BAB 3 METODOLOGI PENELITIAN

dokumen-dokumen yang mirip
FORMULASI GEMUK LUMAS RAMAH LINGKUNGAN (BIODEGRADABLE GREASE) Ratu Ulfiati, M. Rizkia Malik, Pandu Asmoro Bangun

PENGARUH TEMPERATUR TERHADAP VISKOSITAS MINYAK PELUMAS. Daniel Parenden Jurusan Teknik Mesin Fakultas Teknik Universitas Musamus

III. METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik

BAB I PENDAHULUAN. dan otomatis. Maka dari itu minyak pelumas yang di gunakan pun berbeda.

Hasil Penelitian dan Pembahasan

Pemakaian Pelumas. Rekomendasi penggunaan pelumas hingga kilometer. Peningkatan rekomendasi pemakaian pelumas hingga

BAB III METODE PENELITIAN Alat Penelitian 1. Mesin electrospinning, berfungsi sebagai pembentuk serat nano.

Cara uji viskositas aspal pada temperatur tinggi dengan alat saybolt furol

METODE PENGUJIAN KUAT TEKAN CAMPURAN BERASPAL

Pemeriksaan & Penggantian Oli Mesin

Bab 3 Metodologi Penelitian

Gambar 4.1. Bagan Alir Penelitian

BAB IV METODE PENELITIAN. A. Bagan Alir Penelitian. Mulai. Studi Pustaka. Persiapan Alat dan Bahan. Pengujian Bahan

ANALISIS PENGARUH PERBEDAAN JENIS MINYAK LUMAS DASAR (BASE OIL) TERHADAP MUTU PELUMAS MESIN

BAB III METODOLOGI PENELITIAN

BAB IV METODOLOGI PENELITIAN

EFEK PENAMBAHAN ZAT ADITIF PADA MINYAK PELUMAS MULTIGRADE TERHADAP KEKENTALAN DAN DISTRIBUSI TEKANAN BANTALAN LUNCUR

BAB III METODE PENELITIAN. Proses polimerisasi stirena dilakukan dengan sistem seeding. Bejana

BAB II TINJAUAN PUSTAKA. (C), serta unsur-unsur lain, seperti : Mn, Si, Ni, Cr, V dan lain sebagainya yang

JURNAL REKAYASA PROSES. Analisis Pengaruh Bahan Dasar terhadap Indeks Viskositas Pelumas Berbagai Kekentalan

Presentation Title PENGARUH KOMPOSISI PHENOLIC EPOXY TERHADAP KARAKTERISTIK COATING PADA APLIKASI PIPA OVERHEAD DEBUTANIZER TUGAS AKHIR MM091381

BAB IV HASIL DAN ANALISA DATA PENGUJIAN. INDONESIA Cilandak - Jakarta dengan menggunakan mesin Viscosity Kinematic Bath,

BAB III METODE PENELITIAN. bulan agustus tahun 2011 sampai bulan Januari tahun Tempat penelitian

BAB IV PENGUJIAN DAN ANALISIS

MENGENAL PELUMAS PADA MESIN

ANALISA PERBANDINGAN OLI BERBAHAN DASAR PETROLEUM DENGAN OLI BERBAHAN DASAR NABATI DALAM MENGURANGI TINGKAT KEAUSAN

III. METODE PENELITIAN. : Motor Bensin 4 langkah, 1 silinder Volume Langkah Torak : 199,6 cm3

Gesekan. Hoga Saragih. hogasaragih.wordpress.com

BAB 3 METODE PENELITIAN

Cara uji kelarutan aspal modifikasi dalam toluen dengan alat sentrifus

BAB IV HASIL DAN PEMBAHASAN

BAB II DASAR TEORI. 2.1 Gesekan

BAB IV HASIL DAN ANALISA DATA PENGUJIAN

Pengolahan Pelumas Bekas Secara Fisika

Karakterisasi Material Bucket Teeth Excavator 2016

METODOLOGI PENELITIAN. Penelitian dilakukan di laboratorium material teknik, Jurusan Teknik Mesin,

I. PENDAHULUAN. masih awam akan mesin sepeda motor, sehingga apabila mengalami masalah atau

BAB III METODOLOGI PENELITIAN

3 Metodologi penelitian

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan April September 2013 bertempat di

BAB III METODOLOGI PENELITIAN

Cara uji titik lembek aspal dengan alat cincin dan bola (ring and ball)

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG

BAB III METODOLOGI PENELITIAN

METODOLOGI PENELITIAN. untuk campuran lapis aspal beton Asphalt Concrete Binder Course (AC-

ANALISIS KELAYAKAN-PAKAI MINYAK PELUMAS SAE 10W-30 PADA SEPEDA MOTOR (4TAK) BERDASARKAN VISKOSITAS DENGAN METODE VISKOMETER BOLA JATUH

RANCANGAN KEGIATAN BELAJAR MENGAJAR (SATUAN ACUAN PERKULIAHAN) : Teknologi Bahan Bakar dan Pelumasan Kode MK/SKS : TM 333/2

METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Inti Jalan Raya Fakultas Teknik. Jurusan Teknik Sipil Universitas Lampung.

Perbandingan Tegangan Tembus Isolasi Minyak Transformator Diala B Dan Mesran Super Sae 40 W Menggunakan Hypot Model 04521aa

Cara uji daktilitas aspal

BAB III METODE PENELITIAN

ANALISIS KEAUSAN DISC DENGAN MATERIAL BAJA St 70 MENGGUNAKAN ALAT TRIBOTESTER PIN-ON- DISC DENGAN VARIASI PELUMASAN

METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Inti Jalan Raya Fakultas Teknik

Cara uji sifat kekekalan agregat dengan cara perendaman menggunakan larutan natrium sulfat atau magnesium sulfat

III. METODOLOGI PENELITIAN. Lampung dan laboratorium uji material kampus baru Universitas Indonesia

BAB III METODE PENELITIAN. Peralatan yang digunakan untuk proses pencampuran biodiesel dan minyak

BAB II TINJAUAN PUSTAKA

BAB I PANDAHULUAN. Berbagai industri barang perhiasan, kerajinan, komponen sepeda. merupakan pelapisan logam pada benda padat yang mempunyai

BAB IV PENGEMBANGAN MATERIAL PENYUSUN BLOK REM KOMPOSIT

PEMBUATAN DAN PENGUJIAN ALAT PENGIKAT PARTIKEL - PARTIKEL LOGAM YANG TERKANDUNG DALAM PELUMAS AKIBAT GESEKAN PADA MESIN

TATA CARA PEMBUATAN DAN PERAWATAN BENDA UJI KUAT TEKAN DAN LENTUR TANAH SEMEN DI LABORATORIUM

BAB III METODE PENELITIAN

METODOLOGI PENELITIAN

PENAMBAHAN LATEKS KARET ALAM KOPOLIMER RADIASI DAN PENINGKATAN INDEKS VISKOSITAS MINYAK PELUMAS SINTETIS OLAHAN

BAB I PENDAHULUAN. Banyak cara yang dapat dilakukan dalam teknik penyambungan logam misalnya

BAB III METODOLOGI PENELITIAN

BAB II TINJAUAN PUSTAKA

Gambar 7 Desain peralatan penelitian

Diagram Fasa. Latar Belakang Taufiqurrahman 1 LOGAM. Pemaduan logam

BAB III METODOLOGI PENELITIAN

BAB III METODE PENELITIAN. Teknologi Universitas Airlangga, Laboratorium Kimia Fisik-Analitik Fakultas

PENGARUH WAKTU PENCELUPAN DAN TEMPERATUR PROSES ELEKTROPLATING TERHADAP KETEBALAN DAN KEKERASAN PERMUKAAN BAJA ST 42

BAB IV METODE PENELITIAN. Start

Sampel air panas. Pengenceran 10-1

BAB III METODE PENELITIAN

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen.

PENDAHULUAN. Latar Belakang

ANALISIS KEAUSAN BALL BAJA ST 90 MENGGUNAKAN TRIBOTESTER PIN-ON- DISC DENGAN VARIASI KONDISI PELUMAS

BAB III METODE PENELITIAN

3 Percobaan. 3.1 Bahan Penelitian. 3.2 Peralatan

Momentum, Vol. 11, No. 1, April 2015, Hal ISSN , e-issn

Analisa Temperatur Nitridisasi Gas Setelah Perlakuan Annealing pada Baja Perkakas

Metodologi Penelitian

BAB III METODOLOGI PENELITIAN

LAPORAN PENELITIAN DAUR ULANG MINYAK PELUMAS BEKAS MENJADI MINYAK PELUMAS DASAR DENGAN KOMBINASI BATUBARA AKTIF DAN KARBON AKTIF OLEH :

ANALISA KEAUSAN CYLINDER BEARING MENGGUNAKAN TRIBOTESTER PIN-ON- DISC DENGAN VARIASI KONDISI PELUMAS

ESTER PROPILENA DIOLEAT SEBAGAI PRODUK DOMESTIK MINYAK LUMAS DASAR SINTETIK UNTUK OLI OTOMOTIF. Roza Adriany

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. Dalam sistem perawatan elemen mesin telah dikenal luas teknik

METODOLOGI PENELITIAN. Jurusan Teknik Sipil Universitas Lampung. Bahan yang digunakan dalam penelitian ini antara lain :

BAB III METODOLOGI PENELITIAN

Proses Pembuatan Biodiesel (Proses Trans-Esterifikasi)

BAB III METODE PENELITIAN

III. METODE PENELITIAN

BAB III METODOLOGI PENELITIAN

Pengaruh Temperatur Terhadap Penetrasi Aspal Pertamina Dan Aspal Shell

BAB III METODE PENELITIAN

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB III METODE PENELITIAN

Transkripsi:

BAB 3 METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilakukan di laboratorium pelumas, Pusat Penelitian dan Pengembangan Teknologi Minyak dan Gas Bumi (PPPTMGB LEMIGAS ) yang berlokasi di Jalan Ciledug Raya Kav.109, Daerah Khusus Ibukota Jakarta.Waktu percobaan dilakukan pada tanggal 7 Maret hingga 20 Mei2016. 3.2 Alat dan Bahan 3.2.1 Alat 1. Hot Plate Berfungsi untuk memanaskan sampel. 2. Magnetik Stirrer Berfungsi untuk mengaduk sampel. 3. Timbangan Digital Berfungsi untuk menimbang bahan yang akan digunakan. 4. Beakerglass Berfungsi sebagai wadah sampel pada saat proses blending. 5. Fume Hood Berfungsi sebagai tempat pada saat proses blending 1 sampel M-0,1 yang berfungsi sebagai penyedot gas H 2 O yang menguap. 6. Pipet Tetes Berfungsi untuk memindahkan sejumlah base oil dan aquades dalam sekala milliliter. 7. Spatula Berfungsi sebagai alat pemindah bahan MoS 2 dan surfaktan SDS kedalam beakerglass. 8. Botol Sampel Berfungsi sebagai tempat sampel jadi yang telah diblending.

9. Tissu/Majun 3.2.2 Bahan Berfungsi untuk melap peralatan yang kotor dan bahan yang tumpah. 1. HVI 60(base oil group I) Berfungsi sebagai minyak lumas dasar. 2. HVI 95 (base oil group I) Berfungsi sebagai minyak lumas dasar. 3. Yubase 8 (base oil group III) Berfungsi sebagai minyak lumas dasar. 4. LZ 7075 (aditif indeks viskositas improver) Berfungsi sebagai pemodifikasi viskositas yaitu pembesaran polimer sesuai dengan peningkatan temperature untuk mencegah pengenceran oli. 5. LZ 19010(aditif paket) Berfungsi sebagai aditif paket yaitu memiliki multifungsi. 6. Viscoplex PP(aditif penurun titik tuang) Berfungsi sebagai pour point depressant yaitu membungkus krista lilin sehingga mencegah pembekuan pelumas pada suhu rendah. 7. MoS 2 (aditif nano pemodifikasi gesekan) Berfungsi sebagai aditif friction modifier yaitu membentuk lapisan yang menempel dibidang yang dilumasi sehingga mengurangi gesekan. 8. SDS(surfaktan Sodium Dodecyl Sulfate) Berfungsi sebagai aditif polaritas yaitu membungkus partikel nano MoS 2 sehingga mencegah pengendapan.. 3.3 Penandaan Sampel Uji Tabel 3.1 Penandaan sampel ujii No Kode Sampel Keterangan 1 Y8 Yubase 8 (base oil grup III tanpa campuran) 2 H60 HVI 60 (base oilgrup I tanpa campuran) 3 H95 HVI 95 (base oilgrup I tanpa campuran) 4 1H60 HVI 60 + 0,1 % MoS 2 + 0,2 % SDS 5 1H95 HVI 95 + 0,05 % MoS 2 + 0,05 % SDS

6 2H95 HVI 95 + 0,01 % MoS 2 + 0,01 % SDS 7 3H95 HVI 95 + 0,5 % MoS 2 + 0,5 % SDS 8 4H95 HVI 95 + 0,05 % MoS 2 + 0,01 % SDS 9 5H95 HVI 95 + 0,5 % MoS 2 + 0,01 % SDS 10 6H95 HVI 95 + 0,1 % MoS 2 + 0,2 % SDS 11 1Yu8 Yubase 8 + 0,05 % MoS 2 + 0,05 % SDS 12 2Yu8 Yubase 8 + 0,01 % MoS 2 + 0,01 % SDS 13 3Yu8 Yubase 8 + 0,5 % MoS 2 + 0,5 % SDS 14 4Yu8 Yubase 8 + 0,05 % MoS 2 + 0,01 % SDS 15 5Yu8 Yubase 8 + 0,5 % MoS 2 + 0,01 % SDS 16 6Yu8 Yubase 8 + 0,1 % MoS 2 + 0,2 % SDS 17 Y8-0,1(6Yu8) Yubase 8 + 0,1 % MoS 2 + 0,2 % SDS 18 H60-0,1(1H60) HVI 60 + 0,1 % MoS 2 + 0,2 % SDS 19 H95-0,1(6H95) HVI 95 + 0,1 % MoS 2 + 0,2 % SDS 20 M Pelumas SAE 10W-30 21 M-0,1 Pelumas SAE 10W-30+0,1% MoS 2 + 0,2 % SDS 3.4 Proses Formulasi Untuk mendapatkan campuran tertentu antara minyak lumas dasar dengan aditif, dilakukan proses formulasi. Formulasi mencakup spesifikasi sebagaimana dipersyaratkan dalam standar SAE dan API Service.Formula minyak lumas disusun dengan menggunakan kalkulasi teoritis.walaupun sudah banyak teori yang merumuskan persamaan perhitungannya, nilai yang dihasilkan masih berbeda dengan hasil analisis laboratorium.oleh karena itu, perhitungan secara matematis digunakan sebagai panduan dalam menentukan konsentrasi formula.karakteristik físika kimia minyak lumas sendiri ditentukan dengan analisis laboratorium. Tabel 3.2Formulasi pembuatan pelumas SAE 10W-30(Sampel M) No Komposisi Blending 1 Blending 2 %wt Berat(gr) %wt Berat(gr) 1 Base oil HVI-60 50 100 71,4 142,8 2 Base oil HVI-95 21,4 42.8 0 0 3 Base oil Yu-8 10 20 10 20 4 Aditif LZ7075 10 20 10 20 5 Aditif LZ19010 8,5 17 8,5 17 6 Aditif Viscoplex PP 0,1 0,2 0,1 0,2 Total Berat Pelumas Jadi: 100 200 100 200

Tabel 3.3 Formulasi pembuatan pelumas SAE 10W-30 + 0,1% MoS 2 + 0,2% SDS(sampel M-0,1) No Komposisi Konsentr Blending 1 Blending 2 asi (%wt) %wt Berat(gr) %wt Berat(gr) 1 Base oil HVI-60 71,1858 10 50 61,1858 305,929 2 Base oil HVI-95 - - - - - 3 Base oil Yu-8 9,97 - - 9,97 49,85 4 Aditif LZ7075 9,97 - - 9,97 49,85 5 Aditif LZ19010 8,4745 - - 8,4745 42,3725 6 Aditif Viscoplex PP 0,0997 - - 0,0997 0,4985 7 Aditif MoS 2 0,1 0,1 0,5 - - 8 Surfaktan SDS 0,2 0,2 1 - - Total Blending I 10,3 51,5 10,3 51,5 Total Pelumas Jadi 100 500 3.5 Pengujian Ada 2 jenis alat uji yang akan digunakan untuk karakterisasi sifat perlindungan keausan pelumas dalam penelitian ini, yaitu mesin uji four-ball, dan HFRR. 3.5.1 Uji Four-Ball Pengujian dilakukan di Laboratorium Pelumas, KP3 Teknologi Aplikasi Produk PPPTMBG Lemigas. Mesin uji four-ball dapat digunakan untuk pengujian sesuai dengan ketentuan ASTM D 4172 untuk karakteristik ketahanan terhadap keausan dari minyak lumas. Minyak lumas hasil formulasi, diuji karakteristik perlindungan keausannya menggunakan metode uji ASTM D 4172 Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method). Bola uji yang dipakai adalah baja paduan kromium,sesuai standar material AISI E-52100, diameter 12,7 mm (0,5 inci), grade 25 EP (Extra Polish). Kekerasan Rockwell C antara 64-66. Hasil dari pengujian ini adalah ukuran goresan dari bola uji. Semakin besar goresan yang ditimbulkan, berarti perlindungan terhadap keausannya semakin kecil dan berlaku sebaliknya. Gambar mesin uji four-ball disajikan pada Gambar 3.1.

Gambar 3.1 Mesin Uji Four-Ball Merk Stanhope Seta (kiri) dan skematis (kanan) 3.5.2 Uji HFRR Pengujian dilakukan di Laboratorium Bahan Bakar Minyak dan Gas, KP3 Teknologi Aplikasi Produk PPPTMBG Lemigas. Mesin uji HFRR lebih tepat digunakan untuk pengujian lubrisitas minyak diesel yang digunakan pada kendaraan bermesin diesel. Uji HFRR dilakukan dalam penelitian ini yaitu untuk mengukur koefisien friksi, diameter goresan benda uji dan sifat pelapisan film. Uji HFRR sesuai dengan ketentuan ASTM D 6079. Spesifikasi bola uji adalah terbuat dari baja AISI E-52100 Grade 24 per ANSI B3.12, diameter of 6,00 mm, memiliki tingkat kekerasan Rockwellhardness skala C (HRC) nomor 58 66 menurut Metode Uji E 18, dan kekasaran permukaan kurang dari 0,05 μm Ra. Cakram uji berukuran 10 mm dari baja AISI E-52100 memiliki tingkat kekerasan Vickers hardness HV 30, sesuai spesifikasi E 92, nomor skala 190-210, dilapis dengan kekasaran permukaan kurang dari 0,02 μm Ra. Gambar mesin uji dan diagram skematis mesin uji HFRR disajikan pada Gambar 3.2. Gambar 3.2 Mesin uji (kiri) dan diagram skematis mesin uji HFRR (kanan)

3.5.3 Uji Viskositas kinematik 100 0 C 3.5.4 Uji CCS 3.6 Diagram Alir 3.6.1 Diagram Alir pembuatan pelumas SAE 10W-30(Sampel M) Pengadaan Aditif: LZ 7075, LZ 19010, Viscoplex Persiapan bahan dan formulasi Pengadaan Base Oil: HVI 60, HVI 95, Yubase 8 Blending ±50 o C, ±330rpm, ±60menit Cold Cranking Simulator (Viskositas pada suhu rendah) untuk grade 10W Pengujian Viskositas kinematik pada suhu 100 o C untuk grade 30 Pengambilan Data Analisa Data. Memenuhi grade SAE 10W-30? Tidak Ya Four-Ball(sifat ketahanan terhadap keausan) Pengujian HFRR(koefisien friksi, diameter goresan benda uji, film) Pengambilan Data Selesai Gambar 3.3 Diagram Alir pembuatan pelumas SAE 10W-30(Sampel M)

3.6.2 Diagram Alir pembuatan Pelumas SAE 10W-30+0,1% MoS 2 + 0,2 % SDS (Sampel M-0,1) Pengadaan Aditif: LZ 7075, LZ 19010, Viscoplex, MoS 2, SDS Persiapan Alat, Bahan Pengadaan Base Oil: HVI 60 Yubase 8 Formulasi: HVI 60 + MoS 2 + SDS + aquades Blending 1 103±2 o C, ±330rpm, ±180menit di fume hood Formulasi: Blending 1 + HVI 60 + Yubase 8 + LZ 7075 + LZ 19010 + Viscoplex Blending 2 ±50 o C, ±330rpm, ±60menit Four Ball HFRR Korosi Bilah Tembaga Pengujian Pengambilan Data Selesai Gambar 3.4 Diagram Alir pembuatan Pelumas SAE 10W-30+0,1% MoS 2 + 0,2 % SDS (Sampel M-0,1)

BAB 4 HASIL DAN PEMBAHASAN 4.1 Karakteristik perlindungan keausan dari uji four-ball Sebagai dasar analisa, pengujian dilakukan terhadap ketiga base oil tanpa aditif MoS 2.Untuk menentukan konsentrasi optimum aditif MoS 2 dan surfaktan SDS digunakan 2 jenis base oil yaitu HVI 95 dan Yubase 8.Nano aditif MoS 2 divariasikan dengan 6 konsentrasi yang berbeda.kemudian konsentrasi yang paling optimum, selanjutnya di uji coba menggunakan base oil HVI 60. Setelah dilakukan perhitungan, besar rata-rata diameter luka dari masing-masing base oildengan dan tanpa aditif MoS 2 disajikan pada Gambar 4.1 Scar Diameter (mm) 0,9 0,7 0,5 0,3 0,1-0,1 0,72 Hasil Uji Fourball Scar Diameter Penentuan Konsentrasi Optimum MoS2 dan SDS 0,46 0,73 0,48 0,520,58 0,6 0,68 0,480,47 0,36 0,43 0,35 0,490,51 0,34 Sampel Gambar 4.1 Diagram batang hasil uji four-ball scar diameter penentuan konsentrasi optimum MoS 2 dan SDS(warna hitam mewakili base oil HVI 60, warna biru mewakili base oil HVI 95, warna merah mewakili base oil Yubase8). Dari gambar diatas terlihat bahwa penambahan nano aditif MoS 2 ke dalam masing-masing base oil memberikan pengaruh yang baik yaitu dengan menurunkan diameter luka bola uji. Sampel 1H60 menunjukkan hasil yang terbaik menggunakan base oil HVI 60 dengan konsentrasi 0,1% berat MoS 2 + 0,2% berat SDS. Menggunakan base oil HVI 95 dan Yubase8, secara berurut pada sampel 6H95 dan 6Yu8 menunjukkan hasil terbaik dengan konsentrasi MoS 2 dan SDS

yang sama. Tetapi ada 2 sampel dengan base oil Yubase8 menghasilkan diameter luka bola uji yang lebih tinggi dibandingkan tanpa penambahan aditif MoS 2 yaitu pada sampel 4Yu8 dan 5Yu8.Faktor-faktor yang mempengaruhi keefektifan aditif MoS 2 adalah temperature kerja, kondisi lingkungan terutama kelembaban, ukuran dan tingkat kemurnian. Jika konsentrasi aditif MoS2 terlalu tinggi, maka partikel nano cenderung teraglomerasi membentuk agregat dengan ukuran partikel lebih besar dan pengendapan secara kimia terjadi.karena kecilnya ukuran partikel nano aditif MoS 2, maka semakin mudah teroksidasi menjadi MoO 3 yang bersifat abrasive, terutama jika pada kondisi lingkungan dengan kelembaban tinggi dan temperature tinggi. Semakin tinggi tingkat oksidasi semakin banyak produk MoO 3 yang terbentuk yang akan meningkatkan kemungkinan keausan abrasive dan meningkatnya koefisien gesek dari pelumas. Ini terlihat dari sampel 5H95 dan 5Yu8 dengan penambahan konsentrasi nano aditif MoS 2 sebanyak 0,5%, terlihat indikasi adanya produk abrasive MoO 3 yang mengakibatkan diameter luka bola uji justru lebih besar jika dibandingkan base oil tanpa aditif MoS 2. Sedangkan jika konsentrasi terlalu kecil, jumlahnya tidak mencukupi untuk membentuk gesekan menggelinding tetapi gesekan menggelincir, sehingga gesekan yang ditimbulkan menjadi lebih besar. Dari Gambar 4.1 dapat disimpulkan karakteristik perlindungan keausan base oil grup III (Yubase8) lebih baik dari pada grup I (HVI 60 dan HVI 95). Hal ini disebabkan molekul penyusun base oil grup III lebih seragam dibandingkangrup I sehingga base oil grup III memiliki koefisien gesekan yang lebih rendah yang berpengaruh terhadap semakin baik perlindungan keausanya. Akan tetapi setelah ditambah nano aditif MoS2, sampel dengan base oil grup I memiliki rata-rata persen perbaikan yang lebih tinggi dibandingkan sampel dengan base oil grup III. Hal ini disebabkan karena pada dasarnya base oil grup III sudah memiliki perlindungan keausan yang lebih baik sehingga ketika ditambahkan nano aditif MoS 2 hanya berpengaruh sedikit, berbeda dengan grup I yang sangat terbantu dengan penambahan aditif. Pada Gambar 4.2 terlihat peningkatan unjuk kerja terbaik sebesar 36 % pada sampel 1H60, sebesar 34 % pada sampel 1H95 dan 6H95 dan sebesar 27%

pada sampel 6Yu8. Hasil dari ketiga sampel diatas diperoleh dengan penambahan 0,1% aditif MoS 2 + 0,2% SDS. Sedangkan beberapa sampel memberikan pengaruh buruk yaitu pada sampel 4Yu8 dan 5Yu8 dengan penurunan unjuk kerja sehingga memberikan nilai persen perbaikan yang negatif. Dari Gambar 4.1 dan Gambar 4.2 disimpulkan bahwa konsentrasi aditif MoS 2 optimum sebesar 0,1% dan 0,2% untuk surfaktan SDS. Gambar 4.2 Diagram batang perbaikan scar diameter penentuan konsentrasi optimum nano aditif MoS 2 dan surfaktan SDS(dalam satuan %) Membutuhkan 2 kali formulasi untuk menghasilkan pelumas SAE 10W- 30, karena hasil uji viskositas kinematik 100 0 C hasil formulasi pertama tidak memenuhi standart SAE J300 Jan 2015(Tabel 2.2) untuk multigrade SAE 10W- 30. Percobaan dilanjutkan pengujian scar diameterdilakukan terhadap sampel M. Dari hasil pengujian, nilai scar diameter sampel M sebesar 0,31 mm(tabel 4.3). Hasil pengujian viskositas 100 0 Cdan CCS dapat dilihat pada Tabel 4.1. Tabel 4.1 Hasil pengujian viskositas 100 Cdan CCS Pelumas SAE 10W- 30(Sampel M) No Karakteristik Blending 1 Blending 2 1 Viskositas100 o C(cSt) 14,63 12,30 2 CCS (cp) 6713 4733 Pada sampel M-0,1, membutuhkan 2 kali proses blending dalam formulasinya. Pada blendingi, terlihat bahwa base oil yang digunakan hanya HVI- 60, nano aditif MoS 2 dan surfaktan SDS. Pada Tabel 3.3(formulasi pembuatan

sampel M-0,1) tidak dicantumkan aquades yang digunakan sebagai pelarut SDS, karena aquades yang digunakan akan hilang setelah blending I selesai. Proses blending I menggunakan suhu dan waktu yang berbeda dengan blending II, karena tujuan utama blending I adalah menghilangkan aquades yang digunakan untuk melarutkan surfaktan SDS.Blending I menggunakan suhu 103±2 o C selama 180 menit dan putaran ±330 rpm yang dilakukan di fume hood sedangkan blending II dengan suhu dan waktu yang berbeda yaitu ±50 o C selama 60 menit. Untuk menjaga kualitas pelumas tidak turun saat proses blending I dengan o suhu 103±2 C, maka hanya sedikit base oil HVI 60 yang digunakan pada blending I karena konsentrasi HVI 60 merupakan yang terbanyak sekitar 71,2% berat total pelumas jadi. Maka dari itu total berat blendingan I hanya sekitar 10,3 % berat dari total berat pelumas jadi dengan penambahan HVI 60 sekitar 10% berat dari total konsentrasi pelumas jadi. Tadinya dihawatirkan kandungan aquades yang belum hilang akan menyebabkan reaksi kimia yang tidak diinginkan pada mesin, maka dilakukan pengujian korosi bilah tembaga metode uji ASTM D 130. Hasil pengujian menunjukan bahwa tidak terjadi korosi sama sekali pada bilah tembaga ini terlihat dari lempeng tembaga masuk klasifikasi 1a. Hasil ini menunjukan bahwa aquades yang terdapat pada pelumas jadi telah hilang dan tidak menyebabkan korosi. Pengujian dilanjutkan dengan menggunakan mesin uji four-ball scar diameter ASTM D 4172 yaitu beban 40 kgf, putaran mesin 1200 rpm selama 60 menit pengujian. Dari hasil pengujian, nilai scar diameter untuk sampel M-0,1 menghasilkan 0,26 mm. Hasil pengujian dapat dilihat pada Tabel 4.2. Tabel 4.2 Hasil pengujian four-ballscar diameter, viscosity, CCS, dan korosi bilah tembaga pada sampel M dan M-0,1 No KARAKTERISTIK M M-0,1 1 Four-Ball Scar Diameter(mm) 0,31 0,26 2 Viscosity 100 o C(cSt) 12,30 12,47 CCS (cp) 4733 4716 Korosi Bilah Tembaga 1a Terlihat bahwa perubahan nilai scar diameter dari sampel M-0,1 menunjukan hasil yang positif yaitu menurunkan nilai scar diameternya sekitar 16% (Gambar 4.4). Hasil ujiscar diameter dan % perubahan nilai scar diameter ditampilkan dalam bentuk diagram batangpada Gambar 4.3 dan Gambar 4.4.

Scar Diameter (mm) 0,9 0,7 0,5 0,3 0,1-0,1 Hasil Uji Fourball Scar Diameter sampel 0,73 0,48 0,72 0,46 0,47 0,34 0,31 0,26 Sampel Gambar 4.3 Diagram batang hasil uji scar diameter Perubahan scar diameter (%) % Perubahan Scar Diameter Hasil Uji Four Ball Sampel 40 30 20 10 0 0 34 0 36 0 27 0 16 Sampel Gambar 4.4 Diagram batang perubahan scar diameter (dalam satuan %) 4.2 Karakteristik Koefisien Gesek Dari Uji HFRR(High-Frequency Reciprocating Rig) Selain karakterisasi sifat perlindungan keausan, karakteristik gesekan diuji juga menggunakan metode HFRR.Pada uji HFRR, koefisien friksi berbanding lurus dengan wear scar dan berbanding terbalik dengan pelapisan film.berikut disajikan hasil uji HFRR pada Gambar 4.5, Gambar 4.6, Gambar 4.7.

wear scar (µm) 371 400,5 Sampel Gambar 4.5 Diagram batang hasil pengujian wear scar uji HFRR Dari Gambar 4.5 terlihat nilai wear scar masing-masing base oil dan pelumas setelah ditambah nano aditif MoS 2.Dengan penambahan nano aditif MoS 2 ke dalam pelumas memberikan hasil yang positif dengan menurunkan nilai wear scarnya ini terlihat dari sampel M(pelumas tanpa nano aditif MoS 2 ) dan sampel M-0,1(pelumas ditambah nano aditif MoS 2 ). koefisien friksi 500 400 300 200 100 0 Hasil Uji wear scar HFRR Sampel Gambar 4.6 Diagram batang hasil pengujian koefisien friksi uji HFRR 224 167 H60-0,1 H95-0,1 Y8-0,1 M M-0,1 Hasil Uji Koefisien Friksi HFRR 200 150 100 50 0 177 175 96 125 124 122 H60-0,1 H95-0,1 Y8-0,1 M M-0,1 Sama hal nya uji HFRR, Gambar 4.6 juga menunjukan hasil yang positif dengan menurunkan nilai koefisien friksi pelumas SAE 10W-30 setelah ditambah nano aditif MoS 2 ini terlihat dari sampel M(pelumas tanpa nano aditif MoS 2 ) dan sampel M-0,1(pelumas ditambah nano aditif MoS 2 ).

film (%) 150 100 50 0 Hasil Uji film HFRR 85 100 100 12 8 H60-0,1 H95-0,1 Y8-0,1 M M-0,1 Sampel Gambar 4.7 Diagram batang hasil pengujian film uji HFRR Beda halnya dengan dengan uji pelapisan film HFRR, semakin kecil koefisien friksi maka semakin kecil juga nilai wear scarnya yang mengindikasikan semakin bagus pelumas melapisi logam dalam satuan persen (%). Untuk sampel H60-0,1 dan H95-0,1 nilai persen (%) pelapisan film sampel cukup kecil secara berurut 12% dan 8%(Gambar 4.7). Sedangkan sampel M dan sampel M-0,1 memberikan hasil yang terbaik dengan nilai pelapisan film 100%. Berikut hasil uji HFRR ditampilkan dalam bentuk Tabel(Tabel 4.3). Tabel 4.3. Hasil pengujian HFRR KARAKTERISTIK Y8-0,1 H60-0,1 H95-0,1 M M-0,1 HFRR Film(%) 85 12 8 100 100 Wear scar (µm) 224,0 371,0 400,5 167,5 96,0 Coefficient Friction 0,125 0,177 0,175 0,124 0,122 Pelapisan film terlihat pada Gambar 4.8, dengan stabil berada pada bagian atas terdapat 2 sampel yang menunjukan grafik sedemikian yang menunjukan pelapisan film sebesar 100% yaitu terlihat pada sampel M dan M-0,1. Sedangkan untuk sampel Y8-0,1 membutuhkan waktu sekitar 40 menit agar terjadi pelapisan yang konstan 100%, tetapi besar pelapisan rata-rata dari awal hingga akhir pengujian sampel Y8-0,1 sebesar 85%(Tabel 4.3). Untuk sampel H60-0,1 dan H95-0,1 sifat pelapisan film pada pelumas masih tergolong kecil hal ini dilihat dari grafik warna hijau dan ungu yang berada dibagian bawah dan tidak stabil.

Gambar 4.8 Gabungan grafik pelapisan film uji HFRR Pada Gambar 4.9 terlihat di akhir pengujian sampel Y8-0,1 berada di bagian terbawah lebih rendah dari sampel M dan M-0,1. Hal ini menunjukan koefisien gesek sampel Y8-0,1 menurun walaupun di awal pengujian koefisien gesekanya lebih tinggi dibandingkan sampel M dan M-0,1. Untuk sampel M dan M-0,1 memiliki koefisien gesek cukup stabil dari awal pengujian hingga akhir. Sedangkan untuk sampel H60-0,1 dan H95-0,1 menunjukkan koefisien gesek yang tidak stabil dan paling besar dari ke tiga sampel lainya. Profil uji HFRR sampel H60-0,1(Lampiran 5), H95-0,1(Lampiran 6), Y8-0,1(Lampiran 7), M(Lampiran 8), M-0,1(Lampiran 9).

Gambar 4.9 Gabungan grafik koefisien gesekan uji HFRR

BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Berdasarkan data dan analisa percobaan karakterisasi sifat perlindungan keausan pelumas SAE 10W-30 dengan penambahan nano aditif MoS 2 sebagai pemodifikasi gesekan, dapat disimpulkan bahwa: 1. Penambahan aditif MoS 2. Konsentrasi nano aditif MoS 2 ke dalam pelumas SAE 10W-30 berpengaruh terhadap karakteristik dan koefisien gesekan dan perlindungan keausanya. 2 surfaktan SDS sebesar 0,2%wt. 3. Hasil ujiscar diameterpelumas SAE 10W-30 dengan penambahan aditif MoS 2 paling optimum sebesar 0,1%wtdan sebesar 0,26 mm, hasil uji HFRR wearscarsebesar 96 µm danbesar koefisien gesekn pelumas sebesar 0,122. 4. Hasil uji four-ballscar diameter memperlihatkan bahwa aditif MoS2memberikan perbaikan sekitar 16% terhadap karakteristik perlindungan keausan pelumas SAE 10W-30. 5.1 Saran 1. Sebaiknya peneliti selanjutnya memakai surfaktan berbeda berdasarkan teori yang tepat yang dapat membuat nano aditif MoS 2 stabil parmanen. 2. Sebaiknya penelitian selanjutnya melakukan perhitungan secara teori untuk menentukan berat konsentrasi (%wt) yang optimum penambahan nano aditif MoS2 dan surfaktan SDS sesuai dengan besar dan bentuk materialnya.