Wilda Zakiah 1), Amun Amri 2), Ahmad Fadli 2) 1) Mahasiswa Jurusan Teknik Kimia 2) Dosen JurusanTeknik Kimia

dokumen-dokumen yang mirip
STUDI AWAL FABRIKASI DYE SENSITIZED SOLAR CELL (DSSC) DENGAN EKSTRAKSI DAUN BAYAM SEBAGAI DYE SENSITIZER DENGAN VARIASI JARAK SUMBER CAHAYA PADA DSSC

Logo SEMINAR TUGAS AKHIR. Henni Eka Wulandari Pembimbing : Drs. Gontjang Prajitno, M.Si

Logo SEMINAR TUGAS AKHIR. Ana Thoyyibatun Nasukhah Pembimbing : Drs. Gontjang Prajitno, M.Si

PREPARASI KOATING TiO 2 PADA DYE-SENSITIZED SOLAR CELL (DSSC) BERBASIS MELASTOMA MALABATHRICUM

Arinil Haq (1), Amun Amri (2), Ahmad Fadli (2)

BAB III METODE PENELITIAN

BAB I PENDAHULUAN Latar Belakang Masalah

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. Listrik merupakan kebutuhan esensial yang sangat dominan kegunaannya

commit to user BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN. Tahapan penelitian ini secara garis besar ditunjukkan oleh Gambar 3.1. Preparasi sampel. Pembuatan pasta ZnO dan TiO2

Studi Eksperimental Pengaruh Intensitas Cahaya terhadap Performa DSSC (Dye Sensitized Solar Cell) dengan Ekstrak Buah dan Sayur sebagai Dye Sensitizer

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB III METODE PENELITIAN

2 PEMBUATAN DAN KARAKTERISASI NANOPARTIKEL TITANIUM OXIDE (TiO 2 ) MENGGUNAKAN METODE SOL-GEL

JURNAL SAINS DAN SENI POMITS Vol. 1, No.2, (2013) X 1

PERFORMA SEL SURYA TERSENSITASI ZAT PEWARNA (DSSC) BERBASIS ZnO DENGAN VARIASI TINGKAT PENGISIAN DAN BESAR KRISTALIT TiO 2 SKRIPSI

VARIASI KECEPATAN PUTAR DAN WAKTU PEMUTARAN SPIN COATING

FABRIKASI SEL SURYA PEWARNA TERSENSITISASI (SSPT) DENGAN MEMANFAATKAN EKSTRAK ANTOSIANIN UBI JALAR UNGU (Ipomoea batatas L)

PREPARASI DYE SENSITIZED SOLAR CELL (DSSC) MENGGUNAKAN EKSTRAK ANTOSIANIN UBI JALAR UNGU (Ipomoea batatas L.)

BAB I PENDAHULUAN. 1.1 Latar Belakang

PEMANFAATAN EKSTRAK ANTOSIANIN KELOPAK BUNGA ROSELLA (Hibiscus Sabdariffa) SEBAGAI SENSITIZER DALAM PEMBUATAN DYE SENSITIZED SOLAR CELL (DSSC)

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) F-7

SEL SURYA FOTOELEKTROKIMIA DENGAN MENGGUNAKAN NANOPARTIKEL PLATINUM SEBAGAI ELEKTRODA COUNTER GROWTH

BAB I PENDAHULUAN. energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan

Sintesis dan Karakterisasi Dye Sensitized Solar Cells (DSSC) dengan Sensitizer Antosianin dari Bunga Rosella

BAB III METODOLOGI PENELITIAN

METODELOGI PENELITIAN. Penelitian ini akan dilakukan di Laboratorium Kimia Anorganik-Fisik Universitas

III. METODE PENELITIAN

Karakterisasi Ekstrak Antosianin Ubi Jalar Ungu (Ipomoea batatas L) sebagai Fotosensitiser pada Sel Surya Pewarna Tersensitisasi

BAB I PENDAHULUAN Latar Belakang Mariya Al Qibriya, 2013

BAB 1 PENDAHULUAN Latar Belakang

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

Fabriksi Dye Sensitized Solar Cells(DSSC)Mengunakan Ekstraksi Bahan-bahan Organik Alam Celosia Argentums dan Lagerstromia sp

BAB IV HASIL DAN PEMBAHASAN

SEL SURYA BERBASIS TITANIA SEBAGAI SUMBER ENERGI LISTRIK ALTERNATIF

BAB III METODOLOGI PENELITIAN. A. Metode Penelitian

PEMANFAATAN EKSTRAK ANTOSIANIN KOL MERAH (Brassica oleracea var) SEBAGAI DYE SENSITIZED DALAM PEMBUATAN PROTOTIPE SOLAR CELL(DSSC)

PERFORMANSI SEL SURYA YANG DIHASILKAN THE EFFECT OF INSERTION OF IRON METALSON TITANIA ACTIVE LAYERTO THE MORPHOLOGICAL STURCTURE AND RESISTANCE OF

4 FABRIKASI DAN KARAKTERISASI SEL SURYA HIBRID ZnO-KLOROFIL

BAB I PENDAHULUAN. Krisis energi saat ini yang melanda dunia masih dapat dirasakan terutama di

DYE - SENSITIZED SOLAR CELLS (DSSC) MENGGUNAKAN PEWARNA ALAMI DARI EKSTRAK KOL MERAH DAN COUNTER ELECTRODE BERBASIS KOMPOSIT TiO2-GRAFIT

KONSENTRASI PELARUT ETANOL TERHADAP VOLTASE DYE SENSITIZED SOLAR CELL

SINTESIS DAN KARAKTERISASI DYE SENSITIZED SOLAR CELL (DSSC) DENGAN SENSITIZER ANTOSIANIN DARI BUNGA ROSELLA (HIBISCUS SABDARIFFA)

F- 1. PENGARUH PENYISIPAN LOGAM Fe PADA LAPISAN TiO 2 TERHADAP PERFORMANSI SEL SURYA BERBASIS TITANIA

SINTESIS DAN KARAKTERISASI NANOPARTIKEL TITANIUM DIOKSIDA (TiO 2 ) MENGGUNAKAN METODE SONOKIMIA

Sintesa Titanium dioxide (TiO 2 ) untuk Dye-Sensitized Solar Cell dengan Antosianin Bunga Rosella (Hibiscus sabdariffa)

BAB I PENDAHULUAN. Sebagai negara berkembang yang kaya akan radiasi matahari yang tinggi,

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

PEMBUATAN PROTOTIPE DYE SENSITIZED SOLAR CELL(DSSC) DENGAN MEMANFAATKAN EKSTRAK ANTOSIANIN STRAWBERRY

Pengaruh Konsentrasi Ruthenium (N719) sebagai Fotosensitizer dalam Dye-Sensitized Solar Cells (DSSC) Transparan

KESTABILAN SEL SURYA DENGAN FOTOSENSITIZER EKSTRAK ZAT WARNA KULIT JENGKOL (Pithecellobium lobatum Benth.)

BAB III METODE PENELITIAN

STUDI AWAL FABRIKASI DYE SENSITIZED SOLAR CELL

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION

SKRIPSI DELOVITA GINTING

PENGARUH VARIASI KONSENTRASI KLOROFIL TERHADAP DAYA KELUARAN DYE-SENSITIZED SOLAR CELL (DSSC)

BAB I PENDAHULUAN. Sebagian besar sumber energi yang dieksploitasi di Indonesia berasal dari energi fosil berupa

VARIASI TEKNIK DEPOSISI LAPISAN TiO 2 UNTUK MENINGKATKAN EFISIENSI DYE-SENSITIZED SOLAR CELL

BAB II DASAR TEORI 2.1 PHOTOVOLTAIC Efek Photovoltaic

PENGARUH PENAMBAHAN ASAM BORAT (H3BO3) TERHADAP HASIL KARAKTERISASI NANOKRISTAL TiO2. Abstrak. Abstract

BAB II TINJAUAN PUSTAKA

PROGRAM STUDI DIPLOMA III TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA 2013 commit to user

III. PROSEDUR PERCOBAAN. XRD dilakukan di Laboratorium Pusat Survey Geologi, Bandung dan

EKSTRAK KULIT BUAH MANGGIS (Garcinia mangostana L.) SEBAGAI DYE SENSITISER ALAMI PADA DYE SENSITIZED SOLAR CELL

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) ( X Print) B-15

HASIL DAN PEMBAHASAN. Gambar 11. Rangkaian pengukuran karakterisasi I-V.

Bab III Metodologi Penelitian

LAPORAN TUGAS AKHIR PEMBUATAN GELAS TRANSPARAN FTO SEBAGAI BAHAN BAKU SEL SURYA

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metoda eksperimen.

2 SINTESIS DAN KARAKTERISASI NANOSTRUKTUR ZnO

KAREKTARISASI FABRIKASI DYE SENSITIZED SOLAR CELL (DSCC) PADA TiO 2 FASE ANATASE DAN RUTILE

Pengaruh Penggunaan Elektrolit Gel Terhadap Arus dan Tegangan DSSC Prototipe DSSC Ekstrak Kulit Manggis (Garcinia Mangostana L

BAB III METODOLOGI PENELITIAN

BAB III METODE PENELITIAN

JURNAL SAINS DAN SENI ITS Vol. 4, No.1, (2015) ( X Print)

4 Hasil dan Pembahasan

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah metode eksperimen yang dilakukan di

Bab III Metodologi Penelitian

Pengaruh Temperatur dan Waktu Putar Terhadap Sifat Optik Lapisan Tipis ZnO yang Dibuat dengan Metode Sol-Gel Spin Coating

LIGHT SCATTERING LAYER PADA DYE SENSITIZED SOLAR CELL (DSSC)

BAB I PENDAHULUAN Latar Belakang Masalah Sel surya generasi pertama berbahan semikonduktor slikon (Si) yang

J. Sains Dasar (1) 1-7

SINTESIS SEL SURYA TERSENSITISASI PEWARNA (SSTP) EKSTRAK ANTOSIANIN BUAH DELIMA (Punica granatum) DENGAN METODE SOL-GEL-SPIN COATING

LAPORAN TUGAS AKHIR PEMBUATAN SEL SURYA BERBASIS PEWARNA DENGAN METODE SPRAY COATING

VARIASI RASIO TiO 2 ANATASE DAN RUTILE TERHADAP KINERJA DYE-SENSITIZED SOLAR CELL (DSSC)

STRUKTUR DAN SIFAT OPTIK LAPISAN TIPIS TiO 2 (TITANIUM OKSIDA) YANG DIHASILKAN DENGAN MENGGUNAKAN METODE ELEKTRODEPOSISI

Gravitasi Vol. 15 No. 1 ISSN:

III. METODE PENELITIAN. Penelitian telah dilaksanakan selama tiga bulan, yaitu pada bulan September 2012

I. PENDAHULUAN. kimia yang dibantu oleh cahaya dan katalis. Beberapa langkah-langkah fotokatalis

OPTIMALISASI DYE SENSITIZED SOLAR CELL (DSSC) BERBAHAN TITANIUM DIOKSIDA DENGAN KONFIGURASI TIPE MONOLITIK

OPTIMIZATION OF TiO 2 SOLAR CELL FABRICATION USING SPIN COATING METHOD AND SOAKING IN RED DRAGON FRUIT DYE

BAB V. HASIL DAN LUARAN YANG DICAPAI

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

METODOLOGI PENELITIAN

Optimasi Parameter Sintesis Nanopartikel TiO 2 untuk Dye Sensitized Solar Cell

Jurnal Keteknikan Pertanian Tropis dan Biosistem Vol. 3 No. 3, Oktober 2015,

BAB III METODOLOGI PENELITIAN. Mulai. Persiapan alat dan bahan. Meshing AAS. Kalsinasi + AAS. Pembuatan spesimen

Transkripsi:

Pembuatan Prototip Dye Sensitized Solar Cell (DSSC) Berbasis Zat Warna Buah Senduduk (Melastoma Malabathricum L.) : Pengaruh Suhu Sintering TiO2 dan Konsentrasi Elektrolit Wilda Zakiah 1), Amun Amri 2), Ahmad Fadli 2) 1) Mahasiswa Jurusan Teknik Kimia 2) Dosen JurusanTeknik Kimia Laboratorium Material dan Korosi Jurusan Teknik Kimia S1, Fakultas Teknik, Universitas Riau Kampus Bina Widya Km 12,5 Simpang Baru, Panam, Pekanbaru 28293 Email : zakiahwilda@gmail.com ABSTRACT Increasing demand of energy consumption enforces the development of alternative energy source to solve the world energy crisis. Dye Sensitized Solar Cell (DSCC) is a promising alternative for solar cell application of future generation which is based in semiconductors that utilizes photoelectrochemical phenomenon as basic principle to generate electricity. This research tries to make DSSC prototype with dye from melastome fruit (Melastoma Melabathricum L.). The examined variables are TiO2 sintering temperature at 300 o C, 350 o C, 400 o C, and electrolyte concentration 0.025M, 0.05M and 0.075M of iodine. On the first step, the dye was made by diluting 20 gr of melastome fruit in aquadest, methanol, and acetic acid. Next, the coating of TiO2 by solving TiO2 powder in ethanol and deposited on spin coater and sintered by using furnace. Then the making of carbon electrode, making of electrolyte, and finally characterization of DSSC. UV-Vis spectroscopy examination result showed that melastome fruit contains anthocyanin that was proved from absorbance on wavelength of 515 nm. DSSC voltage examination showed that the higher TiO2 sintering temperature and electrolyte concentration, then the voltage generated was higher as well. The highest voltage was showed on sample with iodine electrolyte concentration of 0,075 M which is 2,385 Volt/cm 2. Morphollogy test showed that TiO2 coating has porous structure with equal particle dispersion on every increment of TiO2 sintering temperature. XRD examination showed that the coating is in anatase phase and adhesion test showed that DSSC with highest voltage has adhesivity of 3B (Good). Key Word : dye sensitized solar cell (dssc), dye, electrolyte, tio2 1. Pendahuluan Manusia memiliki ketergantungan yang tidak terbatas terhadap energi. Hal ini terbukti dari permintaan masyarakat global terhadap energi yang meningkat tiga kali lipat sejak tahun 1950 [Abat dkk, 2013]. Menurut survey yang dilakukan oleh Profesor Ricards Smalley menyatakan bahwa masalah energi akan menjadi masalah terbesar yang dihadapi manusia hingga 50 tahun mendatang. Sampai saat sekarang ini, total kebutuhan energi di seluruh dunia diperkirakan mencapai 10 Terra Watt (setara dengan 3 x 10 20 Joule/ tahun) dan diprediksi jumlah ini akan terus meningkat hingga mencapai 30 Terra Watt pada tahun 2030. Sementara total energi matahari yang sampai di permukaan bumi adalah 2,6 x 10 24 Joule setiap tahunnya. Salah satu cara untuk memanfaatkan radiasi panas dan cahaya yang dipancarkan matahari adalah dengan teknologi sel surya atau sel photovoltaic. Photovoltaic adalah suatu teknologi sel surya yang mentransfer radiasi matahari atau energi cahaya matahari menjadi energi listrik dengan menggunakan panel photovoltaic, dalam hal ini menggunakan Poly Cristallyne Jom FTEKNIK Volume 3 No. 1 Februari 2016 1

Sillicon sebagai material semikonduktor photo cell [O Regan dan Gratzel, 1991]. Namun, karena teknologi fotovoltaic ini biaya produksinya masih cukup tinggi, Profesor Michael Gratzel dan Brian O Regan pada tahun 1991 di École Polytechnique Fédérale de Lausanne, Swiss mengembangkan suatu teknologi sel surya berbasis zat warna tersensitasi (Dye Sensitized Solar Cells). Dye Sensitized Solar Cells (DSSC) adalah sel surya fotoelektrokimia yang menggunakan elektrolit sebagai medium transport muatan untuk mengkonversi cahaya matahari menjadi energi listrik. Efisiensi konversinya telah mencapai 10-11% [Abat dkk, 2013]. Pada DSSC, dye berfungsi sebagai donor elektron yang menyebabkan timbulnya ruang saat molekul dye terkena sinar matahari. Ketika molekul dye terkena sinar matahari, elektron dye tereksitasi dan masuk ke daerah tereduksi yaitu film titanium dioksida [Prasetyowati, 2012]. Elektroda kerja pada DSSC merupakan kaca yang sudah dilapisi oleh TiO2 yang telah terabsorbsi oleh dye, yang mana TiO2 berfungsi sebagai collector elektron. Struktur nano pada TiO2 memungkinkan dye yang teradsorpsi lebih banyak sehingga menghasilkan proses absorbsi cahaya yang lebih efisien. Pada elektron pembanding dilapisi katalis berupa karbon untuk mempercepat reaksi redoks pada elektrolit. Pasangan redoks yang umumnya dipakai yaitu I - /I 3- (iodide/triiodide) [Abat dkk, 2013]. Dye (zat pewarna) yang akan teradsorpsi pada permukaan semikonduktor merupakan zat pewarna yang berfungsi sebagai penyerap (absorbsi) cahaya matahari untuk menghasilkan elektron. Dye yang banyak digunakan dan mencapai efisiensi tertinggi yaitu jenis ruthenium complex. Namun dye jenis ini cukup sulit untuk disintesa dan ruthenium kompleks komersil berharga sangat mahal. Alternatif lain dengan menggunakan dye dari buahbuahan dan tumbuhan, khususnya dye antosianin. Antosianin ini yang menyebabkan warna merah dan ungu pada banyak buah dan bunga [Brouilard, 1988 dalam Kristiana dkk, 2012]. Antosianin buah senduduk dapat digunakan sebagai dye dalam pembuatan DSSC yang hingga saat ini belum ditemukan dye dari ekstrak senduduk sebagai dye dalam pembuatan DSSC. Semakin tinggi suhu sintering TiO2 dan konsentrasi elektrolit yang diberikan, maka akan semakin besar pula tegangan listrik yang dihasilkan oleh DSSC. Hal ini juga dibuktikan dari hasil uji morfologi lapisan TiO2 yang persebaran partikel yang merata dengan peningkatan suhu sintering TiO2. Uji adhesi juga menunjukan daya ikat coating terbaik pada suhu yang lebih tinggi. 2. Metode Penelitian Bahan yang digunakan yaitu sebagai berikut; kaca fluorine tin oxide (FTO), TiO2 (MERCK), etanol absolut, metanol, serbuk Kalium Iodida (KI), serbuk Iodine, aquadest, lilin dan biji Senduduk (Melastoma malabathricum L.) yang didapat dari lingkungan sekitar Universitas Riau. Alat Alat-alat yang digunakan pada penelitian ini yaitu gelas beker 25 dan 100 ml, spin coater, micropipette, kaca arloji, mortar, batang pengaduk, gelas ukur 100 ml, magnetic stirrer, pipet ukur 5 ml, hot plate, kertas saring, neraca analitik, multimeter digital, kertas saring, gelas piala dan furnace Pada penelitian ini buah senduduk yang digunakan sebanyak 20 gram, perendaman dye selama 24 jam, komposisi pelarut pasta TiO2 menggunakan pelarut etanol absolut (1:8), katalis karbon dengan menggunakan lilin, ukuran kaca 2,5 x 2,5 cm, sumber cahaya LED dan matahari sedangkan variasi nya adalah temperatur sintering TiO2 300, 350 dan 400 serta konsentrasi elektrolit 0,025M, 0,05M dan 0,075M I2 Pada tahapan prosesnya, buah senduduk ditimbang sebanyak 20 gram kemudian dihancurkan menggunakan mortar dan alu sehingga menjadi serbuk. Serbuk senduduk tadi dilarutkan dengan aquadest 52 ml, metanol 40 ml, dan asam Jom FTEKNIK Volume 3 No. 1 Februari 2016 2

Absorbansi asetat 8 ml. Kemudian ekstrak yang telah dicampurkan tersebut disaring dengan kertas saring agar diperoleh larutan dye nya saja [Maddu dkk, 2007]. Pembuatan pasta TiO2 di atas kaca FTO dengan teknik spin coating. Pasta TiO2 dibuat dengan melarutkan 1 gr serbuk TiO2 dalam 8 ml etanol. Pasta tersebut distirrer selama 30 menit dengan kecepatan putar 300 rpm, agar larutan homogen. [Yulika dkk, 2014], pasta TiO2 kemudian dideposisi pada kaca FTO. Sebanyak 100 μl pasta TiO2 ditetesi diatas sisi konduktif kaca FTO yang sudah diletakkan diatas mesin spin coater. Spin coating dilakukan dengan putaran 300 rpm selama 30 detik dan 1000 rpm selama 30 detik. Selanjutnya kaca FTO yang telah terdeposisi pasta TiO2 disintering dengan suhu yang bervariasi yaitu 300, 350 dan 400 masingmasing selama 15 menit. Elektroda pembanding yang digunakan pada penelitian ini adalah berupa kaca FTO dengan permukaan konduktif yang dilapisi oleh karbon. Karbon yang digunakan adalah karbon yang dihasilkan dari pembakaran menggunakan lilin. Kaca FTO dibakar dengan lilin selama ±2 menit sampai karbon merata disisi kaca konduktif FTO. Pembuatan larutan elektrolit dibuat dengan perbandingan konsentrasi garam alkali iodida 0,025 M, 0,05 M dan 0,075 M I2. Pembuatan elektrolit 0,025 M I2 dibuat dengan memasukkan sebanyak 0,83 gr KI (0,5 M) dilarutkan dalam 10 ml aquadest. Kemudian sebanyak 0,063 gr I2 (0,025 M) dicampurkan dalam larutan KI dan aquadest, lalu diaduk hingga homogen. Pembuatan elektrolit 0,05 M I2 dibuat dengan memasukkan sebanyak 0,83 gr KI (0,5 M) dilarutkan dalam 10 ml aquadest. Kemudian sebanyak 0,127 gr I2 (0,05 M) dicampurkan dalam larutan KI dan aquadest, lalu diaduk hingga homogen. Pembuatan elektrolit 0,075 M I2 dibuat dengan memasukkan sebanyak 0,83 gr KI (0,5 M) dilarutkan dalam 10 ml aquadest. Kemudian sebanyak 0,19 gr I2 (0,075 M) dicampurkan dalam larutan KI dan aquadest tadi, lalu diaduk hingga homogen. Selanjutnya, DSSC dirakit sehingga membentuk sebuah struktur sandwich dan kemudian diuji kelistrikannya untuk mencari nilai tegangan tertinggi dengan menggunakan multimeter digital yang dihubungkan ke DSSC yang disinari lampu LED kemudian dengan sinar matahari setiap 10 detik selama 2,5 menit 3. Hasil dan Pembahasan 3.1 Pengujian Absorbansi Dye Buah Senduduk (Melastoma Malabathricum L.) Pengukuran spektrum absorbansi dilakukan dengan cara mengambil larutan dye yang telah diekstrak. Setelah itu larutan dye diukur dengan spektrofotometer UV- VIS pada panjang gelombang 400-600 nm. Hasil pengujian dan puncak-puncak absorbansi terhadap panjang gelombang (nm) dapat dilihat pada Gambar 1. 0,12 0,1 0,08 0,06 0,04 0,02 0 Larutan Dye Tanpa Dye (Blanko) Panjang Gelombang (nm) Gambar 1. Hubungan Absorbansi Buah Senduduk dan Pengekstrak yang digunakan terhadap Panjang Gelombang Jom FTEKNIK Volume 3 No. 1 Februari 2016 3

Tegangan (v/cm 2 ) Berdasarkan Gambar 1 dapat dilihat bahwa spektrum serapan tertinggi dari ekstrak buah senduduk adalah pada panjang gelombang (λ max) yaitu 515 nm. Panjang gelombang maksimum yang dihasilkan pada pengujian absorbansi dye buah senduduk ini masuk dalam range panjang gelombang pigmen antosianin karena panjang gelombang dari pigmen antosianin berkisar antara 515-545 nm [Sutanto, 2012]. Dengan demikian berarti ekstrak antosianin sangat signifikan dan dominan menyerap spektrum (500-550 nm), ini bersesuaian dengan warna ekstrak yang didapat yaitu berwarna kemerahan [Maddu dkk, 2007]. Hal tersebut mengindikasikan bahwa larutan dye buah senduduk memang terbukti memiliki pigmen antosianin sehingga dapat digunakan sebagai zat pewarna yang tersensititasi pada pembuatan prototip dye sensitized solar cell (DSSC). Dari Gambar 2 dapat dilihat bahwa tegangan keluaran yang dihasilkan Dye Sensitized Solar Cell (DSSC) secara umum meningkat seiring dengan meningkatnya konsentrasi elektrolit dan suhu sintering TiO2. Tegangan tertinggi ditunjukkan oleh DSSC yang dibuat dengan suhu sintering TiO2 400 dengan konsentrasi elektrolit 0,075 M yaitu senilai 2,385 V/cm 2. Untuk membuktikan hasil ini, selanjutnya dilakukan uji Scanning Electron Microscopy (SEM) untuk melihat pengaruh suhu sintering TiO2 terhadap morfologinya seperti terlihat pada Gambar 3. A 3.2 Pengujian Karakterisasi Keluaran Dye Sensitized Solar Cell (DSSC) Pengujian karakterisasi keluaran DSSC ditandai dengan adanya tegangan yang dihasilkan oleh DSSC. Berikut gambar grafik tegangan DSSC berdasarkan sumber cahaya dengan pengaruh suhu sintering dan konsentrasi elektrolit. B 5,00 µm 2,5 2,0 1,5 Matahari, sintering 400 C LED, sintering 400 C Matahari, sintering 350 C LED, sintering 350 C Matahari, sintering 300 C LED, sintering 300 C C 5,00 µm 1,0 0,5 0,0 0 0,025 0,05 0,075 Konsentrasi Elektrolit (M I2) Gambar 2. Grafik Perbandingan Tegangan yang Dihasilkan pada DSSC 5,00 µm Gambar 3. Hasil Foto SEM TiO2 pada suhu Sintering (a) 300, (b) 350 dan (c) 400 dengan perbesaran 10.000 x Jom FTEKNIK Volume 3 No. 1 Februari 2016 4

Intensitas Hasil foto SEM pada Gambar 3 menunjukkan morfologi dari lapisan nanopori Titanium Dioksida (TiO2) setelah mengalami perlakuan sintering dengan suhu yang berbeda-beda. Dari hasil foto SEM TiO2 (Gambar 3c) menunjukkan bahwa lapisan TiO2 membentuk struktur berpori dengan partikel berukuran nano yang persebaran partikelnya lebih merata pada setiap penambahan suhu sintering TiO2. Struktur TiO2 berpori yang terbentuk merupakan karakteristik yang penting dalam pembuatan DSSC. Hal ini dikarenakan molekul dye dari ekstrak buah senduduk akan ter-penetrasi lebih dalam melalui pori-pori tersebut. Pada foto SEM terlihat interkoneksi antar partikel dan penyatuan beberapa partikel (agregat) yang baik sehingga jalur difusi atau konduksi elektron menjadi lebih baik dan cepat. Adanya partikel dan agregat memiliki peran yang penting sebagai situs dalam mengabsorpsi dye dan interaksi foton dari cahaya matahari. Terlihat jelas pada temperatur 400, permukaan TiO2 memiliki persebaran agregat yang lebih merata bila dibandingkan dengan lapisan TiO2 pada temperatur 300 dan 350. Pasangan redoks dalam elektrolit juga merupakan faktor penting terhadap tegangan yang dihasilkan DSSC, karena pasangan redoks ini berperan sebagai media pembawa muatan antara fotoelektroda dan elektroda pembanding untuk proses regenerasi elektron pada dye. Pada Gambar 2 juga dapat dilihat bahwa semakin besar konsentrasi elektrolit maka semakin besar pula tegangan yang dihasilkan oleh DSSC. Semakin tinggi konsentrasi elektrolit maka semakin besar jumlah pasangan redoks sehingga semakin besar tegangan yang dihasilkan. Tegangan tertinggi diperoleh pada konsentrasi elektrolit 0,075M Iodine. 3.3 Analisis X-Ray Diffractometer (XRD) Pengujian XRD pada penelitian ini menggunakan mesin PANalytical system terhadap lapisan Titanium Dioksida (TiO2) yang telah terdeposisi di bagian sisi kaca bagian yang konduktif. Pengukuran difraksi sinar-x dilakukan pada rentang sudut 10-100 dan panjang gelombang CuKα sebesar 1.540598 Å. Pola XRD menunjukkan bahwa kristal TiO2 yang terbentuk pada suhu sintering 300, 350 dan 400 adalah tetragonal (kartu 96-900- 9087). Karakterisasi XRD dapat dilihat pada Gambar 4 berikut 33000 30000 27000 24000 21000 18000 15000 12000 9000 6000 3000 0 A B C 0 10 20 30 40 50 60 70 80 90 100 2 θ Gambar 4. Grafik Karakterisasi XRD Lapisan TiO2 yang Disintering Pada Suhu (a) 300, (b) 350 dan (c) 400 Hasil interpretasi puncak-puncak pada data XRD diatas menunjukkan bahwa serbuk TiO2 yang disintering pada berbagai suhu antara 300 400 berfase anatase. Fase anatase mempunyai kemampuan fotoaktif yang lebih tinggi dibandingkan dengan fase rutile. Hal ini dikarenakan luas permukaan anatase lebih besar daripada rutile sehingga sisi aktif per-unit anatase lebih besar. Adanya fase anatase ini dapat meningkatkan tegangan DSSC yang dihasilkan dibandingkan dengan fase lainnya [Damayanti dkk, 2014]. Untuk melihat ukuran butir fase anatase yang terbentuk persamaan Scheerer (pers. I) dan data ditabelkan pada Tabel 1. Jom FTEKNIK Volume 3 No. 1 Februari 2016 5

D = 0,9 λ B cos θ... (1) Dimana ; λ adalah panjang gelombang radiasi (Å) B adalah Full Width at Half Maximum (rad) θ adalah sudut Bragg ( 0 ) D adalah jarak kisi kristal (Angstrom) Tabel 1. Ukuran Butir Fase Anatase Titanium Dioksida (TiO2) Dengan Variasi Suhu Sintering yang Dihitung dari Puncak Tertinggi A B Suhu Sintering FWHM (Rad) Ukuran Kristal (nm) 300 0,1378 2,3307 350 0,1378 2,3315 400 0,1378 2,3336 Komposisi Senyawa Antase 100% Antase 100% Antase 100% C Pada Tabel 1 terdapat kesamaan nilai dari ukuran kristal serbuk TiO2, tidak ditujukannya perbedaan nilai yang signifikan untuk setiap ukuran kristal dari TiO2 terhadap masing-masing variasi suhu sintering yang diberikan. Kesamaan ini disebabkan karena pembuatan awal dari serbuk TiO2 merupakan hasil buatan pabrik yang telah lebih dahulu diberikan temperatur yang lebih tinggi dibandingkan dengan variasi suhu sintering pada penelitian ini [Nadeak dan Susanti, 2012]. 3.4 Uji Sifat Adhesi Pengujian sifat adhesi dilakukan untuk mengetahui daya ikat coating TiO2 terhadap substrat kaca Fluorine-Tin Oxide (FTO). Pengujian dilakukan pada kaca yang telah di-coating TiO2 dengan variasi suhu sintering 300, 350 dan 400. Metode yang digunakan adalah ASTM D 3359 Cross Hatch Cutter. Gambar 5 menampilkan hasil analisa daya ikat coating TiO2 dengan substrat kaca FTO berdasarkan variasi suhu sintering yang diberikan Gambar 5. Analisa Lapisan Coating TiO2 dengan substrat Kaca FTO pada variasi Suhu Sintering (a) 300, (b) 350 dan (c) 400 Berdasarkan hasil analisa lapisan coating TiO2 dengan substrat kaca FTO dengan menggunakan Elcometer 107 Cross Hatch Cutter terlihat bahwa daya ikat coating terbaik yaitu pada suhu 400 dengan predikat daya rekatnya yaitu 3B (bagus) daripada variasi suhu sintering lainnya. Daya ikat coating pada suhu 300 menunjukkan predikat 1B (buruk) sedangkan pada suhu 350 menunjukkan predikat 2B (cukup). Hal ini menandakan bahwa semakin tinggi suhu sintering TiO2 maka daya ikat coating antara TiO2 dan substrat akan semakin baik, karena tujuan dari sintering adalah supaya molekul oksida saling mengikat sempurna dengan substrat nya. Jom FTEKNIK Volume 3 No. 1 Februari 2016 6

4. Kesimpulan Prototip Dye Sensitized Solar Cell (DSSC) menggunakan dye dari buah senduduk (Melastoma Malabathricum L.) telah berhasil dibuat. DSSC mampu mengkonversi energi surya menjadi energi listrik dengan tegangan tertinggi sebesar 2,385 volt/cm 2. Hal ini membuktikan bahwa semakin tinggi suhu sintering TiO2 dan konsentrasi elektrolit maka tegangan yang dihasilkan semakin tinggi pula. Hasil tegangan terbaik pada variasi suhu sintering 400 dan konsentrasi elektrolit iodine 0,075M. Untuk pengujian morfologi menunjukkan persebaran partikel yang semakin merata dengan meningkatnya suhu sintering TiO2. Uji XRD menunjukkan bahwa serbuk TiO2 berfase anatase dengan ukuran kristal 2,3336 nm pada temperatur 400 dan uji adeshi menampilkan daya ikatcoating terbaik yaitu pada suhu 400 dengan predikat 3B (bagus). Daftar Pustaka Abat, A., Rakhmania C. D. dan Basudewi F. M. 2013. DSSC (Dye- Sensitized Solar Cell) Sebagai Sumber Energi Alternatif Ramah Lingkungan. Skripsi. Universitas Brawijaya. Malang. Damayanti, R., Hardeli dan Sanjaya, H. 2014. Preparasi Dye Sensitized Solar Cell (DSSC) Menggunakan Ekstrak Antosianin Ubi Jalar Ungu (Ipomoea Batatas L.). Jurnal Sainstek Vol. 4 No. 2: Kristiana, H.D., Setyaningrum A. Dan Lia U.K. 2012. Ekstraksi Pigmen Antosianin Buah Senggani (MelastomaMalabathricum L.) dengan Variasi Jenis Pelarut. Maddu,A. Zuhri, M., dan Irmansyah, 2000. Penggunaan Ekstrak Antosianin Kol Merah Sebagai Fotosentizer Pada Sel Surya TiO2 Nanokristal Tersentisasi Dye. Skripsi. Institut Pertanian Bogor. Bogor.Jurnal Teknologi Pangan. Vol 1: 105-109. Nadeak, S, M, R dan Susanti, D. 2012. Variasi Temperatur dan Waktu Tahan Kalsinasi terhadap Unjuk Kerja Semikonduktor TiO2 sebagai Dye Sensitized Solar Cell (DSSC) dengan Dye dari Ekstrak Buah Naga Merah. Jurnal Teknik ITS Vol.1 No. 1: 1-3. O regan dan Gratzel, M. 1991. A Low-cost High Efficiency Solar Cell Based On Dye-Sensitizer Colloidal TiO2 Films Nature. Journal of Photochemistry and Photobiology. Vol.353: 325. Prasetyowati, R. 2012. Sel Surya Berbasis Titania sebagai Sumber Energi Listrik Alternatif. Skripsi. Universitas Negeri Yogyakarta. Yogyakarta. Sumaryanti. 2011. Karakterisasi optik dan listrik larutan klorofil Spirulina Sp. Sebagai Dye Sensitized Solar Cell. Fakultas Matematika dan Ilmu Pengetahuan Alam. Skripsi. Universitas Sebelas Maret. Surakarta. Sutanto, C.S. 2012. Pemanfaatan Ekstrak Bunga Kecombrang (Nicolaia Speciosa, Horan) sebagai Pewarna Alami pada Makanan Cenil. Skripsi. Universitas Atma Jaya Yogyakarta Yulika, D., Kusumandari dan Suryana, R. 2014. Pelapisan TiO2 diatas FTO dengan Teknik Slip Casting dan Spin Coating untuk Aplikasi DSSC. Jurnal Fisika Indonesia. Vol.18 No.53: 66-69 Jom FTEKNIK Volume 3 No. 1 Februari 2016 7