HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

dokumen-dokumen yang mirip
SINTESIS PADUAN CoCrMo DENGAN VARIASI KANDUNGAN NITROGEN HEZTI WIRANATA

KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN

BAB III METODOLOGI PENELITIAN

Tujuan Penelitian Perumusan Masalah Hipotesis TINJAUAN PUSTAKA Paduan CoCrMo

BAB IV HASIL DAN PEMBAHASAN. hal ini memiliki nilai konduktifitas yang memadai sebagai komponen sensor gas

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

BAB IV HASIL PENELITIAN

Gambar 3.1 Diagram alir penelitian

BAB IV HASIL DAN PEMBAHASAN Hasil Pengujian Densitas Abu Vulkanik Milling 2 jam. Sampel Milling 2 Jam. Suhu C

Bab IV Hasil dan Pembahasan

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2

BAB IV HASIL DAN PEMBAHASAN. Foto Mikro dan Morfologi Hasil Pengelasan Difusi

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan

BAB IV HASIL PENELITIAN dan PEMBAHASAN

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei-Agustus 2012 di Instalasi Elemen

BAB IV PROSES PERLAKUAN PANAS PADA ALUMINIUM

BAB IV PEMBAHASAN. BAB IV Pembahasan 69

Uji Kekerasan Sintesis Sintesis BCP HASIL DAN PEMBAHASAN Preparasi Bahan Dasar

BAB III METODOLOGI PENELITIAN

PENGARUH PENAMBAHAN NIKEL (Ni) TERHADAP STRUKTUR KRISTAL, MORFOLOGI, DAN KEKERASAN PADA PADUAN Al (2-x) FeNi (1+x)

HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

PENGARUH TEMPERATUR DAN NITROGEN HASIL HOT ROLLING TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK PADUAN Co-Cr- Mo UNTUK APLIKASI BIOMEDIS

BAB I PENDAHULUAN. ragam, oleh sebab itu manusia dituntut untuk semakin kreatif dan produktif dalam

Bab IV. Hasil dan Pembahasan

IV. HASIL DAN PEMBAHASAN. 2, 50/50 (sampel 3), 70/30 (sampel 4), dan 0/100 (sampel 5) dilarutkan dalam

BAB IV HASIL DAN PEMBAHASAN

BAB III PERCOBAAN DAN HASIL PERCOBAAN

KAJIAN TRANSFORMASI FASA SINTESIS PADUAN KOBALT SEBAGAI IMPLAN TULANG PROSTHESIS MELALUI METODE METALURGI SERBUK

PENGARUH NITROGEN TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO PADUAN IMPLAN Co-28Cr-6Mo-0,4Fe-0,2Ni YANG MENGANDUNG KARBON HASIL PROSES HOT ROLLING

4 Hasil dan Pembahasan

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

BAB III PERCOBAAN DAN HASIL PERCOBAAN

BAB III METODE PENELITIAN

3.5 Karakterisasi Sampel Hasil Sintesis

Gambar 4. Pemodelan terjadinya proses difusi: (a) Secara Interstisi, (b) Secara Substitusi (Budinski dan Budinski, 1999: 303).

BAB III TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

BAB IV PERHITUNGAN & ANALSIS HASIL KARAKTERISASI XRD, EDS DAN PENGUKURAN I-V MSM

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

BAB I PENDAHULUAN. logam menjadi satu akibat adanya energi panas. Teknologi pengelasan. selain digunakan untuk memproduksi suatu alat, pengelasan

BAB II PENGELASAN SECARA UMUM. Ditinjau dari aspek metalurgi proses pengelasan dapat dikelompokkan

BAB IV ANALISA DAN PEMBAHASAN

PENGERASAN PERMUKAAN BAJA ST 40 DENGAN METODE CARBURIZING PLASMA LUCUTAN PIJAR

BAB V HASIL DAN PEMBAHASAN. Pada penelitian ini akan dibahas tentang sintesis katalis Pt/Zr-MMT dan

1 BAB I PENDAHULUAN. Salah satu industri yang cukup berkembang di Indonesia saat ini adalah

Optimalisasi Sifat Mekkanik Paduan Kobalt Sebagai Implan Tulang Prosthesis Melalui Proses Sintering.

BAB IV HASIL DAN PEMBAHASAN. a) b) c) d)

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen

BAB III METODE PENELITIAN. 3.1 Diagram Alir Penelitian Pada penelitian ini langkah-langkah pengujian mengacu pada diagram alir pada Gambar 3.1.

BAB IV DATA DAN ANALISA

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

Sintesis dan Karakterisasi Paduan Kobalt Akibat Variasi Arus dengan Metode Peleburan

ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS

BAB IV HASIL DAN PEMBAHASAN

4.1 ANALISA STRUKTUR MIKRO

Gambar 4.2 Larutan magnesium klorida hasil reaksi antara bubuk hidromagnesit dengan larutan HCl

BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG

HASIL DA PEMBAHASA 100% %...3. transparan (Gambar 2a), sedangkan HDPE. untuk pengukuran perpanjangan Kemudian sampel ditarik sampai putus

BAB III METODOLOGI PENELITIAN

Alasan pengujian. Jenis Pengujian merusak (destructive test) pada las. Pengujian merusak (DT) pada las 08/01/2012

HASIL DAN PEMBAHASAN. Hasil Tahap Persiapan. Hasil Nitridasi. Pengukuran Ketebalan

Metodologi Penelitian

PENGARUH VARIASI WAKTU TAHAN PADA PROSES NORMALIZING TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO BAJA AISI 310S PADA PRESSURE VESSEL

PENGARUH PENAMBAHAN KOMPOSISI Al PADA PADUAN Fe-Ni-Al

BAB IV HASIL DAN PEMBAHASAN. sifat kimia pada baja karbon rendah yang dilapisi dengan metode Hot Dip

pendinginan). Material Teknik Universitas Darma Persada - Jakarta

BAB III METODE PENELITIAN

BAB IV ANALISA DAN PEMBAHASAN. Pembuatan spesimen dilakukan dengan proses pengecoran metode die

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan

BAB IV HASIL DAN PEMBAHASAN

STUDI PENAMBAHAN MgO SAMPAI 2 % MOL TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK KERAMIK KOMPOSIT Al 2 O 3 ZrO 2

BAB II TINJAUAN PUSTAKA

IV. HASIL DAN PEMBAHASAN. Tabel 7. Hasil Analisis Karakterisasi Arang Aktif

BAB IV HASIL PENELITIAN

Gambar 4.1 Hasil anodizing aluminium 1XXX dengan suhu elektrolit o C dan variasi waktu pencelupan (a) 5 menit. (b) 10 menit. (c) 15 menit.

BAB IV HASIL DAN PEMBAHASAN

Bab III Metodologi Penelitian

BAB IV HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu

BAB I PENDAHULUAN 1.1 Latar Belakang

07: DIAGRAM BESI BESI KARBIDA

Pengaruh Suhu Sintering terhadap Morfologi dan Sifat Mekanik Membran Rapat Asimetris CaTiO 3

3 Metodologi penelitian

Bab IV Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. A. Deskripsi Data

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S

ANALISIS SIFAT FISIS DAN MEKANIS PADA PELAPISAN KOMPOSIT MENGGUNAKAN TIMAH PUTIH

BAB V DIAGRAM FASE ISTILAH-ISTILAH

HASIL DAN PEMBAHASAN. Hasil XRD

BAB II KERANGKA TEORI

Transkripsi:

10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi sesuai pada Tabel 2 (halaman 7). Masing-masing sampel dengan massa 10 gram tersebut kemudian dikompaksi dengan tekanan 4000 psi sehingga dihasilkan empat buah pelet dengan tebal 1 cm dan diameter 1 cm. Masing-masing pelet hasil kompaksi selanjutnya dilebur secara bergantian menggunakan arc melting furnace pada temperatur sekitar 3000 o C selama 6 menit dalam lingkungan gas argon. Paduan logam dipastikan dapat terbentuk pada temperatur tersebut karena titik lebur Co sebesar 1410 o C, Cr sebesar 1903 C, dan Mo sebesar 2610 C. Selanjutnya sampel tersebut didinginkan hingga temperatur kamar. Pada proses ini dihasilkan empat sampel (pelet) dengan ukuran diameter 1,5 cm dan tebal 0,5 cm. Proses homogenisasi dilakukan pada temperatur 1250 o C selama 2,5 jam. Paduan CoCrMo yang telah melalui proses homegenisasi kemudian ditempa pada temperatur 1250 o C. Selanjutnya setelah proses tempa, sampel kembali dipanaskan pada temperatur 1250 o C selama 30 menit untuk kemudian dilanjutkan dengan proses rolling pada temperatur tersebut. Proses pemanasan dan rolling dilakukan berulang kali hingga diperoleh ketebalan sampel 1 mm. Sampel yang sudah melalui proses rolling diperlihatkan pada Gambar 9. Sampel CoCrMo dengan kandungan 30% Cr mengalami transformasi fasa dari fasa ε (hcp) menjadi fasa γ (fcc). Adanya transformasi fasa kekristal kubik ini memberi peluang keberlangsungan proses difusi. 9 Paduan yang memiliki kisi kristal kubik memiliki kemampuan bentuk pengerjaan panas yang bagus. Akan tetapi hal ini berbeda dengan paduan yang masih mempunyai susunan atom-atom kristal heksagonal atau tetragonal yang apabila mengalami deformasi, mempunyai bidang slip yang tidak terarah. Akibatnya selama sampel dilakukan pengerjaan panas dan rolling mengalami keretakan seperti ditunjukkan pada Gambar 9.b dan 9.c. 9 Gambar 9 a. Foto CoCrMo hasil peleburan. b. Foto CoCrMO hasil forging dan rolling c. Foto CoCrMo hasil forging dan rolling yang sudah dibersihkan. Pada Gambar 9, bagian yang memiliki warna perak keabu-abuan merupakan permukaan paduan CoCrMo. Pada permukaan paduan CoCrMo (Gambar 9.a) terlihat bagian CoCrMo yang mengalami oksidasi setelah proses peleburan sehingga menimbulkan warna kehijauan. Hal ini dikarenakan kondisi vakum lingkungan yang tidak optimum sehingga udara lain (O 2, CO 2, H 2 O, dan lainya) masih berada pada ruang sampel. Hasil karakterisasi XRD Paduan CoCrMo yang dibuat dengan variasi kandungan massa nitrogen (0; 0,035 ; 0,06 ; 0,1 gram) menghasilkan intensitas pola difraksi sinar-x yang tidak sama. Pola XRD tersebut diperlihatkan pada Halaman 12. Hasil XRD menunjukkan bahwa fasa sampel tidak homogen yang ditandai dengan hadirnya lebih dari satu fasa dalam paduan CoCrMo. Waktu homogenisasi yang kurang lama menyebabkan unsur-unsur pemadu tidak berdifusi secara sempurna sehingga kelarutannya tidak homogen. Berdasarkan pola difraksi yang

11 diperoleh, struktur kristal paduan CoCrMo mayoritas hadir dalam bentuk fasa γ, ε, dan σ. Persentase intensitas terbesar pada paduan ini adalah fasa γ yang memiliki struktur kristal fcc dengan puncak tertingginya berada pada kisaran sudut 2 : 43,36 o, 50,9 o, dan 74,12 o. Hasil ini sesuai dengan pola difraktogram paduan CoCrMo pada literatur (halaman 23), yaitu intensitas tertinggi terletak disudut 2 antara 40 o - 60 o. 6 Penambahan unsur nitrogen (N) pada paduan CoCrMo disamping dapat mengurangi fase ε (hcp) yang terbentuk juga dapat menstabilkan fase γ (fcc). 10 Seperti terlihat pada pola difraktogram Gambar 10 (halaman 12) fasa γ berstruktur kristal fcc menjadi semakin stabil ditandai dengan peningkatan intensitasnya. Tabel 4 berikut ini menunjukkan data peningkatan intensitas pada fasa γ seiring dengan penambahan N. Tabel 4. Intensitas fasa γ paduan CoCrMo dan parameter kisi untuk N antara 0% 1% N Parameter kisi 2θ Intensitas N = 0% N = 0,35% N = 0,6% N = 1% a = b = c = 3,63 Å a = b = c = 3,59 Å a = b = c = 3,63 Å a = b = c = 3,59 Å 43,36 o 86 50,90 o 27 74,12 o 13 43,75 o 137 50,90 o 29 74,10 o 22 43,95 o 140 50,45 o 27 74,16 o 15 43,80 o 134 50,65 o 29 74,15 o 17 Tabel 5. Intensitas fasa ε paduan CoCrMo dan parameter kisi N N = 0% N = 0,35% Parameter kisi a = b = 2,374 Å c = 3,944 Å a = b = 2,480 Å c = 4,158 Å N= 0,6% a = b = 2,580 Å c = 4,315 Å N= 1% a = b = 2,577 Å c = 4,323 Å 2θ 41,36 o 17 43,12 o 62 46,88 o 44 61,50 o 14 41,65 o 16 43,05 o 36 47,15 o 25 61,55 o 13 41,70 o 19 43,10 o 30 47,05 o 24 61,35 o 14 41,65 o 15 42,95 o 30 47,15 o 22 61,45 o 9 Intensitas Tabel 6. Intensitas fasa σ paduan CoCrMo dan parameter kisi N Parameter kisi 2θ Intensitas 42,34 o 19 N = 0% a = b = 8,7334 Å 43,48 o 83 c = 4,592 Å 46,12 o 23 48,02 o 13 N = 0,35% N = 0,6% N = 1% a = b = 8,822 Å c = 4,559 Å a = b = 8,812 Å c = 4,434 Å a = b = 8,743 Å c = 4,715 Å 42,20 o 19 46,25 o 30 48,05 o 13 42,25 o 14 46,55 o 27 48,35 o 10 42,60 o 17 46,25 o 12 48,15 o 11 Dengan semakin stabilnya fasa γ yang terbentuk maka semakin mudah sampel tersebut untuk dilakukan pengerjaan tempa. Parameter kisi dari fasa γ, ε, dan σ dicari dengan perhitungan menggunakan metode Cohen, dituliskan pada Lampiran 9 (halaman 28). Seiring dengan peningkatan intensitas fasa γ yang terbentuk, penambahan nitrogen dapat mengurangi pembentukan fasa ε dan fasa σ seperti ditunjukkan pada Tabel 5 dan Tabel 6 berikut ini:

12 a) b) c) Cr 2N d) Cr 2N 2θ Gambar10. Pola difraksi XRD CoCrMo (a) N=0%, (b) N=0,35%, (c) N=0,6%, (d) N=1%

13 Nilai parameter kisi yang diperoleh untuk masing-masing fasa mendekati nilai parameter kisi pada literatur (Lampiran 7.6, halaman 24). Nilai ketepatan nilai parameter kisi untuk masing-masing sampel ditunjukkan pada Tabel 7 berikut ini: Tabel 7. Nilai ketepatan parameter kisi Parameter kisi N (%) γ ε σ a=b= 96,04% a=b= 99,13% N = 0 98,60% c= 94,86% c= 99,29% N = 0,35 99,72% N = 0,6 98,60% N = 1 99,72% a=b= 99,76% c= 99,99% a=b= 95,73% c= 96,21% a=b= 95,83% c= 96,02% a=b= 99,86% c= 99,98% a=b= 99,97% c= 97,25% a=b= 99,24% c= 96,61% Hasil uji korosi menggunakan potensiostat Pengukuran uji korosi menggunakan potensiostat dilakukan berdasarkan analisa Tafel. Tegangan yang digunakan pada uji korosi paduan CoCrMo adalah dalam rentang -20 V hingga 20 V. Data hasil uji korosi pada penelitian ini dituliskan pada Lampiran 10 (halaman 35). Dari data hasil tersebut dapat diperlihatkan bahwa sampel CoCrMo dengan variasi kandungan nitrogen memiliki potensial korosi yang berbeda sehingga mempengaruhi laju korosinya. Diagram laju korosi ditunjukkan pada Gambar 11 berikut berikut ini: N=0% N=0,35% N=0,6% N=1% Gambar 11. Diagram laju korosi paduan CoCrMo. Sampel CoCrMo tanpa kandungan nitrogen menunjukkan tingkat korosi yang paling rendah dibandingkan dengan sampel dengan penambahan N yaitu sebesar 0,0025 mpy. Sementara sampel yang ditambahkan N menunjukkan nilai laju korosi yang berbeda dalam larutan Simulated Body Fluid. Untuk N = 0,35% memiliki laju korosi sebesar 0,0254 mpy, N=0,6% sebesar 0,0329 mpy dan N=1% memiliki laju korosi sebesar 0,0277 mpy. Pemanasan pada suhu 1250 o C selama 2,5 jam memungkinkan nitrogen tidak berdifusi dan larut kedalam paduan secara sempurna. Proses difusi tersebut memacu terjadinya pembentukan fasa Cr 2 N dalam paduan. Pembentukan fasa tersebut cenderung akan berdampak terhadap peningkatan laju korosi. Nitrogen yang dapat bereaksi pada suhu tinggi cenderung berikatan dengan Cr sehingga paduan mengalami defisiensi Cr sehingga menurunkan ketahanan korosi paduan CoCrMo. 21 Hasil pengukuran laju korosi pada Gambar 11 menunjukkan adanya perbedaan nilai laju korosi yang relatif kecil pada sampel dengan penambahan nitrogen terkecuali pada sampel dengan kandungan nitrogen sebesar 0,6% yang memiliki selisih cukup besar jika dibandingkan dengan sampel lainnya. Penyimpangan pada sampel dengan kandungan nitrogen 0,6% dikarenakan kondisi sampel yang diuji mengalami keretakan yang cukup besar diujung permukaannya. Penyebab keretakan disamping karena masih terdapatnya fasa ε dan σ juga karena pada saat peleburan berlangsung kemungkinan masih terdapat gas-gas tertentu larut dalam lelehan paduan CoCrMo, seperti misalnya gas hidrogen yang memiliki kelarutan tinggi dalam paduan. Ketika terjadi pemadatan, kehadiran gas hidrogen menyebabkan terjadinya celah atau rongga, sehingga padatan paduan yang dihasilkan mengandung porositas yang banyak. Akibatnya densitas paduan yang dihasilkan pun menjadi rendah dan pada akhirnya meningkatkan nilai laju korosi. 13 Permukaan paduan yang tidak

14 rata menyebabkan distribusi ion-ion SBF dalam pengukuran korosi juga tidak merata karena terpusat pada sisi yang mengalami keretakan tersebut. Morfologi permukaan yang kasar (retak) memperbesar gaya gesek dengan cairan SBF yang digunakan dalam pengukuran laju korosi ini. Gaya gesek yang semakin besar berpeluang mengakibatkan lapisan oksida yang lepas semakin besar. 13 Namun nilai laju korosi pada seluruh sampel CoCrMo tersebut dapat diterima karena masih berkisar antara 0,0025 0,0329 mpy. Berdasakan standar laju korosi untuk aplikasi medis Eropa suatu material dapat diimplan jika laju korosinya dibawah 0,457 mpy. Seluruh spesimen paduan kobalt hasil sintesis ini masih memenuhi standar tersebut. Hasil pengukuran dengan hardness vickers tester Paduan CoCrMo sebelum ditambahkan unsur N memiliki kekerasan sebesar 492 kgf/mm 2. Penambahan N sebesar 0,35%; 0,6%; dan 1% yang diikuti dengan proses perlakuan panas pada paduan CoCrMo mengakibatkan peningkatan kekerasan sebesar 599,67 kgf/mm 2, 633,67 kgf/mm 2, 689,33 kgf/mm 2. Nilai kekerasan diperoleh dengan mengukur diagonal rata-rata dari bekas injakan indentasi dengan alat uji kekerasan vickers, kekerasan maksimal yang dapat dicapai dengan beban 5 kgf adalah sebesar 689,33 kgf/mm 2 pada paduan CoCrMo dengan kandungan nitrogen sebesar 1%. Berdasarkan data hasil uji kekerasan pada penelitian ini yang dituliskan pada Lampiran 11 (halaman 35) dapat diperlihatkan bahwa sampel CoCrMo mengalami peningkatan kekerasan seperti disajikan pada diagram (Gambar 12) berikut ini : kgf/mm 2 N=0% N=0,35% N=0,6% N=1% Gambar 12. Diagram kekerasan paduan CoCrMo pada variasi kandungan N Hasil uji kekerasan dengan menggunakan vickers tersebut menunjukkan bahwa kekerasan paduan CoCrMo meningkat seiring dengan penambahan unsur nitrogen, hal ini disebabkan oleh adanya atom nitrogen yang berdifusi secara interstisi mengisi kekosongan atom Co dimana nomor atom N lebih kecil dari nomor atom Co. Difusi atom N ke dalam sampel dipengaruhi oleh temperatur sampel. Dengan naiknya temperatur yang mencapai 1250 o C maka jarak antara atom-atom sampel (sasaran) akan lebih besar sehingga kemungkinan difusi atom-atom nitrogen lebih mudah dan daya kelarutan material target lebih besar. Hasil difusi intertisi atom N pada CoCrMo ditunjukkan pada Gambar 13 berikut ini: Gambar 13. Hasil difusi nitrogen dalam paduan CoCrMo

15 Atom nitrogen yang ditambahkan dapat menjadikan paduan menjadi lebih padat dan keras. Masuknya atom nitrogen kedalam kisi atom logam memerlukan energi tambahan yang dapat diperoleh dari panas furnace. Energi tambahan ini diperlukan karena jarak antara atom yang normal diantara atom-atom yang besar berubah ketika atom interstisi bergerak ke atom interstisi sebelahnya. 22 Peningkatan kekerasan juga disebabkan karena menurunnya mikroporositas akibat pemampatan pada pengerjaan tempa. 9 Hasil pengamatan struktur mikro. Hasil pengamatan menggunakan mikroskop optik pada permukaan sampel paduan CoCrMo dengan perlakuan panas pada suhu 1250 C selama 2,5 jam diperlihatkan pada Gambar 14. Pemanasan yang diberikan menyebabkan atom-atom dapat bergerak dan berdifusi mengatur letaknya. Pada saat logam berpadu satu sama lain dan kemudian mengalami pendinginan maka akan terbentuk nukleasi yang berubah menjadi kristal dan selanjutnya membentuk butiran. 23 b c a d Gambar 14. Foto permukaan optik perbesaran 20x. (a) N=0% (c) N=0,6% (b) N=0,35%(d) N=1%