KAJIAN PENENTUAN INCIDENCE ANGLE EKOR PESAWAT PADA Y-SHAPED TAIL AIRCRAFT

dokumen-dokumen yang mirip
ANALISA AERODINAMIK PENGARUH LANDING GEAR PADA PESAWAT UDARA NIR AWAK (PUNA) ALAP-ALAP

ANALISA EFEKTIVITAS SUDUT DEFLEKSI AILERON PADA PESAWAT UDARA NIR AWAK (PUNA) ALAP-ALAP

Prosiding Seminar Nasional Hasil-Hasil PPM IPB 2016 Hal : ISBN :

Pengujian Aerodinamika Model Uji Pesawat Udara Nir Awak dengan Empennage berjenis V-Tail. Gunawan Wijiatmoko 1), Yanto Daryanto 2)

ANALISIS AERODINAMIKA SUDUT DEFLEKSI SPOILER PESAWAT TERBANG

DAFTAR ISI. Hal i ii iii iv v vi vii

Pengujian Aerodinamika model Pesawat Udara Nir Awak PUNA di Wind Tunnel LAGG BPPT.

ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN

SIMULASI GERAK LONGITUDINAL LSU-05

Peningkatan Koefisien Gaya Angkat Aerofoil Kennedy-Marsden dengan Zap Flap

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. 2.1 Gaya-Gaya pada pesawat terbang

PENELITIAN DAN PENGUJIAN KARAKTERISTIK AERODINAMIKA BOM LATIH PERCOBAAN BLP-500 DAN BLP 25

ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN

ANALISIS TEGANGAN PADA SAYAP HORIZONTAL BAGIAN EKOR AEROMODELLING

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. bagian yang kecil sampai bagian yang besar sebelum semua. bagian tersebut dirangkai menjadi sebuah pesawat.

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm

M. MIRSAL LUBIS Departemen Teknik Mesin, Fakultas Teknik

BAB I PENDAHULUAN. pikiran terlintas mengenai ilmu mekanika fluida, dimana disitu terdapat

BAB III REKONTRUKSI TERBANG DENGAN PROGRAM X-PLANE

PENGARUH LOKASI KETEBALAN MAKSIMUM AIRFOIL SIMETRIS TERHADAP KOEFISIEN ANGKAT AERODINAMISNYA

BAB II TINJAUAN PUSTAKA

STUDI AERODINAMIKA PROFIL BOEING COMMERCIAL ENERGY EFFICIENT DENGAN KOMPUTASI BERBASIS FINITE ELEMENT

SIMULASI NUMERIK PENGARUH MULTI-ELEMENT AIRFOIL TERHADAP LIFT DAN DRAG FORCE PADA SPOILER BELAKANG MOBIL FORMULA SAE DENGAN VARIASI ANGLE OF ATTACK

BAB III PERANGKAT LUNAK X PLANE DAN IMPLEMENTASINYA

Endang Mugia GS. Peneliti Bidang Teknologi Avionik, Lapan ABSTRACT

PENGESAHAN ANALISIS KINERJA TAKE-OFF DAN LANDING PESAWAT B BERDASARKAN VARIASI ELEVASI RUNWAY. Yang dipersiapkan dan disusun oleh :

PERHITUNGAN PARAMETER AERODINAMIKA ROKET POLYOT

Tugas Akhir Bidang Studi Desain SAMSU HIDAYAT Dosen Pembimbing Dr. Ir. AGUS SIGIT PRAMONO, DEA.

BAB II TINJAUAN PUSTAKA. 2.1 Gaya-Gaya pada pesawat terbang

UPAYA PENINGKATAN GAYA ANGKAT PADA MODEL AIRFOIL DENGAN MENGGUNAKAN VORTEX GENERATOR

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN

Oleh : Bimo Arindra Hapsara Dosen Pembimbing : Ir. J. Lubi. Proposal Tugas Akhir. Tugas Akhir

KAJIAN ASPEK HIDRO-AERODINAMIKA DAN GERAKAN FASE PRA TAKE OFF PADA KAPAL BERSAYAP

PERANCANGAN DAN PEMBUATAN PLATFORM UAV RADIO CONTROL KOLIBRI-08v2 DENGAN MESIN THUNDER TIGER 46 PRO

ANALISA AERODINAMIKA FLAP DAN SLAT PADA AIRFOIL NACA 2410 TERHADAP KOEFISIEN LIFT DAN KOEFISIEN DRAG DENGAN METODE COMPUTATIONAL FLUID DYNAMIC

HORIZONTAL TAIL SIZING PESAWAT SPORT RINGAN (LSA) KAPASITAS 4 ORANG PENUMPANG

INDEPT, Vol. 4, No. 1 Februari 2014 ISSN

ANALISA AERODINAMIKA AIRFOIL NACA 0021 DENGAN ANSYS FLUENT ABSTRAK

BAB II PROFIL UMUM BALAI KALIBRASI FASILITAS PENERBANGAN (BKFP) 2.1. Latar Belakang Balai Kalibrasi Fasilitas Penerbangan (BFKP)

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Bagaimana Sebuah Pesawat Bisa Terbang? - Fisika

BAB I PENDAHULUAN 1.1 Latar Belakang

Gambar 1.1 Skema kontrol helikopter (Sumber: Stepniewski dan Keys (1909: 36))

ANALISA AERODINAMIKA AIRFOIL NACA 0012 DENGAN ANSYS FLUENT

UJI AERODINAMIK MODEL KAPAL BERSAYAP WING IN SURFACE EFFECT SEBAGAI INPUT KAJIAN GERAK PLANNING MENJELANG TAKE-OFF

Analisa Unjuk Kerja Flap Sebagai Penambah Koefisien Gaya Angkat

Wiwik Sulistyono, Naif Fuhaid, Ahmad Farid (2013), PROTON, Vol. 5 No. 1/Hal

PENGARUH PAYLOAD TERHADAP CLIMB PERFORMANCE HELIKOPTER SYNERGY N9

Perbaikan Karakteristik Aerodinamika pada Kendaraan Niaga

Analisis Desain Layar 3D Menggunakan Pengujian Pada Wind Tunnel

STUDI PERANCANGAN FERRY HEMAT BAHAN BAKAR UNTUK WILAYAH MALUKU

BAB II TINJAUAN PUSTAKA. menggunakan media udara. Pengertian pesawat terbang juga dapat diartikan

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin

AIRBLEED INDICATOR FAULTILLUMINATE AKIBAT GANGGUAN PADA PRESSURE REGULATOR PADA SISTEM DE-ICING PESAWAT ATR

ANALISA KARAKTERISTIK AIRFOIL NACA 4412 DENGAN METODE WIND TUNNEL. Oleh : Tris Sugiarto ABSTRACT

BAB II DASAR TEORI . (2.1)

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

BAB II LANDASAN TEORI

Skripsi. Untuk Memenuhi Sebagian Persyaratan Mencapai Derajat Sarjana Strata 1 (S1) Disusun Oleh: SLAMET SUTRISNO JURUSAN TEKNIK PENERBANGAN

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS)

ANALISIS TIDAK BERFUNGSINYA FLAP PADA WAKTU DIGERAKKAN DARI 0 SAMPAI 25 UNIT PADA PESAWAT BOEING PK-CJT

BAB II LANDASAN TEORI

UPN "VETERAN" JAKARTA

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

RANCANGAN SISTEM ORIENTASI EKOR TURBIN ANGIN 50 kw

BAB II LANDASAN TEORI

BAB IV ANALISA DAN PENGUJIAN ALAT. 4.1 Pengujian Articifial Horizon dan Heading Indicator

PRINSIP DASAR MENGAPA PESAWAT DAPAT TERBANG

Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang

SIMULASI GERAK WAHANA PELUNCUR POLYOT

BAB II LANDASAN TEORI

STUDI KOMPUTASIONAL NACA 2412 PADA VARIASI SUDUT PENGGUNAAN SINGLE SLOTTED FLAP DAN FIXED SLOT DENGAN SOFTWARE FLUENT

1 PENDAHULUAN CN-235 merupakan pesawat terbang turboprop kelas menengah

92 Mekanika, Vol 6 Nomor 2, Januari 2008

Beban Pesawat. Dipl.-Ing H. Bona P. Fitrikananda 2013

PENGARUH SUDUT DIHEDRAL TERHADAP GAYA LIFT EKOR PESAWAT TERBANG TIPE V PADA ANGKA REYNOLDS RENDAH

PERUBAHAN DISTRIBUSI TEKANAN AEROFOIL AKIBAT PENGARUH VARIASI SUDUT SERANG

TIME CYCLE YANG OPTIMAL PADA SIMULASI PERILAKU TERBANG BURUNG ALBATROSS Disusun oleh: Nama : Herry Lukas NRP : ABSTRAK

BAB I PENDAHULUAN. aerodinamika pesawat terbang adalah mengenai airfoil sayap. pesawat. Fenomena pada airfoil yaitu adanya gerakan fluida yang

PERHITUNGAN KARAKTERISTIK AERODINAMIKA, ANALISIS DINAMIKA DAN KESTABILAN GERAK DUA DIMENSI MODUS LONGITUDINAL ROKET RX 250 LAPAN

STUDI NACA 0024 DAN 2624 SEBAGAI MEKANISME PENGGERAK KAPAL KECIL (BOAT) 12,2 M DENGAN MENGGUNAKAN ENERGI GELOMBANG AIR LAUT

JURUSAN TEKNIK PENERBANGAN SEKOLAH TINGGI TEKNOLOGI ADISUTJIPTO YOGYAKARTA

BAB I PENDAHULUAN 1.1 Latar Belakang

PENGARUH BENTUK PLANFORM SAYAP TERHADAP KARAKTERISTIK TERBANG PESAWAT TAK BERAWAK YANG DILUNCURKAN ROKET

PENGARUH PENAMBAHAN WINGGRID TERHADAP KARAKTERISTIK DISTRIBUSI TEKANAN PADA AIRFOIL NACA 0012

PEMANFAATAN TEKNOLOGI INFORMASI DALAM MENDUKUNG KENDALI MUTU PENGUJIAN TEROWONGAN ANGIN KECEPATAN RENDAH INDONESIA

BAB II TINJAUAN PUSTAKA

PENGARUH KETIDAKLURUSAN DAN KETIDAKSIMETRISAN PEMASANGAN SIRIP PADA PRESTASI TERBANG ROKET RX-250-LPN

Bab IV Analisis dan Pengujian

Studi Eksperimen Dan Numerik Pengaruh Slat Clearance Serta Slat Angle Untuk Mengeliminasi Stall Pada Airfoil Studi kasus airfoil NACA 2412


Analisis Linear Statik Pada Vertical Tail dengan Variasi Defleksi Rudder

Gambar : Konfigurasi lampu runway threshold pada runway lebar 30 m 9-74

BAB I PENDAHULUAN Tujuan. Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat. baling-baling penggerak.

PETUNJUK PERAKITAN DAN PENERBANGAN FREE FLIGHT GLIDER A2 (F1A) SUPER ENDURA 2200 CF COMPETITION

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

Transkripsi:

Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2018 ISSN 2085-4218 KAJIAN PENENTUAN INCIDENCE ANGLE EKOR PESAWAT PADA Y-SHAPED TAIL AIRCRAFT Gunawan Wijiatmoko 1) Meedy Kooshartoyo 2) 1,2 ) Balai Besar Teknologi Aerodinamika, Aeroelastika, dan Aeroakustika - BPPT Kawasan PUSPIPTEK, Tangerang Selatan, 15314 Email : gunawan.wijiatmoko@bppt.go.id Abstrak. Seperti juga umumnya pesawat terbang, maka pesawat udara nir awak memerlukan gaya angkat atau Lift untuk mengangkat pesawat tersebut sehingga mampu terbang. Selain sayap, horizontal tail merupakan bagian dari pesawat terbang yang menimbulkan gaya angkat. Sudut pasang horizontal tail ke fuselage mempunyai kontribusi terhadap gaya angkat dan gaya hambat. Tujuan dari kajian ini adalah untuk mengetahui sudut pasang yang tepat dari pesawat terbang nir awak dengan empennage berbentuk Y-Tail.Sudut pasang yang tepat akan memberikan kinerja aerodinamika yang optimal sesuai misinya. Metode pengujian menggunakan wind tunnel test terhadap model uji dengan panjang sayap 3220 mm. Analisis dilakukan berdasarkan data hasil pengujian terhadap sudut pasang -3 o, 0 o, +3 o dan +6 o. Variasi sudut ternyata tidak menunjukkan perbedaan yang relatif besar terhadap gaya angkat maupun gaya hambat, namun analisis berdasarkan kondisi terbang cruise dan longitudinal stability, sudut pasang 3 o menunjukkan yang terbaik di antara yang lain. Kata kunci : External Balance, Gaya/Momen Aerodinamika, Static Stability, Wind Tunnel. 1. Pendahuluan Komponen utama suatu pesawat terbang jenis fixed wing terdiri dari wing, fuselage, empennage, landing gear dan powerplant [1]. Pembagian komponen ini dapat dilihat pada gambar 1. Wing atau sayap terutama digunakan untuk menghasilkan lift atau gaya angkat, sehingga pesawat terbang memungkinkan untuk mampu terbang. Sedangkan empennage atau tail merupakan bagian pesawat terbang untuk memberikan kestabilan, Jenis dari empennage yang konvensional terdiri dari dua komponen, yaitu Horizontal Tail Plane (HTP) dan Vertical Tail Plane (VTP). Y-Tail (Y-shaped Tail) merupakan jenis empennage yang tidak konvensional [2]. Beberapa jenis dari empennage dapat dilihat pada gambar 2.Tail ini menggantikan ekor konvensional dengan dua permukaan yang diletakkan dalam konfigurasi Y jika dilihat dari depan atau belakang pesawat. Dengan menggunakan empennage tipe Y sebagai jenis yang tidak konvensional, maka tentunya perlu adanya suatu kajian sejauh mana empennage jenis ini dapat menggantikan peran dari empennage yang konvensional. Hal-hal dari empennage yang berpengaruh terhadap kestabilan adalah jarak V-Tail ke titik berat pesawat, luas area V-Tail, dan juga sudut pasang dari V-Tail terhadap fuselage. Sudut pasang (Incidence Angle) yang dimaksud di sini adalah sudut pasang V-Tail, dan bukan sudut pasang sayap, namun sudut yang terbentuk oleh chord line dari airfoil V-Tail dengan sumbu longitudinal dari fuselage pesawat. Sumbu longitudinal ini adalah garis imajiner yang ditarik dari ujung depan (Nose) hingga ujung belakang pesawat (Tail). Gambar 3 menunjukkan sudut pasang yang terbentuk dari garis chord line yang menghubungkan Leading Edge dan Trailing Edge, dengan garis yang sejajar dengan sumbu longitudinal. Tujuan dari kajian ini adalah untuk mengetahui pengaruh dari sudut pasang horizontal tail terhadap gaya angkat dan gaya hambat pesawat udara nir awak dengan empennage berbentuk Y-Tail. Penentuan lokasi V-Tail terhadap titik berat pesawat dan luas area dari V-Tail tidak dibahas, karena sudah definitif. Pembahasan hanya mencakup pengaruh sudut pasang V-Tail, dari beberapa opsi yang diberikan, yaitu sudut -3 o, 0 o, +3 o dan +6 o terhadap gaya angkat (Lift) dan gaya hambat (Drag) saja. Evaluasi lanjutan berupa analisis terhadap koneksitas longitudinal stability pada kondisi terbang cruise dilakukan seandainya besarnya sudut pasang tidak berpengaruh signifikan terhadap Lift dan Drag. 312 SENIATI 2018 Institut Teknologi Nasional Malang

Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2018 ISSN 2085-4218 Gambar 1. Komponen pesawat terbang secara umum [3] Gambar 2. Beberapa jenis empennage [4] 1.1. Landasan Teori Terbang cruise Gambar 3. Angle of Incidence (Sudut pasang) [5] Fase take-off atau lepas landas, kondisi cruise dan mendarat merupakan fase-fase yang harus dilalui oleh pesawat terbang. Di antara semua fase, maka fase cruise adalah kondisi yang paling panjang durasinya, terutama untuk pesawat terbang sipil atau transportasi [6]. Demikian juga untuk suatu pesawat terbang tanpa awak. Static Stability Static stability merupakan salah satu aspek kestabilan yang merujuk pada kecenderungan awal sebagai respons pesawat terbang untuk kembali ke keadaan setimbangnya, jika menerima gangguan [7]. Pada kondisi cruise, maka pitching moment = 0. Jika terdapat gangguan yang menyebabkan pesawat berputar pada sumbu lateral, maka besarnya pitching moment tidak lagi 0. Seandainya hidung pesawat memutar ke bawah (nose-down), dan momen yang terjadi akan memperbesar sudut dan bukan mengembalikan kepada posisi awal atau cruise, maka pesawat dikatakan tidak stabil ditinjau dari longitudinal stability-nya. Jadi, pesawat terbang tersebut dikatakan stabil (longitudinal stability), jika momen yang timbul justru mengarahkan pesawat untuk bergerak nose-up, sehingga kembali mencapai kondisi cruise. Demikian juga, ini berlaku jika pesawat mengalami gangguan sehingga perputaran terhadap sumbu lateral yang menyebabkan hidung pesawat bergerak ke atas (nose-up) [8]. Pada saat suatu pesawat melalkukan gerakan membelok, maka terjadi perputaran badan pesawat terhadap sumbu vertikal. Namun sebenarnya, selain terjadi perputaran pada sumbu vertikal, juga SENIATI 2018 Institut Teknologi Nasional Malang 313

Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2018 ISSN 2085-4218 terjadi perputaran pada sumbu longitudinal. Gerakan perputaran ini juga akan menimbulkan momen yang sesuai. Perputaran pada sumbu vertikal menyebabkan timbulnya yawing moment, sedangkan perputaran pada sumbu longitudinal menyebabkan timbulnya rolling moment. Kestabilan yang disebut dengan lateral-direksional stability ini, analisisnya dilakukan dengan cara yang mirip dengan analisis longitudinal stability. Namun, karena pesawat yang dirancang adalah pesawat udara tanpa awak yang kondisi terbangnya lebih mengutamakan pergerakan yawing dibanding rolling, maka analisis kestabilannya lebih banyak didasarkan pada gerakan perputaran terhadap sumbu vertikal. Model uji, Metode dan Teknik Pengukuran Model pesawat terbang yang diuji, adalah model uji dengan skala 1:5 dengan wing span 3022 mm. Empennage pesawat ini merupakan jenis Y-Tail dan masih menggunakan vertical stabilizer. Empennage jenis Y-Tail ini mirip dengan jenis V-Tail, dimana vertical stabilizer ini terpasang di bagian bawah empennage, sedangkan horizontal tail berbentuk V terpasang di bagian atas. Konfigurasi model adalah clean, tidak ada konfigurasi variasi sudut dari dari komponen surface control atau pun high lift device-nya.surface control adalah bagian dari pesawat yang memungkinkan pilot untuk mengendalikan pesawat naik (atau turun) dan membelok. Sedangkan high lift device adalah komponen atau mekanisme pada sayap pesawat yang digunakan untuk menambah besarnya gaya angkat yang ditimbulkan oleh sayap. Metode dan teknik pengukuran mengacu pada [9 dan [10]. Model uji dipasang dengan menggunakan wing strut sebagai model support yang menghubungkan model uji ke external balance, yaitu suatu sistem yang digunakan untuk mengukur 3 gaya dan 3 momen aerodinamika di dalam wind tunnel. Posisi dari model uji adalah UpSide Down, yaitu posisi dimana cockpit berada di atas. Kecepatan angin yang digunakan adalah 60 m/s. Untuk pengujian alpha polar, sudut serang alpha digerakkan dari sudut -12 o hingga 20 o, dengan interval pengambilan data setiap 1 o. Sedangkan untuk sudut beta, model uji digerakkan dari sudut beta -20 o hingga 20 o, dengan interval pengambilan data setiap 1 o. 2. Pembahasan Nilai gaya dan momen aerodinamika pesawat terbang, dipengaruhi oleh kecepatan terbang dan juga reference area, dan koefisien gaya atau momen aerodinamikanya. Oleh karena itu, dalam melakukan analisis biasanya digunakan koefisien gaya atau momen, yang merupakan parameter tak berdimensi. Gambar 4 menunjukkan grafik yang menggambarkan hubungan antara sudut serang alpha dengan koefisien gaya angkat (C L ). Sudut serang alpha adalah sudut yang terbentuk antara arah angin dengan sumbu badan pesawat. Terlihat adanya kesamaan pola grafik untuk semua ih, dimana besarnya nilai C L berbanding lurus dengan pertambahan nilai dari sudut serang alpha, hingga sudut serang alpha mencapai stall angle. Stall angle adalah sudut serang alpha pada saat C L -nya maksimum. Ketika mencapai stall angle, maka penambahan sudut serang alpha tidak akan menambah besarnya C L. Dapat dilihat juga dari grafik tersebut, bahwa semakin besar dan semakin positif sudut pasang akan memberikan gaya angkat yang lebih besar. Stall angle, CL Max dan C L=0 dari masing-masing ih dapat dilihat pada tabel 1. C L=0 adalah besarnya koefisien gaya angkat pada saat sudut serang alpha 0 o. Gambar 4. Grafik Sudut serang alpha - C L 314 SENIATI 2018 Institut Teknologi Nasional Malang

Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2018 ISSN 2085-4218 Tabel 1. Stall angle, CL Max dan C L=0 untuk masing-masing ih ih [deg] Stall angle [deg] CL Max C L=0-3 16 1,3691 0,4496 0 15 1,3945 0,4796 +3 14 1,4186 0,5346 +6 15 1,4267 0,5794 Gambar 5 menunjukkan grafik yang menggambarkan hubungan antara sudut serang alpha dengan koefisien gaya hambat C D untuk semua sudut pasang ih.pada grafik ini juga terlihat pola yang sama untuk semua sudut pasang. Pada sudut antara -10 o hingga +5 o hampir tidak ada perbedaan yang signifikan. Pada sudut serang alpha yang lebih dari 5 o, baru nampak adanya perbedaan nilai C D, dimana semakin besar dan positif sudut pasang dari horizontal tail maka semakin besar juga gaya hambat yang terjadi. α CDMin, CD Min dan CD α=0 untuk masing-masing ih dapat dilihat pada tabel 2. α CDMin adalah sudut serang alpha dimana terjadi gaya hambat minimum, CD Min adalah besarnya koefisien gaya hambat minimum dan CD α=0 adalah besarnya nilai koefisien gaya hambat pada saat sudut serang alpha = 0 o. Gambar 5. Grafik Sudut serang alpha - C D Gambar 6 menunjukkan grafik sudut beta koefisien gaya angkat C L berdasarkan data yang diperoleh ketika model uji diputar pada sumbu vertikal, dari sudut beta -20 o hingga 20 o, untuk semua opsi ih. Karena jarang terjadi suatu pesawat terbang dalam kondisi cruise dengan sudut beta yang besar, maka analisis difokuskan pada sudut 0 o. Terlihat bahwa pada sudut 0 o, nilai dari C L sesuai dengan nilai C L pada gambar 4, sehingga grafik ini dapat digunakan untuk memverifikasi hasil sebelumnya pada gambar 4. Demikian juga dengan gambar 7 yang menggambarkan grafik sudut beta C D. Gambar 7 digunakan untuk mempertegas bahwa pada saat kondisi cruise, tidak banyak perbedaan gaya hambat yang ditimbulkan oleh masing-maing sudut pasang ih. Grafik Sudut serang alpha koefisien pitching moment C M pada gambar 8 digunakan untuk mengevaluasi lebih lanjut. Hal ini dikarenakan tidak adanya perbedaan yang besar terhadap gaya angkat dan gaya hambat akibat perbedaan sudut pasang, sehingga tidak bisa ditentukan sudut pasang mana yang akan digunakan. Terlihat pada gambar 8 tersebut bahwa semua sudut ih memberikan longitudinal stability. Selanjutnya analisais didasarkan pada kemungkinan terbesar pesawat terbang pada kondisi terbang cruise dengan sudut serang alpha 0 o. Dan pada kondisi tersebut nampak bahwa pada sudut serang alpha = 0 o, ih yang mempunyai pitching moment = 0 adalah ih = +3 o. Tabel 2. α CDMin, CD Min dan CD α=0 untuk masing-masing ih ih [deg] α CDMin [deg] CD Min CD α=0-3 0 0,0322 0,0322 0 0 0,0315 0,0315 +3-1 0,0310 0,0321 +6-2 0,0312 0,0326 SENIATI 2018 Institut Teknologi Nasional Malang 315

Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2018 ISSN 2085-4218 Gambar 6. Grafik Sudut beta - C L Gambar 7. Grafik Sudut beta - C D Gambar 9 menunjukkan grafik sudut beta koefisien yawing moment CY aw, di mana semua sudut pasang ih menghasilkan lateral-direksional stability. Dengan demikian analisis terhadap sudut ih = +3 o, bisa dilakukan berdasarkan longitudinal stability dan lateral-direksional stability. Gambar 8. Grafik Sudut serang alpha - C M 316 SENIATI 2018 Institut Teknologi Nasional Malang

Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2018 ISSN 2085-4218 Gambar 9. Grafik Sudut Beta - CY aw 3. Simpulan 1. Perbedaan sudut pasang horizontal tail hampir tidak berpengaruh terhadap gaya hambat jika sudut serang alpha lebih kecil dari 5 o, sedangkan untuk sudut serang alpha yang lebih besar dari 5 o gaya hambat semakin besar seiring dengan bertambahnya sudut pasang ke arah positif. CD Min dan CD α=0 juga tidak menunjukkan perbedaan yang signifikan. 2. Berdasarkan butir 1di atas, secara umum dapat dianggap bahwa sudut pasang pada horizontal tail tidak begitu mempunyai pengaruh terhadap gaya angkat dan gaya hambat yang timbul. Oleh karena itu, disarankan untuk menentukan sudut ih berdasarkan karakteristik aerodinamik pada kondisi cruise. 3. Pesawat udara nir awak kurang begitu dituntut mempunyai kemampuan manuver yang tinggi, baik untuk membelok maupun bergerak nose-up ataupun node-down, namun lebih diinginkan mempunyai ketahanan terbang yang lama. Dengan demikian, kondisi cruise lebih sering pada kondisi sudut serang alpha sekitar 0 o. Untuk itu disarankan menggunakan horizontal tail dengan sudut pasang ih +3 o, karena pitching moment pada saat sudut serang alpha 0 o adalah nol, yang berarti tidak perlu usaha tambahan untuk mengarahkan pesawat tersebut menjadi setimbang kondisinya. Daftar Pustaka [1]. Denis Howe, 2000, Aircraft Conceptual Design Synthesis, Professional Engineering Publishing Limited,, London and Bury St Edmuds, UK [2]. Ajoy Kumar Kundu, 2010. Aircraft Design, Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK [3]. Aircraft Components and Structures, http://www.cfinotebook.net/notebook/aerodynamics-andperformance/aircraft-components-and-structure, diakses tgl 4 Desember 2017 [4]. Different Tail Structures, http://theatlasgroup.biz/functionality-different-parts-aircraft/, diakses tgl 4 Desember 2017 [5]. Wing Incidence Angle, http://www.electricplanebygordon.com/wing-incidence-angle/, diakses tgl 4 Desember 2017. [6]. Mohammad H. Sadraey, 2013, Aircraft Design: A Systems Engineering Approach, 1st edition, John Wiley & Sons. [7]. David A. Caughey, 2011, Introduction to Aircraft Stability and Control, Cornell University, New York [8]. Mohammad H. Sadraey, 2011, Aircraft Performace: Analysis, VDM Verlag [9]. Yanto Daryanto, Gunawan Wijiatmoko, Kuswandi, 2015, Pengujian Aerodinamika Model Pesawat Udara Nir Awak PUNA di Wind Tunnel LAGG BPPT, 10th Annual Meeting on Testing and Quality 2015, LIPI, 2015 [10]. NN, ILST External Balance Manual Book, Carl Schenck AG SENIATI 2018 Institut Teknologi Nasional Malang 317