 volt dari power supply yang telah dirancang.

6 64 Di bawah ini gambar rangkaian kontroler PID analog menggunakan opamp. Gambar 3.5. Rangkaian Kontroler PID Analog Menggunakan Op-amp Bagian pertama dari kontroler PID yaitu error detector yang merupakan rangkaian difference amplifier. Error detector ini berfungsi untuk menghitung sinyal error yang terjadi. Gambar 3.6. Rangkaian Error Detector

7 65 Pada rangkaian error detector di atas, op-amp akan mendapatkan dua input yaitu set point (SP) dan nilai aktual atau process variable (PV). Nilai set point (SP) didapatkan dari rangkaian pembagi tegangan menggunakan potentiometer 10kΩ dengan suplai tegangan 15 volt sehingga mendapatkan tegangan yang nilainya dapat berubah sesuai dengan nilai tahanan potentiometer. Sedangkan nilai aktual atau process variable (PV) didapatkan dari output tegangan dari sensor optocoupler. Nilai set point (SP) akan diatur dengan mengubah potentiometer sehingga mendapatkan nilai yang sama dengan besaran nilai dari process variable (PV). Untuk menghitung output rangkaian di atas, maka rangkaian tersebut dapat dianggap sebagai rangkaian inverting dan rangkaian non inverting amplifier. Dengan menjumlahkan tegangan output dari inverting amplifier dan non inverting amplifier akan didapatkan output dari rangkaian. V out = - V pv + Dengan memberikan nilai yang sama pada masing-masing resistor yaitu R f = R i = R 1 = R 2 = 22kΩ, maka nilai tegangan output akan menjadi V out = V sp - V pv. Tegangan output tersebut adalah sinyal error yang akan dimasukkan ke rangkaian kontroler proportional, integrator, dan differentiator, sehingga error tersebut akan mendapatkan aksi pengontrolan. Bagian lain dari rangkaian kontroler yaitu kontroler itu sendiri yang terdiri dari rangkaian proportional, integrator, dan differentiator. Bagian ini akan mengolah sinyal error yang dihasilkan dari perbedaan nilai set point (SP) dan process variable (PV) sampai error bernilai nol. Di bawah ini gambar rangkaian kontroler PID.

8 66 Gambar 3.7. Rangkaian Kontroler PID Rangkaian di atas akan mendapatkan tegangan input dari sinyal error yang berasal dari error detector. Sinyal error inilah yang merupakan selisih antara set point dan process variable. Op-amp U5 adalah rangkaian inverting summer yang berfungsi untuk menjumlahkan nilai output dari masing-masing kontroler proportional, integral, derivative dan membalikan tegangan output dari masingmasing kontroler, sehingga mendapatkan output secara keseluruhan yaitu : V out = K p v error + K i dt + K D + V o Dimana

9 67 K p =, proportional band (gain) K i =, integration constant K D = R D. C D, derivative constant V o = offset integrator initial charge Dari persamaan di atas akan terlihat tidak ada nilai minus karena op-amp U5 yang membalik nilai tersebut dengan rangkaian inverter. Op-amp U2 adalah rangkaian proportional controller karena pada dasarnya rangkaian ini adalah inverting amplifier tetapi outputnya dimasukkan ke op-amp U5. Maka pada bagian ini sinyal error akan mendapatkan suatu penguatan (gain) sebesar : K p = Dengan R2 adalah resistor variabel (potensiometer) dengan nilai 100kΩ dan nilai R 1 yaitu 10kΩ, maka dapat dihitung harga maksimal dari penguatan (gain) atau konstanta proportional (K p ) yaitu : K P = = 10 Sedangkan nilai minimum penguatan (gain) atau konstanta proportional (K p ) dengan batas minimum R 1 = 10kΩ adalah : K P = = 1

10 68 Dengan mengubah nilai resistor variabel (potensiometer) R 2 akan didapatkan nilai K p yang dapat diatur dari konstanta 1 sampai 10. Op-amp U3 merupakan rangkaian integrator controller, rangkaian tersebut akan menghasilkan suatu konstanta K i yang disebut dengan integration constant. Nilai ini yang diatur sehingga menghasilkan suatu konstanta dengan nilai tertentu. Pengaturan dapat dilakukan dengan memberikan nilai pada resistor variabel R i dan juga pada kapasitor C i. Output dari op-amp U3 akan dimasukkan pada opamp U5 yang merupakan rangkaian inverting summer yang akan membalik hasil dari integrator, sehingga nilai konstanta K i akan bernilai positif. Perhitungan untuk menentukan harga konstanta K i adalah sebagai berikut : K i = Dengan memasukan nilai R i = 100k ohm dan C i = 100μF, dengan batas minimum R i = 10kΩ: Dengan memberikan nilai R i = 100 kω didapatkan : K i = = 0,1 Dengan memberikan nilai R i = 10 kω didapatkan : K i = = 1 Sehingga didapatkan nilai K i antara 0,1 sampai 1 yang diperoleh dari pengaturan nilai resistor variabel.

11 69 Op-amp U4 merupakan rangkaian differentiator, rangkaian tersebut akan menghasilkan suatu konstantan K D yang disebut dengan derivative constant. Rangkaian ini pada dasarnya merupakan rangkaian inverting amplifier dan menghasilkan output yang bernilai negatif. Pengaturan dapat dilakukan dengan memberikan nilai pada resistor variabel R D dan juga pada kapasitor C D. Output dari op-amp U3 akan dimasukkan pada op-amp U5 yang merupakan rangkaian inverting summer yang akan membalik hasil differentiator, sehingga nilai konstanta K D akan bernilai positif. Untuk perhitungan nilai konstanta K D dapat dicari dengan rumus : K D = R D. C D Dengan memasukan nilai R D = 100kΩ ohm dan C D = 100 μf didapatkan: K D = 100k. 100μ = 10 Dengan memasukan nilai R D = 10kΩ didaptkan K D = 10k. 100μ = 1 Dengan batas minimum dari R D = 10k ohm Nilai K D untuk rangkaian tersebut dapat diatur, sehingga dapat memberikan nilai konstanta K D dari 1 sampai 10.

12 70 Gambar 3.8. Realisasi Kontroler PID Menggunakan Op-amp 3.5. Perancangan dan Pembuatan Driver Motor Untuk menggerakan rotor motor DC diperlukan tegangan kira-kira 160 volt DC dan arus yang dihasilkan dari op-amp kontroler PID sangat kecil sekitar 10 ma. Sehingga driver motor yang sesuai untuk menggerakan motor DC 750 W yaitu menggunakan thyristor / SCR tipe BT R. Karena tegangan maksimal dari SCR tipe BT R sekitar 600 volt dan arus ke anoda 13 A. Karena pada saat starting motor, arus yang diperlukan oleh motor sekitar 10 A. SCR tipe ini memiliki 3 kaki, yaitu anoda, katoda, dan gate. Kaki anoda dihubungkan dengan input dari sumber DC 220 volt, kaki katoda dihubungkan dengan kumparan medan pada motor DC, sedangkan kaki gate dihubungkan dengan output dari kontroler PID sebagai trigger. SCR ini bersifat sama dengan saklar yaitu apabila kaki gate mendapatkan sinyal masukan dari kontroler PID maka akan on.

13 71 Berikut spesifikasi dari SCR BT R : Tegangan maksimal (V max ) Arus RMS maksimal (I T(RMS) ) Arus gate (I GT ) Arus holding (I H ) maximal T on T off 600 V 20 A 32 ma 20 ma 2 μs 70 μs BT R. Gambar berikut adalah gambar dari driver motor menggunakan SCR tipe Gambar 3.9. Rangkaian Driver Motor Sumber tegangan DC untuk anoda pada SCR ini berasal dari tegangan PLN yang diserahkan oleh dioda bridge, kemudian arus mengalir ke kapasitor. Fungsi dari kapasitor yaitu sebagai pengaman, selain itu berfungsi untuk penghilang riak gelombang dari gelombang DC yang dihasilkan oleh dioda. Karena dioda hanya dapat menghilangkan siklus negatif dan tidak menghilangkan bukit dan lembah dari gelombang DC.

14 72 Gambar Realisasi Driver Motor Gambar Transformator Step Down dan Dioda Bridge 3.6. Perancangan dan Pembuatan Sensor Optocoupler Sensor optocoupler ini digunakan untuk feedback (umpan balik) dari motor DC ke process variable atau nilai aktual dari rangkaian error detector pada kontroler PID. Sensor optocoupler ini membaca RPM motor dengan menghasilkan tegangan variabel. Semakin cepat motor berputar maka semakin besar pula tegangan yang dihasilkan oleh sensor optocoupler, begitu juga sebaliknya. Pada sensor ini terdapat transmiter yaitu LED dan receiver yaitu

15 73 phototransistor yang terletak pada satu tempat (dalam satu sensor). Pada bagian poros motor diberikan kertas yang berfungsi sebagai objek media yang akan dibaca oleh sensor optocoupler. Transmiter akan memancarkan sinar infra merah pada saat mengenai objek berwarna putih yaitu kertas. Kemudian akan diterima / dipantulkan oleh receiver berupa phototransistor dari sensor optocoupler dan dirubah menjadi pulsa dan menghasilkan tegangan. Berikut gambar rangkaian sensor optocoupler. Gambar Rangkaian Sensor Optocoupler Pada rangkaian di atas dijelaskan bahwa tegangan Vcc (tegangan input) sebesar 15 volt. Namun tegangan input (Vcc) yang dibutuhkan oleh sensor optocoupler yaitu 5 volt. Untuk mengatasi hal tersebut digunakan rangkaian pembagi tegangan dengan masing-masing nilai hambatannya yaitu 100Ω dan 200Ω. Sehingga walaupun tegangan input yang diberikan sebesar 15 volt pada sensor optocoupler, namun keluaran tegangan setelah melalui rangkaian pembagi tegangan yaitu hanya sebesar 5 volt. Arus masuk ke sensor optocoupler dan transmitter yang berupa LED akan memancarkan sinar infra merah saat mengenai

16 74 objek putih (kertas) pada poros motor, kemudian akan dipantulkan / diterima oleh receiver berupa phototransistor. Berikutnya phototransistor dan transistor 2N3904 yang terhubung secara Darlington akan menghasilkan tegangan yang cukup di resistor 470 Ω dengan besarnya tegangan maksimal 5 volt. Keluaran tegangan inilah yang akan menjadi input untuk process variable (PV) pada rangkaian error detector di kontroler PID sebagai umpan balik atau feedback. Gambar Realisasi Rangkaian Sensor Optocoupler 3.7. Motor DC 0,75 KW Motor DC yang akan menjadi plant dalam tugas akhir ini yaitu MIKI PULLEY MOTOR DC. Motor DC ini merupakan salah satu motor DC tipe penguat terpisah, karena lilitan kutub magnetnya mendapatkan sumber arus dari luar bukan berasal dari motor sendiri. Untuk menggerakan motor DC ini memerlukan sumber tegangan kira-kira 160 VDC untuk kumparan jangkar dan 175 VDC untuk kumparan medan. Pada motor DC ini terdapat dua buah lilitan yaitu lilitan jangkar / armature dan juga lilitan medan. Lilitan jangkar diberi

17 75 simbol huruf A (+) dan B (-) sedangkan lilitan medan diberi simbol huruf J (+) dan K(-). Kedua lilitan ini harus mendapatkan sumber tegangan agar motor dapat berputar. Sumber tegangan untuk motor DC ini berasal dari driver motor DC yaitu dari kaki katoda pada SCR. Berikut ini spesifikasi dari MIKI PULLEY MOTOR DC. Merk : MIKI PULLEY DC MOTOR Type : SY D 750 Daya Putaran Tegangan jangkar Arus jangkar Tahanan jangkar Tegangan medan magnet Arus medan magnet Tahanan medan : 0,75 KW : 2500 rpm : 160 volt : 6 ampere : 540 ohm : 175 volt : 0,27 ampere : 586 ohm Momen inersia rotor (J) : 0,004 kg.m 2 Torsi : 2,92 N.m

18 76 Gambar Motor DC 0,75 KW MIKI PULLEY

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin 1 BAB I PENDAHULUAN 1.1. Latar Belakang Motor DC atau motor arus searah yaitu motor yang sering digunakan di dunia industri, biasanya motor DC ini digunakan sebagai penggerak seperti untuk menggerakan

Lebih terperinci

DAFTAR ISI. LEMBAR PENGESAHAN ABSTRAK...i KATA PENGANTAR...ii DAFTAR ISI...v DAFTAR GAMBAR... viii DAFTAR TABEL...xi

DAFTAR ISI. LEMBAR PENGESAHAN ABSTRAK...i KATA PENGANTAR...ii DAFTAR ISI...v DAFTAR GAMBAR... viii DAFTAR TABEL...xi DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK...i KATA PENGANTAR...ii DAFTAR ISI...v DAFTAR GAMBAR... viii DAFTAR TABEL...xi BAB I PENDAHULUAN 1.1.... La tar Belakang...1 1.2.... Ru musan Masalah...2 1.3.... Ba

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1. Blok diagram Dibawah ini adalah gambar blok diagram dari sistem audio wireless transmitter menggunakan laser yang akan di buat : Audio player Transmitter Speaker Receiver

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1.

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. 23 BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram Modul Baby Incubator Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. PLN THERMOSTAT POWER SUPPLY FAN HEATER DRIVER HEATER DISPLAY

Lebih terperinci

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan III-1 BAB III PERANCANGAN ALAT 3.1. Perancangan Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan menghasilkan suatu sistem yang dapat mengontrol cahaya pada lampu pijar untuk pencahayaanya

Lebih terperinci

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali BAB III PERANCANGAN 3.1. Blok Diagram Pada dasarnya rangkaian elektronik penggerak kamera ini menggunakan beberapa rangkaian analok yang terbagi menjadi beberapa blok rangkaian utama, yaitu, rangkaian

Lebih terperinci

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu :

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu : III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilakukan di laboratorium Teknik Kendali Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung yang dilaksanakan

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN 3.1 Diagram Blok Rangkaian Secara Detail Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan perancangan alat, yaitu perancangan perangkat keras dan perancangan perangkat lunak. Perancangan perangkat keras terdiri dari perangkat elektronik

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN ANALISIS

BAB IV HASIL PERCOBAAN DAN ANALISIS BAB IV HASIL PERCOBAAN DAN ANALISIS 4.1. Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang Penuh). A. Penyearah Setengah Gelombang Gambar

Lebih terperinci

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull BAB III RANCANGAN SMPS JENIS PUSH PULL 3.1 Pendahuluan Pada bab ini dijelaskan tentang perancangan power supply switching push pull konverter sebagai catu daya kontroler. Power supply switching akan mensupply

Lebih terperinci

BAB III PERANCANGAN. pembuatan tugas akhir. Maka untuk memenuhi syarat tersebut, penulis mencoba

BAB III PERANCANGAN. pembuatan tugas akhir. Maka untuk memenuhi syarat tersebut, penulis mencoba BAB III PERANCANGAN 3.1 Tujuan Perancangan Sebagai tahap akhir dalam perkuliahan yang mana setiap mahasiswa wajib memenuhi salah satu syarat untuk mengikuti sidang yudisium yaitu dengan pembuatan tugas

Lebih terperinci

BAB III DESAIN DAN IMPLEMENTASI

BAB III DESAIN DAN IMPLEMENTASI BAB III DESAIN DAN IMPLEMENTASI 3.1 Pendahuluan Pada tugas akhir ini akan membahas tentang pengisian batere dengan metode constant current constant voltage. Pada implementasinya mengunakan rangkaian konverter

Lebih terperinci

BAB III PERANCANGAN DAN KERJA ALAT

BAB III PERANCANGAN DAN KERJA ALAT BAB III PERANCANGAN DAN KERJA ALAT 3.1 DIAGRAM BLOK sensor optocoupler lantai 1 POWER SUPPLY sensor optocoupler lantai 2 sensor optocoupler lantai 3 Tombol lantai 1 Tbl 1 Tbl 2 Tbl 3 DRIVER ATMEGA 8535

Lebih terperinci

DAFTAR ISI ABSTRAK... DAFTAR ISI...

DAFTAR ISI ABSTRAK... DAFTAR ISI... DAFTAR ISI Halaman KATA PENGANTAR... ABSTRAK... DAFTAR ISI... i iii iv BAB I PENDAHULUAN 1.1. Latar belakang masalah... 1 1.2. Permasalahan... 1 1.3. Batasan masalah... 2 1.4. Tujuan dan manfaat penelitian...

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tahap Proses Perancangan Alat Penelitian ini didasarkan pada masalah yang bersifat aplikatif, yang dapat dirumuskan menjadi 3 permasalahan utama, yaitu bagaimana merancang

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT SIMULASI. Pesawat simulasi yang di gunakan dalam mendeskripsikan cara kerja simulasi

BAB III PERANCANGAN DAN PEMBUATAN ALAT SIMULASI. Pesawat simulasi yang di gunakan dalam mendeskripsikan cara kerja simulasi BAB III PERANCANGAN DAN PEMBUATAN ALAT SIMULASI 3.1 Perancangan Alat Simulasi Pesawat simulasi yang di gunakan dalam mendeskripsikan cara kerja simulasi otomasi lahan parkir berupa Programmable Logic Control

Lebih terperinci

Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat 2016, ISBN

Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat 2016, ISBN APLIKASI SISTEM KONTROL PI PADA MESIN PENDINGIN TIPE AIR BLAST SEBAGAI KONTROL EKSPANSI OTOMATIS (APPLICATION PICONTROL SYSTEM ON REFRIGERATOR PLATE TOUCH TYPE FOR AUTOMATIC EXPANSION VALVE CONTROL) Bayu

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT III.1. Diagram Blok Secara garis besar, diagram blok rangkaian pendeteksi kebakaran dapat ditunjukkan pada Gambar III.1 di bawah ini : Alarm Sensor Asap Mikrokontroler ATmega8535

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERACAGA SISTEM Pada bab ini penulis akan menjelaskan mengenai perencanaan modul pengatur mas pada mobile x-ray berbasis mikrokontroller atmega8535 yang meliputi perencanaan dan pembuatan rangkaian

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014,

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014, 41 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014, bertempat di Laboratorium Instrumentasi Jurusan Fisika Fakultas Matematika

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem perangkat keras dari UPS (Uninterruptible Power Supply) yang dibuat dengan menggunakan inverter PWM level... Gambaran Sistem input

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3. 1. Blok Diagram Hot Plate Program LCD TOMBOL SUHU MIKROKON TROLER DRIVER HEATER HEATER START/ RESET AVR ATMega 8535 Gambar 3.1. Blok Diagram Hot Plate Fungsi masing-masing

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan BAB 3 PERANCANGAN SISTEM Konsep dasar mengendalikan lampu dan komponen komponen yang digunakan pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan perancangan sistem

Lebih terperinci

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia bidang TEKNIK VOLTAGE PROTECTOR SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia Listrik merupakan kebutuhan yang sangat

Lebih terperinci

BAB III DESAIN BUCK CHOPPER SEBAGAI CATU POWER LED DENGAN KENDALI ARUS. Pada bagian ini akan dibahas cara menkontrol converter tipe buck untuk

BAB III DESAIN BUCK CHOPPER SEBAGAI CATU POWER LED DENGAN KENDALI ARUS. Pada bagian ini akan dibahas cara menkontrol converter tipe buck untuk BAB III DESAIN BUCK CHOPPER SEBAGAI CATU POWER LED DENGAN KENDALI ARUS 3.1. Pendahuluan Pada bagian ini akan dibahas cara menkontrol converter tipe buck untuk menghidupkan HPL (High Power LED) dengan watt

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL. Diagram Blok Diagram blok merupakan gambaran dasar membahas tentang perancangan dan pembuatan alat pendeteksi kerusakan kabel, dari rangkaian sistem

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 1.1 Blok Diagram Sensor Kunci kontak Transmiter GSM Modem Recivier Handphone Switch Aktif Sistem pengamanan Mikrokontroler Relay Pemutus CDI LED indikator aktif Alarm Buzzer Gambar

Lebih terperinci

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID Endra 1 ; Nazar Nazwan 2 ; Dwi Baskoro 3 ; Filian Demi Kusumah 4 1 Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

NAMA : VICTOR WELLYATER NPM : : DR. SETIYONO,ST,.MT : BAMBANG DWINANTO,ST,.MT

NAMA : VICTOR WELLYATER NPM : : DR. SETIYONO,ST,.MT : BAMBANG DWINANTO,ST,.MT RANCANG BANGUN PENGENDALIAN MOTOR DC BERBASIS UNIJUNCTION TRANSISTOR (UJT) SEBAGAI PENGATUR KONDUKTIVITAS SILICON CONTROLLED RECTIFIER (SCR) DALAM SUPLAI TEGANGAN INPUT NAMA : VICTOR WELLYATER NPM : 18410369

Lebih terperinci

BAB III PERANCANGAN. Microcontroller Arduino Uno. Power Supply. Gambar 3.1 Blok Rangkaian Lampu LED Otomatis

BAB III PERANCANGAN. Microcontroller Arduino Uno. Power Supply. Gambar 3.1 Blok Rangkaian Lampu LED Otomatis BAB III PERANCANGAN Bab ini membahas perancangan Lampu LED otomatis berbasis Platform Mikrocontroller Open Source Arduino Uno. Microcontroller tersebut digunakan untuk mengolah informasi yang telah didapatkan

Lebih terperinci

kali tombol ON ditekan untuk memulai proses menghidupkan alat. Setting

kali tombol ON ditekan untuk memulai proses menghidupkan alat. Setting 27 BAB III METODOLOGI 3.1 Diagram Blok dan Cara Kerja Diagram blok dan cara kerja dapat dilihat pada gambar 3.1. Gambar 3.1. Blok diagram Prototipe Blood warmer Tegangan PLN diturunkan dan disearahkan

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN RANGKAIAN

BAB III ANALISA DAN PERANCANGAN RANGKAIAN BAB III ANALISA DAN PERANCANGAN RANGKAIAN 3.1. Blok Diagram Sistem Untuk mempermudah penjelasan dan cara kerja alat ini, maka dibuat blok diagram. Masing-masing blok diagram akan dijelaskan lebih rinci

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI. Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu baik secara

BAB III PERANCANGAN DAN REALISASI. Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu baik secara BAB III PERANCANGAN DAN REALISASI 3.1. Gambaran Umum Sistem Sistem yang dirancang merupakan sistem pengatur intensitas cahaya lampu Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN BAB IV HASIL PENGUJIAN DAN PEMBAHASAN 4.1 Pendahuluan Pada bab ini dibahas hasil dari pengujian alat implementasi tugas akhir yang dilakukan di laboratorium Tugas Akhir Program Studi Teknik Elektro. Dengan

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) I. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Mesin Induksi 2.1.1 Motor Asinkron Motor adalah sebuah peralatan listrik yang mengubah energi listrik sebagai input-nya menjadi energi mekanik pada output-nya. Salah satu jenis

Lebih terperinci

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan,

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, 5 II. TINJAUAN PUSTAKA 2.1 Sistem kontrol (control system) Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, memerintah dan mengatur keadaan dari suatu sistem. [1] Sistem kontrol terbagi

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN Pada bab ini dilakukan proses akhir dari pembuatan alat Tugas Akhir, yaitu pengujian alat yang telah selesai dirancang. Tujuan dari proses ini yaitu agar

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan mengenai perancangan dari perangkat keras dan perangkat lunak yang digunakan pada alat ini. Dimulai dari uraian perangkat keras lalu uraian perancangan

Lebih terperinci

RANGKAIAN INVERTER DC KE AC

RANGKAIAN INVERTER DC KE AC RANGKAIAN INVERTER DC KE AC 1. Latar Belakang Masalah Inverter adalah perangkat elektrik yang digunakan untuk mengubah arus searah (DC) menjadi arus bolak-balik (AC). Inverter mengkonversi DC dari perangkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560

RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560 RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560 Oleh : Andreas Hamonangan S NPM : 10411790 Pembimbing 1 : Dr. Erma Triawati Ch, ST., MT. Pembimbing 2 : Desy Kristyawati,

Lebih terperinci

BAB III PERANCANGAN ALAT. menjadi acuan dalam proses pembuatannya, sehingga kesalahan yang mungkin

BAB III PERANCANGAN ALAT. menjadi acuan dalam proses pembuatannya, sehingga kesalahan yang mungkin BAB III PERANCANGAN ALAT 3.1 Perancangan Dalam pembuatan suatu alat diperlikan adanya sebuah rancangan yang menjadi acuan dalam proses pembuatannya, sehingga kesalahan yang mungkin timbul dapat ditekan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Perangkat Keras ( Hardware) Dalam pembuatan tugas akhir ini diperlukan penguasaan materi yang digunakan untuk merancang kendali peralatan listrik rumah. Materi tersebut merupakan

Lebih terperinci

TUGAS AKHIR PERANCANGAN DAN PEMBUATAN SIMULASI WATER LEVEL CONTROL SYSTEM BERBASIS PC OLEH: I MADE BUDHI DWIPAYANA NIM

TUGAS AKHIR PERANCANGAN DAN PEMBUATAN SIMULASI WATER LEVEL CONTROL SYSTEM BERBASIS PC OLEH: I MADE BUDHI DWIPAYANA NIM TUGAS AKHIR PERANCANGAN DAN PEMBUATAN SIMULASI WATER LEVEL CONTROL SYSTEM BERBASIS PC UNIVERSITAS PENDIDIKAN GANESHA DEPARTEMEN PENDIDIKAN NASIONAL UNDIKSHA OLEH: I MADE BUDHI DWIPAYANA NIM. 0605031010

Lebih terperinci

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative)

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative) Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative) Koko Joni* 1, Achmad Fiqhi Ibadillah 2, Achmad Faidi 3 1,2,3 Teknik Elektro,

Lebih terperinci

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 TUGAS UTS MATA KULIAH E-BUSSINES Dosen Pengampu : Prof. M.Suyanto,MM

Lebih terperinci

USER MANUAL ALARM ANTI MALING MATA PELAJARAN : ELEKTRONIKA PENGENDALI DAN OTOMASI

USER MANUAL ALARM ANTI MALING MATA PELAJARAN : ELEKTRONIKA PENGENDALI DAN OTOMASI USER MANUAL ALARM ANTI MALING MATA PELAJARAN : ELEKTRONIKA PENGENDALI DAN OTOMASI PELAJAR ELEKTRONIKA INDUSTRI 2008 JURUSAN TEKNIK ELEKTRO SMK NEGERI 3 BOYOLANGU TULUNGAGUNG 2 CREW Agung Wahyu Sekar Alam

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI Setelah melakukan perancangan dan telah dijelaskan pada bab 3, maka selanjutnya adalah implementasi perancangan yang dibuat ke dalam bentuk nyata (hardware) yang akan dievaluasi

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN SISTEM

BAB IV ANALISA DAN PENGUJIAN SISTEM BAB IV ANALISA DAN PENGUJIAN SISTEM 4.1 Pengujian Perangkat Keras (Hardware) Pengujian perangkat keras sangat penting dilakukan karena melalui pengujian ini rangkaian-rangkaian elektronika dapat diuji

Lebih terperinci

Module : Sistem Pengaturan Kecepatan Motor DC

Module : Sistem Pengaturan Kecepatan Motor DC Module : Sistem Pengaturan Kecepatan Motor DC PERCOBAAN 2 SISTEM PENGATURAN KECEPATAN MOTOR DC 2.1. PRASYARAT Memahami komponen yang digunakan dalam praktikum sistem pengaturan kecepatan motor dc Memahami

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Pendahuluan Pada bab ini akan dibahas tentang perancangan dua buah inverter satu fasa untuk menggerakan motor listrik jenis hysteresis motor yang berbasis dspic33fj16gs502.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Pada bab ini akan dijelaskan langkah-langkah yang akan digunakan dalam menyelesaikan perangkat keras (hardware) yang berupa komponen fisik penunjang seperti IC AT89S52 dan perangkat

Lebih terperinci

RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM

RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM RANGKAIAN PENYEARAH (RECTIFIER) Rangkaian penyearah gelombang merupakan rangkaian yang berfungsi untuk merubah arus bolak-balik (alternating

Lebih terperinci

CATU DAYA MENGGUNAKAN SEVEN SEGMENT

CATU DAYA MENGGUNAKAN SEVEN SEGMENT CATU DAYA MENGGUNAKAN SEVEN SEGMENT Hendrickson 13410221 Jurusan Teknik Elektro Fakultas Teknologi Industri Universitas Gunadarma 2010 Dosen Pembimbing : Diah Nur Ainingsih, ST., MT. Latar Belakang Untuk

Lebih terperinci

Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa

Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa Indah Pratiwi Surya #1, Hafidh Hasan *2, Rakhmad Syafutra Lubis #3 # Teknik Elektro dan Komputer, Universitas Syiah

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan perancangan alat, yaitu perancangan perangkat keras dan perangkat lunak. Perancangan perangkat keras terdiri dari perangkat elektronik dan instalasi

Lebih terperinci

BAB 2 LANDASAN TEORI. robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam

BAB 2 LANDASAN TEORI. robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam BAB 2 LANDASAN TEORI 2.1 Jenis Jenis Motor DC Motor DC merupakan jenis motor yang paling sering digunakan di dalam dunia robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN

BAB III PERANCANGAN DAN PEMBUATAN 37 BAB III PERANCANGAN DAN PEMBUATAN 3.1 Perancangan Dalam pembuatan suatu alat atau produk perlu adanya sebuah rancangan yang menjadi acuan dalam proses pembuatanya, sehingga kesalahan yang mungkin timbul

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari 2015. Perancangan dan pengerjaan perangkat keras (hardware) dan laporan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. Gambar 4.1 Blok Diagram Sistem. bau gas yang akan mempengaruhi nilai hambatan internal pada sensor gas

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. Gambar 4.1 Blok Diagram Sistem. bau gas yang akan mempengaruhi nilai hambatan internal pada sensor gas BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Blok Diagram Sistem Sensor Gas Komparator Osilator Penyangga/ Buffer Buzzer Multivibrator Bistabil Multivibrator Astabil Motor Servo Gambar 4.1 Blok Diagram

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Segitiga Daya

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Segitiga Daya 2.1 Daya BAB II TINJAUAN PUSTAKA Daya merupakan kecepatan melakukan kerja atau kecepatan energi berubah dari satu bentuk ke bentuk lainnya, satuan daya adalah watt atau J/s. (K.G. Jackson,1994). Daya reaktif

Lebih terperinci

BAB III ANALISA DAN CARA KERJA RANGKAIAN

BAB III ANALISA DAN CARA KERJA RANGKAIAN BAB III ANALISA DAN CARA KERJA RANGKAIAN 3.1 Analisa Rangkaian Secara Blok Diagram Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB III KONSEP RANCANGAN

BAB III KONSEP RANCANGAN 37 BAB III KONSEP RANCANGAN 3. Kondisi Saat Ini Saat ini program studi Teknik Elektro belum memiliki alat peraga Hand- Held Metal Detector, yang mana menurut penulis sangat penting untuk menambah wawasan

Lebih terperinci

Gambar 2.1. Rangkaian Komutasi Alami.

Gambar 2.1. Rangkaian Komutasi Alami. BAB II DASAR TEORI Thyristor merupakan komponen utama dalam peragaan ini. Untuk dapat membuat thyristor aktif yang utama dilakukan adalah membuat tegangan pada kaki anodanya lebih besar daripada kaki katoda.

Lebih terperinci

Jurnal Skripsi. Mesin Mini Voting Digital

Jurnal Skripsi. Mesin Mini Voting Digital Jurnal Skripsi Alat mesin mini voting digital ini adalah alat yang digunakan untuk melakukan pemilihan suara, dikarenakan dalam pelaksanaanya banyaknya terjadi kecurangan dalam perhitungan jumlah hasil

Lebih terperinci

Simulasi Control System Design dengan Scilab dan Scicos

Simulasi Control System Design dengan Scilab dan Scicos Simulasi Control System Design dengan Scilab dan Scicos 1. TUJUAN PERCOBAAN Praktikan dapat menguasai pemodelan sistem, analisa sistem dan desain kontrol sistem dengan software simulasi Scilab dan Scicos.

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Pengujian dan Analisis Pengujian ini bertujuan untuk mengukur fungsional hardware dan software dalam sistem yang akan dibangun. Pengujian ini untuk memeriksa fungsi dari

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1. Spesifikasi Sistem 4.1.1. Spesifikasi Baterai Berikut ini merupakan spesifikasi dari baterai yang digunakan: Merk: MF Jenis Konstruksi: Valve Regulated Lead Acid (VRLA)

Lebih terperinci

JOBSHEET 2 PENGUAT INVERTING

JOBSHEET 2 PENGUAT INVERTING JOBSHEET 2 PENGUAT INVERTING A. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai aplikasi dari rangkaian Op-Amp.

Lebih terperinci

OPERATIONAL AMPLIFIERS (OP-AMP)

OPERATIONAL AMPLIFIERS (OP-AMP) MODUL II Praktikum OPERATIONAL AMPLIFIERS (OP-AMP) 1. Memahami cara kerja operasi amplifiers (Op-Amp). 2. Memahami cara penghitungan pada operating amplifiers. 3. Mampu menggunakan IC Op-Amp pada rangkaian.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di Laboratorium Instrumentasi jurusan Fisika Universitas

III. METODE PENELITIAN. Penelitian ini dilaksanakan di Laboratorium Instrumentasi jurusan Fisika Universitas III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan di Laboratorium Instrumentasi jurusan Fisika Universitas Lampung. Penelitian dimulai pada bulan November 2011 sampai dengan

Lebih terperinci

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam I. Tujuan 1. Mampu melakukan analisis kinerja sistem pengaturan posisi motor arus searah.. Mampu menerangkan pengaruh kecepatan

Lebih terperinci

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535 3 PENERAPAN FILM Ba 0,55 Sr 0,45 TiO 3 (BST) SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535 23 Pendahuluan Indonesia sebagai negara agraris

Lebih terperinci

Workshop Instrumentasi Industri Page 1

Workshop Instrumentasi Industri Page 1 INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 1 (PENGUAT NON-INVERTING) I. Tujuan a. Mahasiswa dapat mengetahui pengertian, prinsip kerja, dan karakteristik penguat non-inverting b. Mahasiswa dapat merancang,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik.

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari sensor

Lebih terperinci

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID Dian Sarita Widaringtyas. 1, Eka Maulana, ST., MT., M.Eng. 2, Nurussa adah, Ir. MT. 2 1 Mahasiswa Teknik Elektro Univ.

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

Bab III. Operational Amplifier

Bab III. Operational Amplifier Bab III Operational Amplifier 30 3.1. Masalah Interfacing Interfacing sebagai cara untuk menggabungkan antara setiap komponen sensor dengan pengontrol. Dalam diagram blok terlihat hanya berupa garis saja

Lebih terperinci

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID Joko Prasetyo, Purwanto, Rahmadwati. Abstrak Pompa air di dunia industri sudah umum digunakan sebagai aktuator

Lebih terperinci

BAB III METODOLOGI PENELITIAN. yang memiliki tegangan listrik AC 220 Volt. Saklar ON/OFF merupakan sebuah

BAB III METODOLOGI PENELITIAN. yang memiliki tegangan listrik AC 220 Volt. Saklar ON/OFF merupakan sebuah BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram PLN merupakan sumber daya yang berasal dari perusahaan listrik Negara yang memiliki tegangan listrik AC 220 Volt. Saklar ON/OFF merupakan sebuah saklar yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Proses alur penelitian Dalam penelitian ini ada beberapa tahap atau langkah-langkah yang peneliti lakukan mulai dari proses perancangan model hingga hasil akhir dalam

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. spesifikasi sistem, prosedur pengoperasian sistem dan evaluasi hasil pengujian

BAB 4 IMPLEMENTASI DAN EVALUASI. spesifikasi sistem, prosedur pengoperasian sistem dan evaluasi hasil pengujian BAB IMPLEMENTASI DAN EVALUASI Pada Bab IV dijelaskan tentang rencana implementasi dari sistem, spesifikasi sistem, prosedur pengoperasian sistem dan evaluasi hasil pengujian pada sistem.. Spesifikasi Sistem

Lebih terperinci

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP PERCOBAAN 0 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP 0. Tujuan : ) Mendemonstrasikan prinsip kerja dari suatu rangkaian diffrensiator dan integrator, dengan menggunakan op-amp 74. 2) Rangkaian differensiator

Lebih terperinci

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI Jumiyatun Jurusan Teknik Elektro Fakultas Teknik Universitas Tadolako E-mail: jum@untad.ac.id ABSTRACT Digital control system

Lebih terperinci

BAB III METODOLOGI PENULISAN

BAB III METODOLOGI PENULISAN BAB III METODOLOGI PENULISAN 3.1 Blok Diagram Gambar 3.1 Blok Diagram Fungsi dari masing-masing blok diatas adalah sebagai berikut : 1. Finger Sensor Finger sensor berfungsi mendeteksi aliran darah yang

Lebih terperinci

BAB III PERENCANAAN. 3.1 Perencanaan kerja alat Secara Blok Diagram. Rangkaian Setting. Rangkaian Pengendali. Rangkaian Output. Elektroda. Gambar 3.

BAB III PERENCANAAN. 3.1 Perencanaan kerja alat Secara Blok Diagram. Rangkaian Setting. Rangkaian Pengendali. Rangkaian Output. Elektroda. Gambar 3. 27 BAB III PERENCANAAN 3.1 Perencanaan kerja alat Secara Blok Diagram Power Supply Rangkaian Setting Indikator (Led) Rangkaian Pengendali Rangkaian Output Line AC Elektroda Gambar 3.1 Blok Diagram Untuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 2 BAB III METODE PENELITIAN Pada skripsi ini metode penelitian yang digunakan adalah eksperimen (uji coba). Tujuan yang ingin dicapai adalah membuat suatu alat yang dapat mengkonversi tegangan DC ke AC.

Lebih terperinci

BAB IV SISTEM KONVERSI ENERGI LISTRIK AC KE DC PADA STO SLIPI

BAB IV SISTEM KONVERSI ENERGI LISTRIK AC KE DC PADA STO SLIPI BAB IV SISTEM KONVERSI ENERGI LISTRIK AC KE DC PADA STO SLIPI 4.1 Umum Seperti yang telah dibahas pada bab III, energi listrik dapat diubah ubah jenis arusnya. Dari AC menjadi DC atau sebaliknya. Pengkonversian

Lebih terperinci

BAB III 1 METODE PENELITIAN

BAB III 1 METODE PENELITIAN 54 BAB III 1 METODE PENELITIAN 3.1 Prosedur Penelitian Prosedur yang dilakukan dalam penelitian ini terdiri dari beberapa langkah. Langkah pertama, yaitu melakukan studi literatur dari berbagi sumber terkait.

Lebih terperinci

BAB III METODE PENELITIAN. Microco ntroller ATMeg a 16. Program. Gambar 3.1 Diagram Blok sterilisator UV

BAB III METODE PENELITIAN. Microco ntroller ATMeg a 16. Program. Gambar 3.1 Diagram Blok sterilisator UV 25 BAB III METODE PENELITIAN 3.1. Diagram Blok Sterilisator UV STAR 1,3,6 jam Microco ntroller ATMeg a 16 Driver Lampu LCD Lampu On Hourmeter RESET Driver Buzzer Buzzer Program Gambar 3.1 Diagram Blok

Lebih terperinci

Perancangan Soft Starter Motor Induksi Satu Fasa dengan Metode Closed Loop Menggunakan Mikrokontroler Arduino

Perancangan Soft Starter Motor Induksi Satu Fasa dengan Metode Closed Loop Menggunakan Mikrokontroler Arduino 1 Perancangan Soft Starter Motor Induksi Satu Fasa dengan Metode Closed Loop Menggunakan Mikrokontroler Arduino Ardhito Primatama, Soeprapto, dan Wijono Abstrak Motor induksi merupakan alat yang paling

Lebih terperinci

BAB III PERANCANGAN SISTEM KENDALI EXHAUST FAN MENGGUNAKAN BLUETOOTH

BAB III PERANCANGAN SISTEM KENDALI EXHAUST FAN MENGGUNAKAN BLUETOOTH BAB III PERANCANGAN SISTEM KENDALI EXHAUST FAN MENGGUNAKAN BLUETOOTH 3.1 Flowchart Kendali Exhaust Fan dengan Bluetooth Pada perancangan ini, dibutuhkan kerangka awal sistem yang dibutuhkan sebagai landasan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini akan membahas mengenai perancangan dan realisasi sistem yang dibuat. Gambar 3.1 menunjukkan blok diagram sistem secara keseluruhan. Gambar 3.1. Blok Diagram Sistem Secara

Lebih terperinci

SIMULASI PENGENDALI KECEPATAN MOTOR DC DENGAN PENYEARAH TERKENDALI SEMI KONVERTER BERBASIS MATLAB/SIMULINK

SIMULASI PENGENDALI KECEPATAN MOTOR DC DENGAN PENYEARAH TERKENDALI SEMI KONVERTER BERBASIS MATLAB/SIMULINK ISSN: 1693-6930 41 SIMULASI PENGENDALI KECEPATAN MOTOR DC DENGAN PENYEARAH TERKENDALI SEMI KONVERTER BERBASIS MATLAB/SIMULINK Ikhsan Hidayat Program Studi Teknik Elektro Fakultas Teknologi Industri Universitas

Lebih terperinci