PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG

dokumen-dokumen yang mirip
PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG

SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS 1. PENDAHULUAN

PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL

Penjadwalan proyek. 1. Menunjukkan hubungan tiap kegiatan dan terhadap keseluruhan proyek

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan

TEKNIK PERENCANAAN DAN PENJADWALAN PROYEK RUMAH TINGGAL DENGAN BANTUAN PROGRAM PRIMAVERA PROJECT PLANNER 3.0. Erwan Santoso Djauhari NRP :

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari banyak ditemui berbagai macam proyek

MENENTUKAN EIGEN PROBLEM ALJABAR MAX-PLUS

BAB II LANDASAN TEORI

Parno, SKom., MMSI. Personal Khusus Tugas

PENENTUAN JADWAL PELAKSANAAN PEKERJAAN REHABILITASI JALAN ALIANYANG KOTA PONTIANAK DENGAN PRECEDENCE DIAGRAM METHOD (PDM)

BAB II TINJAUAN PUSTAKA

HALAMAN PENGESAHAN PROPOSAL PENELITIAN DOSEN YUNOR

Riset Operasional. ELEMEN ANALISIS JARINGAN menggunakan beberapa istilah dan simbol berikut ini:

A-7 KEBEBASAN LINEAR DALAM ALJABAR MAX-PLUS INTERVAL

MINGGU KE-6 MANAJEMEN WAKTU (LANJUTAN)

BAB II LANDASAN TEORI. Pada bab ini akan dibahas tentang semiring, Aljabar Max-Plus, sifat-sifat

MAKALAH RISET OPERASI NETWORK PLANNING

BAB III METODOLOGI. Data yang dominan dalam Tugas Akhir ini adalah Data Sekunder,

BAB II LANDASAN TEORI

Critical Path Method (CPM) BAB I PENDAHULUAN 1.1. Latar Belakang Tujuan. Adapun tujuan dari pembahasan makalah ini ialah :

TEKNIK ANALISA JARINGAN (CPM)

STUDI PERENCANAAN PERCEPATAN DURASI PROYEK DENGAN METODE LEAST COST ANALYSIS

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS

BAB II Tinjauan Pustaka

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

BAB 2 LANDASAN TEORI

TIN102 - Pengantar Teknik Industri Materi #5 Ganjil 2014/2015 TIN102 PENGANTAR TEKNIK INDUSTRI

BAB II TINJAUAN PUSTAKA

PERCEPATAN PROYEK PADA SEBUAH GEDUNG BERTINGKAT

ANALISIS PERENCANAAN JARINGAN KERJA (NETWORK PLANNING)


BAB III METODE PENELITIAN

ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS

Operations Management

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut

POLINOMIAL ATAS ALJABAR MAX-PLUS INTERVAL

BAB II STUDI PUSTAKA

PENGELOLAAN DAN PENGENDALIAN PROYEK (Perencanaan Waktu-3 : CPM)

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB III LANDASAN TEORI

EMA302 - Manajemen Operasional Materi #9 Ganjil 2014/2015. EMA302 - Manajemen Operasional

PENJADWALAN PROYEK DENGAN ALAT BANTU PROGRAM PRIMAVERA PROJECT PLANNER 3.0 (P3 3.0)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY

PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS

ISSN WAHANA Volume 66, Nomor 1, 1 Juni 2016

Sejarah : Henry L. Gantt ( 9 ) menciptakan Bar Chart untuk mengontrol kegiatan dalam proyek, namun tidak menjelaskan urutan kegiatannya Booz, Allen da

BAB II LANDASAN TEORI

BAB 2 LANDASAN TEORI

Proyek : Kombinasi dan kegiatan-kegiatan g (activities) yang saling berkaitan dan harus dilaksanakan dengan mengikuti suatu urutan tertentu sebelum se

BAB II TINJAUAN PUSTAKA

MANAJEMEN WAKTU PROYEK

Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus

STUDI PENJADUALAN, PERENCANAAN BIAYA DAN PENGENDALIAN JADUAL PADA PROYEK PEMBANGUNAN RUKO DENGAN MENGGUNAKAN PROGRAM MICROSOFT PROJECT 2003

Penerbit: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta

TEKNIK PENJADUALAN PROYEK

STUDI PENJADWALAN DENGAN MENGGUNAKAN METODA PENJADWALAN LINIER PADA PROYEK GEDUNG BERTINGKAT

PENENTUAN JADWAL PRODUKSI PADA SISTEM PRODUKSI TIPE ASSEMBLY DI PERUSAHAAN ROTI GANEP SOLO MENGGUNAKAN ALJABAR MAKS-PLUS

Pertemuan 5 Penjadwalan

Manajemen Proyek. Riset Operasi TIP FTP UB

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS. 1. Pendahuluan

PENTINGNYA MANAJEMEN PROYEK

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

NETWORK (Analisa Jaringan)

DAFTAR ISI JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

BAB II TINJAUAN PUSTAKA

PERT dan CPM adalah suatu alat manajemen proyek yang digunakan untuk melakukan penjadwalan, mengatur dan mengkoordinasi bagian-bagian pekerjaan yang

BAB III METODE PENELITIAN

LAPORAN PENELITIAN REPRESENTASI GRAF MAKS-PLUS PADA SISTEM KEJADIAN DISKRET

Bab 8 Analisis Jaringan

Manajemen Operasional PENJADWALAN DAN PENGAWASAN PROYEK

MANAJEMEN WAKTU PROYEK MATA KULIAH MANAJEMEN PROYEK PERANGKAT LUNAK. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

MENENTUKAN LINTASAN TERPENDEK DENGAN MENGGUNAKAN ALJABAR MAX-PLUS TESIS

BAB II LANDASAN TEORI. Pengelola proyek selalu ingin mencari metode yang dapat meningkatkan

Manajemen Waktu Proyek 10/24/2017

BAB 3 METODE PENELITIAN

STUDI ANALISIS DENGAN MENGGUNAKAN METODA PENJADWALAN LINIER PADA PROYEK PERUMAHAN

MANAJEMEN PERENCANAAN DAN PENGENDALIAN (WAKTU) PROYEK

Manajemen Proyek. Teknik Industri Universitas Brawijaya

JALUR KRITIS (Critical Path)

Aljabar Maxplus dan Aplikasinya : Model Sistem Antrian

BAB I PENDAHULUAN. aljabar max-plus bersifat assosiatif, komutatif, dan distributif.

PERTEMUAN 9 JARINGAN KERJA (NETWORK)

MANAJEMEN PROYEK. Manajemen proyek meliputi tiga fase : 1. Perencanaan 2. Penjadwalan 3. Pengendalian

Operations Management

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

BAB II TINJAUAN PUSTAKA. teknologi konstruksi (construction technology) dan manajemen konstruksi (construction

JURNAL TUGAS AKHIR PERENCANAAN PENJADWALAN PROYEK PEMBANGUNAN RUMAH SUSUN GORONTALO DISUSUN OLEH: MOCHAMMAD ANDHIKA D

BAB II TINJAUAN PUSTAKA

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA

PENJADWALAN PROYEK KONSTRUKSI DENGAN METODE FLASH (FUZZY LOGIC APPLICATION FOR SCHEDULING)

BAB II TINJAUAN PUSTAKA

PERTEMUAN 11 Float dan Lintasan Kritis

BAB II KAJIAN PUSTAKA DAN RERANGKA PEMIKIRAN

MATERI 8 MEMULAI USAHA

Kata kunci: optimum, percepatan, lembur, least cost analysis.

Proyek. Proyek adalah sederetan tugas yang diarahkan pada suatu hasil output utama

STUDI KASUS PENERAPAN METODE PERT PADA PROYEK GUDANG X

Optimalisasi Waktu Pengerjaan Proyek Ruko Dengan Metode Diagram Preseden

Transkripsi:

PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG Mira Amalia, Siswanto, dan Bowo Winarno Program Studi Matematika FMIPA UNS Abstrak. Aljabar merupakan cabang ilmu matematika yang mempelajari konsep atau prinsip penyederhanaan serta pemecahan masalah dengan menggunakan simbol atau huruf tertentu. Salah satu ruang lingkup dalam aljabar yang dinilai baru adalah aljabar maks-plus. Penelitian ini membahas tentang penerapan sistem persamaan linear iteratif maks-plus pada masalah lintasan terpanjang. Hasil dari pembahasan merupakan kajian teoritis yang didasarkan literatur dan suatu perhitungan menggunakan program MAT- LAB yang mengacu pada Rudhito. Hasil tersebut menunjukkan bahwa jaringan dengan bobot waktu tempuh dapat dimodelkan sebagai graf berarah terbobot yang dinyatakan dengan matriks atas aljabar maks-plus. Penentuan waktu tempuh minimal dilakukan melalui operasi star ( ) pada matriks bobot jaringannya. Lintasan terpanjang ditentukan dengan perhitungan menggunakan metode PDM pada analisis lintasan kritis jaringan proyek. Selanjutnya, memodelkan waktu tempuh perjalanan pada jaringan ke dalam suatu sistem persamaan linear (SPL) iteratif maks-plus. Dari penyelesaian SPL iteratif maks-plus ini, dapat ditentukan waktu awal paling cepat dan waktu paling akhir untuk masing-masing titik. Titik-titik dengan waktu awal paling cepat dan waktu paling akhir yang sama akan membentuk lintasan terpanjang dalam jaringan. Kata Kunci: aljabar maks-plus, sistem persamaan linear, lintasan terpanjang. 1. Pendahuluan Aljabar merupakan cabang ilmu matematika yang mempelajari konsep atau prinsip penyederhanaan serta pemecahan masalah dengan menggunakan simbol atau huruf tertentu. Salah satu ruang lingkup dalam aljabar yang dinilai baru adalah aljabar maks-plus. Pada pembahasan Rudhito [4], aljabar maks-plus diperkenalkan sekitar tahun 1950 dan berkembang dengan pesat pada tahun 1990. Selain aljabar maks-plus, dalam Bacelli et al. [1], Gondran and Minoux [2] dan John and George [3] telah disinggung beberapa jenis aljabar yang serupa dengan aljabar maks-plus, seperti aljabar min-plus dengan operasi minimum dan penjumlahan serta aljabar maks-min dengan operasi maksimum dan minimum. Aljabar maks-plus merupakan suatu struktur aljabar yang semesta pembicaraannya merupakan gabungan dari himpunan bilangan real dan negatif tak terhingga yaitu R }. Aljabar maks-plus dilengkapi dengan operasi maksimum yang dinotasikan dengan, dan operasi penjumlahan dinotasikan dengan. (R }) dinotasikan dengan R ε, dengan ε merupakan. Aljabar maks-plus (R ε,, ) dinotasikan dengan R maks. Penyelesaian aljabar maks-plus diselesaikan dengan sistem persamaan linear maks-plus, salah satunya adalah sistem persamaan linear (SPL) iteratif maks-plus. SPL iteratif maks-plus mempunyai bentuk umum x = A x b, dengan x, b R n ε dan A R n n ε. SPL iteratif maks-plus dapat digunakan untuk menyelesaiakan 1

masalah dalam aljabar maks-plus. Masalah-masalah yang terkait dalam aljabar maks-plus mengenai lintasan terpendek, terpanjang, dan kapasitas maksimum suatu lintasan. Aplikasi dari masalah aljabar maks-plus yang dapat dijumpai adalah penjadwalan penerbangan pesawat di bandara, penjadwalan keberangkatan kereta api, menentukan jalur tercepat, model sistem antrian, sistem produksi sederhana, dan penentuan lintasan kritis. Penelitian sebelumnya, Rudhito [4] meneliti mengenai sistem persamaan linear iteratif maks-plus dan penerapannya pada masalah lintasan terpanjang dan terpendek jaringan proyek dengan metode PERT-CPM. Metode PERT-CPM terdiri dari dua istilah, yaitu PERT (Program Evaluation and Review Technique) atau teknik menilai dan meninjau program dan CPM (Critical Path Method) atau metode jalur kritis. Metode PERT-CPM ini dapat membantu dalam menentukan lintasan terpanjang (mengenai jadwal kegiatan apabila terjadi penundaan dalam proyek). Penerapan jaringan proyek tersebut permasalahannya mengacu pada Taha [7]. Hasil penelitian Rudhito [4] menunjukkan jaringan proyek dengan metode PERT-CPM yang dikonstruksikkan ke dalam graf terlalu panjang dan terdapat dummy (pengulangan proyek). Pada penelitian ini dibahas mengenai sistem persamaan linear iteratif maksplus yang diterapkan pada masalah penjadwalan proyek untuk menentukan lintasan terpanjang. Penentuan lintasan terpanjang ini menggunakan metode PDM, agar dikonstruksikan ke dalam graf lebih sederhana dan tidak terdapat dummy (pengulangan proyek). Menurut Soeharto [5], metode PDM tidak jauh berbeda dengan metode PERT-CPM, perbedaannya metode PDM dipengaruhi oleh konstrain dalam masalah penjadwalan proyek. Metode PDM ini merupakan metode jalur kritis yang digunakan pada masalah utama untuk menentukan jadwal kegiatan agar kegiatan dapat terselesaiakan secara tepat waktu. Selain dengan metode PDM, penelitian ini juga menggunakan software MATLAB untuk mencari lintasan terpanjangnya. 2. Landasan Teori 2.1. Aljabar Maks-Plus. Aljabar maks-plus merupakan suatu struktur aljabar yang semesta pembicaraannya merupakan gabungan dari himpunan bilangan real dan negatif tak terhingga (R }) yang dilengkapi dengan operasi penjumlahan ( ) dan maksimum ( ). Aljabar maks-plus tersebut dapat dioperasikan menjadi a, b R ε, dengan a b := maks(a, b) dan a b := a + b. Struktur aljabar maksplus (R ε,, ) adalah semiring komutatif idempoten dengan elemen netral ε = dan elemen satuan e = 0. (R ε,, ) merupakan semifield, jika (R ε,, ) adalah semiring komutatif untuk setiap a R terdapat a maka a ( a) = 0. 2 2017

2.2. Matriks Atas Aljabar Maks-Plus. Pada aljabar maks-plus dapat dibentuk suatu matriks R m n ε, dengan himpunan semua matriks atas aljabar maks-plus adalah R m n ε := A = (A ij ) A ij R ε, untuk i= 1, 2,..., m dan j=1, 2,..., n}. A, B R m n ε didefinisikan A B, dengan (A B) ij = A ij B ij. Matriks A R m p ε, B R p n ε didefinisikan A B, dengan (A B) ij = p k=1 A ik B kj. Matriks atas aljabar maks-plus, didefinisikan suatu matriks E Rε n n (E) ij := 0, jika i = j; ε, jika i j., dengan dan matriks ε Rε m n, (ε) ij := ε untuk setiap i dan j. Pangkat k matriks A R n n ε didefinisikan dengan A 0 = E n dan A k := A A k 1 untuk k = 1, 2,.... 2.3. Teori Graf dalam Aljabar Maks-Plus. Graf berarah G = (V, A) dengan V = 1, 2,, p, dikatakan terbobot jika setiap busur (j, i) A dikawankan dengan suatu bilangan real A ij. Bilangan real A ij disebut bobot busur (j, i), yang dilambangkan dengan w(j, i). Bobot suatu lintasan didefunisikan sebagai jumlahan bobot busur-busur yang menyusun lintasan tersebut. Suatu lintasan disebut sirkuit jika titik awal dan titik akhirnya sama. Lintasan terpanjang didefinisikan sebagai lintasan dengan bobot maksimum. Graf preseden dari matriks A Rε n n adalah graf berarah berbobot G(A) = (V, A) dengan V = 1, 2,..., n, A = (j, i) w(i, j) = A ij ε, i, j. Matriks bobot graf G dengan A R n n ε didefinisikan sebagai berikut A ij = w(j, i), jika (j, i) A; ε, jika (j, i) / A. Matriks bobot graf dengan A R n n ε dan k N, untuk matriks (A k ) st merupakan bobot maksimum semua lintasan dalam G(A) dengan panjang k, t sebagai titik awal dan s sebagai titik akhirnya. Matriks A R n n ε dikatakan semi definit untuk semua sirkuit dalam G(A) mempunyai bobot takpositif dan dikatakan definit untuk semua sirkuit dalam G(A) mempunyai bobot negatif. Jika A semi definit, maka p n, A p m E A... A n 1. Selanjutnya, matriks semi definit A Rε n n dapat didefinisikan sebagai A := E A... A n A n+1.... Didefinisikan R n ε := x = [x 1, x 2,..., x n ] T x i R ε, 1 = 1, 2,..., n}. Untuk setiap x, y R n ε dan α R ε berturut-turut didefinisikan operasi penjumlahan dan operasi perkalian skalar yaitu x y = [x 1 y 1, x 2 y 2,..., x n y n ] T dan α x = [α x 1, α x 2,..., α x n ] T. Matriks A Rε n n dan b R n ε, jika A semi definit, maka vektor x = A b merupakan suatu penyelesaian sistem x = A x b. Jika A definit, maka sistem tersebut mempunyai penyelesaian tunggal. 3 2017

3. Hasil dan Pembahasan 3.1. Penentuan Masalah Lintasan Terpanjang. Penyelesaian masalah lintasan terpanjang dalam penjadwalan proyek ini digunakan perhitungan maju (forward) dan mundur (backward) dengan metode PDM. Metode PDM merupakan activity network diagram yang memiliki jaringan kerja yang lebih sederhana karena kegiatan atau tugas-tugas yang digambarkan pada node (simpul/sambungan jalur). Pada metode PDM ini dapat dilakukan analisis terhadap jadwal waktu penyelesaian jaringan proyek dengan pendekatan aljabar maks-plus. Definisi 3.1. Suatu jaringan proyek S adalah suatu graf berarah berbobot terhubung kuat taksiklik S = (V, A), dengan V = 1, 2,..., n yang memenuhi : jika (i, j) A, maka i < j. Selanjutnya, dapat dilakukan analisis lintasan terpanjang yaitu lintasan dengan waktu tempuh maksimum. Pembahasan untuk pertama kali diawali dengan menentukan waktu awal paling cepat (earliest start time) untuk setiap persimpangan titik i dapat dilalui. Teknik perhitungan maju dengan metode PDM diperoleh berdasarkan teorema berikut. Teorema 3.1. Jika suatu jaringan proyek dalam n titik, maka vektor saat mulai paling awal yang berasal dari titik i pada jaringan tersebut yaitu x e = (E A... A n 1 ) b e dengan A adalah matriks bobot dari graf berarah terbobot jaringan tersebut dan vektor b e = [0, ε,..., ε] T, serta x e n adalah waktu minimal penyelesaian proyek. Bukti. Misalkan x e i = ES(i) menyatakan waktu awal paling cepat titik i dapat dilalui, waktu tempuh dari titik j ke titik i (kosntrain), jika (j, i) A ; A ij = ε, jika (j, i) / A. Pembahasan ini, diasumsikan bahwa perjalanan dalam jaringan dimulai pada titik 1 saat waktu tempuh dengan durasi sama dengan nol, yaitu x e i =0. Diasumsikan juga tidak ada waktu singgah di setiap kegiatan proyek sehingga dapat dituliskan x e i = 0, jika i = 1 ; maks 1 j n (A ij + x e j), jika i > 1. Menggunakan notasi aljabar maks-plus persamaan diatas dapat dituliskan x e 0, jika i = 1 ; i = 1 j n (A ij x e j), jika i > 1. (3.1) Misalkan A adalah matriks bobot graf S, x e = [0, x e 1, x e 2,..., x e n] T dan b e = [0, ε,..., ε] T, persamaan (3.1) dapat dituliskan ke dalam suatu sistem persamaan linear iteratif 4 2017

maks-plus sebagai berikut x e = A x e b e. (3.2) Jika jaringan proyek merupakan graf berarah tak siklik, maka tidak terdapat sirkuit sehingga semua sirkuit dalam jaringan mempunyai bobot tak positif. Sehingga x e = A b e (3.3) merupakan penyelesaian tunggal sistem persamaan (3.2) diatas. Jika jumlah titik dalam jaringan proyek adalah n, maka panjang lintasan terpanjang jaringan tidak melebihi n 1. Persamaan (3.3) dapat ditulis menjadi x e = A b e = (E A... A n 1 ) b e yang merupakan vektor saat mulai paling awal yang berasal dari titik i. Jadi dapat diperoleh bahwa (A ) merupakan bobot maksimum lintasan dari titik awal hingga titik akhir proyek, sehingga x e n merupakan waktu minimal penyelesaian proyek. Selanjutnya dengan teknik perhitungan mundur menggunakan metode PDM dengan pendekatan aljabar maks-plus diperoleh kesimpulan sebagai berikut. Teorema 3.2. Diberikan suatu jaringan lintasan searah dengan n titik dan A adalah matriks terbobot. Vektor waktu paling akhir perjalanan didefinisikan dengan b l = [ε, ε,..., x e n] T. x l = ((A T ) b l ) Bukti. Misalkan LS i = x l i menyatakan saat penyelesaian paling lambat untuk semua kegiatan yang datang ke titik i, waktu tempuh dari titik i ke titik j dengan durasi, jika (j, i) A ; B ij = ε(= ), jika (j, i) / A. Diasumsikan bahwa x l n = x e n, kemudian dapat dituliskan x l x e i = n, jika i = n ; min 1 j n ( B ij + x l j), jika i > 1. (3.4) Selanjutnya, dengan notasi aljabar maks-plus persamaan (3.4) ekuivalen dengan x l x e i = n, jika i = n ; (3.5) maks 1 j n (B ij x l j), jika i > 1. Perhatikan bahwa matriks B = A T, misalkan z = [z 1, z 2,..., z n ] T = x l = [ x l 1, x l 2,..., x l n] T dan b l = [ε, ε,..., x e n] T, persamaan (3.5) dapat dituliskan menjadi z = A T z b l (3.6) 5 2017

yang penyelesaiannya adalah z = (A T ) b l sehingga diperoleh vektor saat paling lambat adalah x l = z. Jadi, sistem persamaan linear iteratif maks-plus dapat dimodelkan dalam sistem penjadwalan proyek dengan metode PDM untuk mencari lintasan terpanjangnya. Persamaan x e = A b e = (E A... A n 1 ) b e digunakan untuk menentukan vektor paling awal dan z = (A T ) b l menentukan vektor saat paling lambat, dari vektor tersebut dapat ditentukan lintasan terpanjangnya. 3.2. Penerapan. Penerapan ini mengacu pada Jurnal Oka Suputra, I. G. N [6]. Suatu perusahaan akan melakukan sebuah pembangunan proyek. Pembangunan proyek tersebut dibagi menjadi lima kegiatan, yaitu kegiatan A, B, C, D, dan E. Masing-masing kegiatan memiliki waktu yang diperlukan untuk menyelesaikan pembangunan proyek, yaitu kegiatan A selama 6 hari, kegiatan B selama 4 hari, kegiatan C selama 9 hari, kegiatan D selama 5 hari, dan kegiatan E selama 7 hari. Setiap kegiatan proyek memiliki ketentuan hubungan dengan kegiatan lainnya. Ketentuan hubungan pada proyek ini adalah kegiatan A merupakan kegiatan dimulainya proyek akan berlangsung, kegiatan B belum dimulai proyek setelah selesainya kegiatan A. Kegiatan C dapat dimulai setelah kegiatan A berlangsung selama 3 hari, dan kegiatan D selesai 3 hari lebih dahulu dari kegiatan B. Kegiatan E selesai 2 hari lebih dahulu dari kegiatan C, serta kegiatan D dan E dapat dilaksanakan secara bersama-sama. Data penjadwalan pembangunan sebuah proyek di atas adalah sebagai berikut. Tabel 1. Data dari lima kegiatan proyek No Kegiatan Durasi (hari) Konstrain 1 A 6 2 B 4 F S(1 2) = 0 3 C 9 SS(1 3) = 3 4 D 5 F F (2 4) = 3 5 E 7 F F (3 4) = 2 SS(4 5) = 0 Tabel 1 menyatakan data proyek yang terdiri dari lima kegiatan dan direpresentasikan dalam graf berarah PDM pada Gambar 1. 6 2017

Gambar 1. Hubungan antar kegiatan dalam PDM Berdasarkan Teorema 3.1 dan Gambar 1 diperoleh hasil teknik perhitungan maju dengan metode PDM sebagai berikut. (1) ES 1 = x e 1 = 0 EF 1 = x l 1 = x e 1 D 1 = 0 6 = 6 (2) ES 2 = x e 2 = x e 1 F S(1 2) = 6 0 = 6 EF 2 = x l 2 = 6 D 2 = 6 4 = 10 (3) ES 3 = x e 3 = 0 F S(1 3) = 0 3 = 3 EF 3 = x l 3 = 3 D 3 = 3 9 = 12 (4) ES 4 = x e 4 = x e 2 F F (2 4) ( D 4 ) = 10 3 ( 5) = 8 x e 4 = x e 3 F F (3 4) ( D 4 ) = 12 2 ( 5) = 9 ES 4 = maks(8, 9) = (8, 9) = 9 EF 4 = x l 4 = 9 D 4 = 9 5 = 14 (5) ES 5 = x e 5 = x e 4 SS(4 5) = 9 0 = 9 EF 5 = x l 5 = 9 D 5 = 9 7 = 16 Jadi, dengan pehitungan maju (forward) diperoleh waktu minimal penyelesaian proyek adalah 16 hari. Berdasarkan Teorema 3.2 dan Gambar 1 diperoleh hasil teknik perhitungan mundur sebagai berikut. (1) LF 5 = x l 5 = x e 5 = 16 LS 5 = x e 5 = 9 (2) LF 4 = x l 4 = x e 5 ( SS(4 5)) D 4 = 9 ( 0) 5 = 14 LS 4 = x e 4 = 14 ( D 4 ) = 14 ( 5) = 9 (3) LF 3 = x l 3 = x l 4 ( F F (3 4)) = 14 ( 2) = 12 LS 3 = x e 3 = 12 ( D 3 ) = 12 ( 9) = 3 (4) LF 2 = x l 2 = x l 4 ( F F (2 4)) = 14 ( 3) = 11 LS 2 = x e 2 = 11 ( D 2 ) = 11 ( 4) = 7 (5) LF 1 = x l 1 = x l 2 ( F S(1 2)) = 7 (0) = 7 LF 1 = x l 1 = x l 3 ( SS(1 3)) D 3 = 3 ( 3) 6 = 6 7 2017

min(7, 6) = 6 LS 1 = x e 1 = 6 ( D 1 ) = 6 ( 6) = 0 Dari teknik perhitungan maju dan mundur, diperoleh matriks bobot graf berarah terbobot pada jaringan proyek di atas adalah matriks A sebagai berikut. ε ε ε ε ε 0 ε ε ε ε 0 0 0 ε ε ε ε 6 0 ε ε ε 6 2 A = 3 ε ε ε ε, A = 3 ε 0 ε ε, xe = 3, xl = 3 ε 10 12 ε ε 9 6 3 ε ε 9 9 ε ε ε 9 ε 16 9 9 6 ε 16 16 Waktu tempuh minimal untuk melintasi lintasan adalah 16 hari dan lintasan terpanjang yang diperoleh adalah lintasan A SS(1 3) C F F (3 4) D SS(4 5) E. 4. Kesimpulan Berdasarkan hasil dan pembahasan dapat disimpulkan bahwa jaringan lintasan searah dengan bobot waktu tempuh dimodelkan sebagai graf berarah terbobot yang dinyatakan matriks atas aljabar maks-plus. Penentuan waktu tempuh minimal dilakukan melalui operasi star ( ) pada matriks bobot jaringan. Lintasan terpanjang ditentukan melalui penentuan waktu awal paling cepat untuk melewati titik dan waktu paling akhir meninggalkan titik, untuk masing-masing titik pada jaringan. Waktu tempuh perjalanan pada jaringan dimodelkan dalam suatu sistem persamaan linear (SPL) iteratif maks-plus dengan metode PDM. Selanjutnya dalam menyelesaikan SPL iteratif maks-plus ditentukan waktu awal paling cepat dan waktu paling akhir yang sama, sehingga membentuk lintasan terpanjang pada jaringan. Dari contoh Gambar 1 mengenai jaringan proyek dapat diperoleh nilai A, A, x e dan x l, serta waktu tempuh maksimal untuk melintasi lintasan adalah 16 hari yang artinya, waktu maksimal penyelesaian pembangunan proyek dapat terselesaikan secara tepat waktu selama 16 hari. Daftar Pustaka 1. Bacelli, F., G. Cohen, G. J. Olseder, and J. P. Quadrat, Synchronization and linearity, John Wiley and Sons,Inc., New York, 2001. 2. Gondran, M. and M. Minoux, Graph, Diods, and Semirings, Springer, New York, 2008. 3. John, S. B. and T. George, Path Problems in Networks, Morgan and Claypool Publishers, 2010. 4. Rudhito, M. A., Aljabar Max-Min Interval Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan Mipa, 18 Mei 2013. 5. Soeharto, I., Manajemen Pproyek dari Konseptual sampai Operasional, (1995). 6. Oka Suputra, I.G.N, Penjadwalan Proyek Dengan Precedence Diagram Method (PDM) dan Ranked Position Weight Method (RPWM), Jurnal Ilmiah Teknik Sipil 15 (2011), no. 1. 7. Taha, H. A., Riset Operasi Jilid 2 Terjemahan, Binarupa Aksara, Jakarta, 1996. 8 2017