HASIL DAN PEMBAHASAN A. ANALISIS GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR

dokumen-dokumen yang mirip
METODOLOGI PENELITIAN

TINJAUAN PUSTAKA. Katalis. Gambar 1. Persamaan Reaksi Transesterifikasi

KAJIAN PEMURNIAN GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR MENGGUNAKAN ASAM NITRAT, SULFAT, DAN FOSFAT. Oleh FANANI F

Desikator Neraca analitik 4 desimal

LAMPIRAN A DATA PENGAMATAN

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut

LAMPIRAN A DATA PENGAMATAN. 1. Data Pengamatan Ekstraksi dengan Metode Maserasi. Rendemen (%) 1. Volume Pelarut n-heksana (ml)

HASIL DAN PEMBAHASAN

PERCOBAAN VII PEMBUATAN KALIUM NITRAT

HASIL DAN PEMBAHASAN A. Penelitian Pendahuluan (Pembuatan Biodiesel)

III. METODE PENELITIAN

4 Pembahasan Degumming

Bab III Pelaksanaan Penelitian

PETA KONSEP. Larutan Penyangga. Larutan Penyangga Basa. Larutan Penyangga Asam. Asam konjugasi. Basa lemah. Asam lemah. Basa konjugasi.

III. METODOLOGI PENELITIAN

BAB III RANCANGAN PENELITIAN

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut

kimia Kelas X LARUTAN ELEKTROLIT DAN NONELEKTROLIT K-13 A. Pengertian Larutan dan Daya Hantar Listrik

BAB 6. Jika ke dalam air murni ditambahkan asam atau basa meskipun dalam jumlah. Larutan Penyangga. Kata Kunci. Pengantar

BAB II TINJAUAN PUSTAKA

LEMBARAN SOAL 4. Mata Pelajaran : KIMIA Sat. Pendidikan : SMA Kelas / Program : XI IPA ( SEBELAS IPA )

BAHAN DAN METODE Bahan dan Alat Lingkup Penelitian Penyiapan Gliserol dari Minyak Jarak Pagar (Modifikasi Gerpen 2005 dan Syam et al.

BAB II TINJAUAN PUSTAKA

PENENTUAN KADAR KARBONAT DAN HIDROGEN KARBONAT MELALUI TITRASI ASAM BASA

METODE PENELITIAN Kerangka Pemikiran

Bab IV Hasil Penelitian dan Pembahasan

IV. HASIL DAN PEMBAHASAN

REAKSI SAPONIFIKASI PADA LEMAK

Rangkuman Materi Larutan Elektrolit dan Non elektrolit

KIMIa ASAM-BASA II. K e l a s. A. Kesetimbangan Air. Kurikulum 2006/2013

Lampiran 1. Prosedur analisis sifat fisikokimia minyak dan biodiesel. 1. Kadar Air (Metode Oven, SNI )

METODOLOGI A. BAHAN DAN ALAT 1. Bahan a. Bahan Baku b. Bahan kimia 2. Alat B. METODE PENELITIAN 1. Pembuatan Biodiesel

Bab IV Hasil dan Pembahasan

III. METODE PENELITIAN

Soal-Soal. Bab 7. Latihan Larutan Penyangga, Hidrolisis Garam, serta Kelarutan dan Hasil Kali Kelarutan. Larutan Penyangga

IV. HASIL DAN PEMBAHASAN

BAB 7. ASAM DAN BASA

kimia ASAM-BASA III Tujuan Pembelajaran

LARUTAN PENYANGGA (BUFFER)

LOGO TEORI ASAM BASA

Larutan penyangga dapat terbentuk dari campuran asam lemah dan basa

B. Struktur Umum dan Tatanama Lemak

LAMPIRAN 1 DATA BAHAN BAKU

Jurnal Flywheel, Volume 3, Nomor 1, Juni 2010 ISSN :

CH 3 COONa 0,1 M K a CH 3 COOH = 10 5

KULIAH KE- 4(11) KESUBURAN TANAH DAN PEMUPUKAN

L A R U T A N _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA

BAB II TINJAUAN PUSTAKA

SOAL KIMIA 1 KELAS : XI IPA

BAB IV HASIL DAN PEMBAHASAN. Pengujian kali ini adalah penetapan kadar air dan protein dengan bahan

TEORI ASAM BASA Secara Umum :

Kelas : XI IPA Guru : Tim Guru HSPG Tanggal : Senin, 23 Mei 2016 Mata pelajaran : Kimia Waktu : WIB

BAB III METODE PENELITIAN. Penelitian ini akan dilakukan pada bulan Januari Februari 2014.

HASIL DAN PEMBAHASAN

Proses Pembuatan Biodiesel (Proses Trans-Esterifikasi)

Bab IV Hasil dan Pembahasan

Lampiran 1. Prosedur Karakterisasi Komposisi Kimia 1. Analisa Kadar Air (SNI ) Kadar Air (%) = A B x 100% C

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

Kadar air % a b x 100% Keterangan : a = bobot awal contoh (gram) b = bobot akhir contoh (gram) w1 w2 w. Kadar abu

BAB IV HASIL DAN PEMBAHASAN

BAB III METODA PENELITIAN. yang umum digunakan di laboratorium kimia, set alat refluks (labu leher tiga,

Bab VI Larutan Elektrolit dan Nonelektrolit

Hubungan koefisien dalam persamaan reaksi dengan hitungan

IV. HASIL DAN PEMBAHASAN

TUGAS KIMIA SMA NEGERI 1 BAJAWA TITRASI ASAM BASA. Nama : Kelas. Disusun oleh:

Kimia Study Center - Contoh soal dan pembahasan tentang hidrolisis larutan garam dan menentukan ph atau poh larutan garam, kimia SMA kelas 11 IPA.

PENGARUH KONSENTRASI NaOH DAN Na 2 CO 3 PADA SINTESIS KATALIS CaOMgO DARI SERBUK KAPUR DAN AKTIVITASNYA PADA TRANSESTERIFIKASI MINYAK KEMIRI SUNAN

Presentasi Powerpoint Pengajar oleh Penerbit ERLANGGA Divisi Perguruan Tinggi. Bab17. Kesetimbangan Asam-Basa dan Kesetimbangan Kelarutan

BAB II TINJAUAN PUSTAKA

PRODUKSI BIODIESEL DARI CRUDE PALM OIL MELALUI REAKSI DUA TAHAP

Reaksi dalam larutan berair

LARUTAN PENYANGGA DAN HIDROLISIS

BAB III METODOLOGI PENELITIAN

wanibesak.wordpress.com 1

HASIL ANALISIS KEBENARAN KONSEP PADA OBJEK PENELITIAN. Penjelasan Konsep

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR

SMA NEGERI 6 SURABAYA LARUTAN ASAM & BASA. K a = 2.M a. 2. H 2 SO 4 (asam kuat) α = 1 H 2 SO 4 2H + 2

Gambar Rangkaian Alat pengujian larutan

D. 2 dan 3 E. 2 dan 5

PROSES TRANSESTERIFIKASI MINYAK BIJI KAPUK SEBAGAI BAHAN DASAR BIODIESEL YANG RAMAH LINGKUNGAN

kimia ASAM-BASA I Tujuan Pembelajaran

2/14/2012 LOGO Asam Basa Apa yang terjadi? Koma Tulang keropos Sesak napas dll

Chapter 7 Larutan tirtawi (aqueous solution)

BAB II TINJAUAN PUSTAKA

Sintesis Metil Ester dari Minyak Goreng Bekas dengan Pembeda Jumlah Tahapan Transesterifikasi

Teori Asam-Basa Arrhenius

BAB IV HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

K13 Revisi Antiremed Kelas 11 Kimia

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

PENGARUH STIR WASHING, BUBBLE WASHING, DAN DRY WASHING TERHADAP KADAR METIL ESTER DALAM BIODIESEL DARI BIJI NYAMPLUNG (Calophyllum inophyllum)

LARUTAN PENYANGGA (BUFFER)

MODUL KIMIA SMA IPA Kelas 10

PENGARUH KATALISIS TERHADAP TETAPAN LAJU

LAPORAN PRAKTIKUM KIMIA ANALISIS BAHAN MAKANAN ANALISIS KADAR ABU ABU TOTAL DAN ABU TIDAK LARUT ASAM

BAB 1 PENDAHULUAN 1.1 Latar Belakang

Preparasi Sampel. Disampaikan pada Kuliah Analisis Senyawa Kimia Pertemuan Ke 3.

4.2. Kadar Abu Kadar Metoksil dan Poligalakturonat

IV. HASIL DAN PEMBAHASAN. Hasil analisis P-larut batuan fosfat yang telah diasidulasi dapat dilihat pada Tabel

Asam Basa dan Garam. Asam Basa dan Garam

Transkripsi:

IV. HASIL DAN PEMBAHASAN A. ANALISIS GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR Gliserol hasil samping produksi biodiesel jarak pagar dengan katalis KOH merupakan satu fase yang mengandung banyak pengotor. Hasil analisis gliserol ditunjukkan dalam Tabel 3. Tabel 3. Hasil Analisis Gliserol Hasil Samping Biodiesel Jarak Pagar Jenis Analisis Hasil ph 10,20 Kadar KOH 2,39 % Kadar Sabun (dalam K-oleat) 7,82 % Kadar Gliserol 40,48 % Kadar Zat Menguap (105 0 C) 46,81 % Kadar Abu 5,16 % Uji ph menunjukkan bahwa gliserol hasil samping biodiesel jarak pagar mempunyai ph sebesar 10,20. Tingkat derajat keasaman (ph) gliserol menunjukkan sifatnya yang basa. Hal ini disebabkan kandungan KOH dan sabun kalium. Ionisasi KOH dan sabun kalium dalam air akan menghasilkan ion hidroksil (OH ) sebagaimana ditunjukkan Gambar 3. Sabun kalium merupakan garam yang terbentuk dari asam lemak dengan basa kalium. Ionisasi sabun kalium dalam air menghasilkan ion hidroksil dan bersifat basa karena ion H + hasil ionisasi molekul air berikatan dengan ion R COO - menghasilkan R COOH sebagaimana ditunjukkan Gambar 3. KOH (aq) K + (aq) + OH - (aq) R COOK (aq) K + (aq) + R COO - (aq) R COO - (aq) + H 2 O (l) R COOH (aq) + OH - (aq) Gambar 3. Ionisasi Basa Kuat dan Garam Basa dalam Air (Chang, 2005) Kandungan KOH dalam gliserol berasal dari katalis basa kalium yang digunakan dalam transesterikasi. Sebagai katalis, basa kalium tidak ikut bereaksi menjadi produk, hanya mempercepat terjadinya jalannya reaksi transesterifikasi. Katalis tersisa bersama hasil samping lainnya yaitu gliserol. 17

Kandungan sabun kalium berasal dari reaksi penyabunan asam lemak bebas dan KOH (Gambar 4), dan penyabunan trigliserida dan KOH dengan adanya air (Gambar 5). Karena itu, keberadaan air dalam bahan mentah maupun yang terbentuk akibat reaksi penyabunan asam lemak bebas menghambat transesterifikasi trigliserida dan metanol menghasilkan metil ester. Kadar sabun dinyatakan dalam bentuk kalium oleat dengan bobot molekul 320,56 g/mol. Hal ini diambil karena asam oleat merupakan bagian terbanyak di antara asam lemak-asam lemak yang dikandung minyak jarak pagar sebagaimana ditunjukkan dalam Tabel 4. R COOH KOH + R COOK + H 2 O Asam Lemak Kalium Hidroksida Sabun Gambar 4. Reaksi Penyabunan Asam Lemak Bebas H 2O R 1 COOK + 3 KOH R 2 COOK + R 3 COOK Trigliserida Kalium Hidroksida Sabun Gambar 5. Reaksi Penyabunan Trigliserida Gliserol Tabel 4. Asam Lemak Penyusun Minyak Jarak Pagar Asam Lemak Rumus Molekul Struktur Nzikou et al. (2009) % Bobot Akbar et al. (2009) Gübitz et al. (1999)* Miristat C 14 H 28 O 2 14:0 0,1 0 0,1 Palmitat C 16 H 32 O 2 16:0 15,63 14,2 14,1 15,3 Palmitoleat C 16 H 30 O 2 16:1 1,01 0,7 0 1,3 Margarat C 17 H 34 O 2 17:0 0,1 Stearat C 18 H 36 O 2 18:0 5,78 7,0 3,7 9,8 Oleat C 18 H 34 O 2 18:1 40,10 44,7 34,3 45,8 Linoleat C 18 H 32 O 2 18:2 37,51 32,8 29,0 44,2 Linolenat C 18 H 30 O 2 18:3 0,2 0 0,3 Arakidat C 20 H 40 O 2 20:0 0,2 0 0,3 Behenat C 22 H 44 O 2 22:0 0 0,2 *Diacu dalam Syam et al. (2009) 18

Hasil analisis gliserol hasil samping biodiesel jarak pagar menunjukkan kadar zat menguap pada 105 0 C yang sangat tinggi (46,81%). Hal ini disebabkan gliserol masih banyak mengandung metanol yang tidak bereaksi. Kadar zat menguap (105 0 C) menunjukkan kandungan metanol dan air. Metanol berlebih ditambahkan dalam transesterifikasi untuk menggeser reaksi ke kanan menghasilkan lebih banyak metil ester. Sebagian besar metanol yang tidak bereaksi larut dalam gliserol karena kelarutan metanol dalam gliserol dan air lebih tinggi daripada kelarutan metanol dalam metil ester. Perbandingan kadar metanol dalam metil ester dengan gliserol sekitar 4:6 (Gerpen et al., 2004b). Karena itu, Gerpen et al. (2004b) menyarankan distilasi metanol dilakukan sebelum pemisahan antara metil ester dan gliserol kemudian mengumpankan kembali metanol dalam esterifikasitransesterifikasi. Kadar abu gliserol hasil samping biodiesel jarak pagar sebesar 5,16%. Kadar abu menyatakan kandungan zat mineral atau anorganik. Kandungan abu dalam gliserol berasal dari kandungan kalium berupa basa dan sabun dalam gliserol. Kadar abu menjadi salah satu parameter penting untuk menilai kualitas gliserol. Hal ini disebabkan gliserol merupakan bahan organik yang terdiri atas atom C, H, dan O (dengan rumus kimia C 3 H 8 O 3 ) yang menjadi gas CO 2 dan uap H 2 O ketika bahan organik diabukan. Salah satu tujuan pemurnian gliserol adalah menurunkan kadar abu gliserol. B. NETRALISASI KOH DAN PEMECAHAN SABUN K Kalium (berupa sabun dan basa) larut dalam gliserol, metanol, dan air. Untuk memisahkannya, kalium direaksikan dengan asam mineral membentuk garam kalium, asam lemak bebas, dan air. Reaksi netralisasi KOH dan pemecahan sabun K ditunjukkan oleh Gambar 6 dan Gambar 7. Asam sulfat merupakan asam kuat diprotik (mempunyai dua atom hidrogen yang dapat terionisasi). Kecilnya (negatif) nilai pka asam sulfat menunjukkan bahwa ionisasi menjadi ion H + 2- dan SO 4 berlangsung dengan baik. Garam hasil reaksi dengan basa K adalah K 2 SO 4 (KHSO 4 diabaikan). Asam nitrat termasuk asam kuat monoprotik. Ionisasi asam sulfat dan asam 19

nitrat ditunjukkan oleh Gambar 8. Reaksi dengan basa K menghasilkan garam KNO 3. 2KOH + H 2 SO 4 K 2 SO 4 + 2H 2 O KOH + HNO 3 KNO 3 + H 2 O KOH + H 3 PO 4 KH 2 PO 4 + H 2 O 2KOH + H 3 PO 4 K 2 HPO 4 + H 2 O 3KOH + H 3 PO 4 K 3 PO 4 + 3H 2 O Gambar 6. Reaksi Netralisasi Basa Kalium 2R-COOK + H 2 SO 4 K 2 SO 4 + 2R-COOH R-COOK + HNO 3 KNO 3 + R-COOH R-COOK + H 3 PO 4 KH 2 PO 4 + R-COOH 2R-COOK + H 3 PO 4 K 2 HPO 4 + 2R-COOH 3R-COOK + H 3 PO 4 K 3 PO 4 + 3R-COOH Gambar 7. Reaksi Pemecahan Sabun HNO 3(aq) H + (aq) + NO 3 - (aq) pka = -1,3 H 2 SO 4 (aq) H + (aq) + HSO 4 - (aq) pka 1 = -3 HSO 4 - (aq) H + (aq) + SO 4-2 (aq) pka 2 = 1,987 Gambar 8. Ionisasi Asam Nitrat dan Asam Sulfat (Goldberg et al., 2002; Kolthoff, 1959) H 3 PO 4 (aq) H + (aq) + H 2 PO 4 - (aq) pka 1 = 2,148 H 2 PO 4 - (aq) H + (aq) + HPO 4 - (aq) pka 2 = 7,198 HPO 4 - (aq) H + (aq) + HPO 4 - (aq) pka 3 = 12,35 Gambar 9. Ionisasi Asam Fosfat (Goldberg et al., 2002) Asam fosfat merupakan asam lemah poliprotik (mempunyai tiga atom hidrogen yang dapat terionisasi). Ionisasi atom hidrogen pada asam fosfat ditunjukkan oleh Gambar 9. Garam dari asam fosfat dan basa K dapat terbentuk dengan mengganti satu, dua, atau tiga ion H + dengan satu, dua, atau tiga ion K + menghasilkan garam KH 2 PO 4, K 2 HPO 4, atau K 3 PO 4 (Gambar 7). Dalam netralisasi basa dan pemecahan sabun K, garam kalium terbentuk dari 20

reaksi netralisasi basa dan sabun K dengan asam mineral sebagaimana ditunjukkan Gambar 6 dan Gambar 7. Netralisasi basa dan pemecahan sabun menghasilkan garam, air, dan asam lemak bebas. Kelarutan garam dalam gliserol dan metanol sangat rendah. Garam banyak mengendap dalam lapisan gliserol. Air dan sisa metanol lebih mudah larut dalam lapisan gliserol. Asam lemak bebas tidak larut dalam gliserol dan membentuk lapisan terpisah di atas lapisan gliserol. Sabun dapat menyebabkan terjadinya emulsi antara gliserol dan asam lemak bebas sehingga sulit dipisahkan. Pemisahan antara lapisan gliserol dan asam lemak bebas berlangsung sempurna setelah semua sabun dipecah menjadi garam dan asam lemak bebas. Hal ini menyebabkan gliserol harus bersifat asam atau mempunyai ph < 7. C. DERAJAT KEASAMAN (ph) GLISEROL Data hasil pengamatan ph terlampir pada Lampiran 5. Kurva hubungan jenis dan jumlah mmol asam mineral terhadap ph gliserol ditunjukkan pada Gambar 10. Reaksi asam mineral dalam gliserol menurunkan ph. Hal ini terjadi karena ion kalium dari basa dan sabun berikatan dengan ion nitrat, sulfat, dan fosfat membentuk garam. Ion OH - yang menyebabkan tingginya ph berikatan dengan H + dari asam mineral menghasilkan air. Gambar 10 menunjukkan bahwa perlakuan jenis asam mineral yang menghasilkan ph dari rendah ke tinggi secara berturut-turut adalah asam sulfat, asam nitrat, dan asam fosfat. Hal ini menunjukkan kekuatan asam dari ketiga jenis asam tersebut secara berturut-turut dari asam kuat ke asam lemah sesuai dengan nilai pka dari kecil ke besar (Gambar 8 dan 9). Gambar 11 dan Gambar 12 menunjukkan bahwa sebaran data hasil pengamatan nilai ph gliserol dapat dianggap mengikuti sebaran normal. Gambar 11 menunjukkan kecenderungan diagram bantang membentuk puncak di pusat sebaran. Gambar 12 menunjukkan plot residual terhadap peluang persentase sebaran normal yang mengikuti kecenderungan garis lurus dan sebagian besar residual yang lebih banyak terkumpul di sekitar nilai pusat 21

daripada di sekitar nilai ekstrim sebaran. Analisis sidik ragam dengan taraf nyata (α) 5% pada Lampiran 6 menunjukkan bahwa perlakuan jenis asam, jumlah mmol asam, dan interaksinya berpengaruh nyata terhadap ph gliserol yang dihasilkan (F hitung > F tabel ). 10.00 8.00 Linear Nilai ph Gliserol 6.00 4.00 4.50 H3PO4 H2SO4 HNO3 2.00 0.00 75.36 142.41 144.11 0 50 100 150 200 250 Jumlah mmol Asam / 200 g Bahan Gambar 10. Kurva Hubungan Jumlah mmol dan Jenis Asam dengan ph Gliserol Frekuensi 14 12 10 8 6 4 2 0-0.14-0.09-0.07-0.05-0.04-0.02-0.01 0.00 Residual 0.01 0.02 0.03 0.04 0.06 0.09 0.11 0.12 Gambar 11. Diagram Batang Residual Data Pengamatan ph 22

1.10 Peluang % Normal 0.90 0.70 0.50 0.30 0.10-0.10-0.30-0.15-0.10-0.05 0.00 0.05 0.10 0.15 Plot Residual Gambar 12. Plot Residual Data Pengamatan ph Penambahan asam sulfat menghasilkan kurva perubahan ph lebih cepat pada titik ekuivalen dibandingkan dengan kurva ph penambahan asam nitrat dan asam fosfat. Asam sulfat merupakan asam kuat, bereaksi dengan basa kalium yang juga merupakan basa kuat. Ini sesuai dengan kurva titrasi asam kuat terhadap basa kuat sebagaimana ditunjukkan Gambar 13. Asam nitrat dan asam fosfat termasuk asam yang lebih lemah dibandingkan dengan asam sulfat. Kurva penurunan ph yang dibentuk oleh penambahan asam nitrat dan asam fosfat sesuai dengan kurva titrasi basa kuat dengan asam lemah sebagaimana ditunjukkan oleh Gambar 14. Gambar 13. Kurva Titrasi Asam Kuat terhadap Basa Kuat (Sumber: http://cnx.org/content/m17137/latest/) 23

Gambar 14. Kurva Titrasi Asam Lemah terhadap Basa Kuat (Sumber: http://cnx.org/content/m17137/latest/) Gambar 15. Kurva Pengaruh Konsentrasi dalam Netralisasi Asam Basa Kuat (Sumber: http://basicchemistrylab.blogspot.com/2009/10/titration-of-strong-base-withstrong.html) Pengamatan terhadap pemisahan fase (Lampiran 11 13) menunjukkan pemisahan terjadi dengan baik pada ph < 7. Namun, masih terdapat sedikit busa ketika penyaringan. Nilai ph perlu diatur <5 untuk mencegah terbentuknya busa selama pemisahan (Yong et al., 2001b). Kocsisová dan Cvengroś (2006) menyatakan bahwa diperlukan ph 4,00 4,50 yang menghasilkan pemisahan yang baik antara lapisan gliserol dengan asam lemak. 24

Netralisasi basa dan pemecahan sabun menghasilkan garam, asam lemak bebas, dan air. Reaksi yang tidak sempurna akan menyisakan sabun yang membentuk emulsi antara gliserol, air, dan asam lemak bebas. Hal ini mempersulit pemisahan antara gliserol dengan asam lemak bebas. Selain itu, sabun menyebabkan terjadinya banyak busa selama penyaringan. Gambar 10 menunjukkan bahwa ph 4,50 terdapat pada kurva linear, baik pada penambahan asam sulfat, asam nitrat, maupun asam fosfat. Dengan interpolasi linear pada kurva-kurva tersebut (Lampiran 8), diperoleh bahwa diperlukan penambahan 75,36 mmol asam sulfat; 142,41 mmol asam nitrat; atau 144,11 mmol asam fosfat ke dalam 200 gram bahan gliserol untuk menghasilkan ph 4,50. Gambar 10 juga menunjukkan bahwa penurunan ph pada titik ekuivalen pada ketiga jenis asam terjadi terlalu curam dari ph 8 menjadi ph 1 (perlakuan asam sulfat) dan dari ph 6 menjadi ph 2. Titik ekuivalen adalah titik ketika OH - terlarut tepat dinetralkan oleh H + yang ditambahkan sehingga yang tersisa adalah kesetimbangan ionisasi pelarut. Dalam pelarut air, titik ekuivalen terjadi pada ph 7. Gambar 10 menunjukkan bahwa titik ekuivalen <7. Hal ini dapat disebabkan keberadaan gliserol dan metanol yang dominan dalam larutan. Alkohol bersifat lebih asam daripada air. Agar perubahan ph pada titik ekuivalen tidak terlalu cepat, hal ini dapat diatasi dengan penggunaan asam yang lebih lemah atau lebih encer sebagaimana ditunjukkan kurva netralisasi pada Gambar 15. D. KADAR GLISEROL Perlakuan netralisasi basa dan pemecahan sabun dengan asam mineral berhasil meningkatkan kadar gliserol. Data hasil pengamatan kadar gliserol terlampir pada Lampiran 5. Kurva hubungan jenis dan jumlah mmol asam terhadap kadar gliserol ditunjukkan pada Gambar 16. Gliserol biodiesel jarak pagar mempunyai kadar gliserol sebesar 40,48%. Kadar gliserol berhasil ditingkatkan sampai lebih dari 70%, bahkan mendekati 80% sebagaimana ditunjukkan Gambar 16. 25

Netralisasi basa dan pemecahan sabun (dengan penambahan asam mineral terhadap gliserol hasil samping produksi biodiesel) termasuk langkah awal dalam meningkatkan kemurnian gliserol kasar. Reaksi ini memisahkan gliserol dari basa dan sabun terlarut. Basa dinetralkan menjadi garam dan air. Sabun dipecah menjadi garam dan asam lemak bebas. Garam mengendap dalam gliserol karena kelarutannya rendah. Asam lemak bebas tidak larut dalam gliserol dan membentuk lapisan terpisah di atas lapisan gliserol. Terpisahnya asam lemak bebas dan garam kalium meningkatkan kadar gliserol secara drastis. 80 70 78.77 Kadar Gliserol (%) 60 50 H2SO4 HNO3 H3PO4 40 30 126 0 50 100 150 200 250 Gambar 16. Kurva Hubungan Jumlah mmol dan Jenis Asam dengan Kadar Gliserol Gambar 17 dan Gambar 18 menunjukkan bahwa sebaran data hasil pengamatan kadar gliserol dapat dianggap mengikuti sebaran normal. Gambar 17 menunjukkan kecenderungan diagram batang membentuk puncak di pusat sebaran. Gambar 18 menunjukkan plot residual terhadap peluang persentase sebaran normal yang mengikuti kecenderungan garis lurus dan sebagian besar residual yang lebih banyak terkumpul di sekitar nilai pusat daripada di sekitar nilai ekstrim sebaran. Jumlah mmol Asam / 200 g Bahan 26

2.5 2 Frekuensi 1.5 1 0.5 0-3.51-1.81-0.87-0.68-0.34-0.17-0.09 0.08 Residual 0.14 0.20 0.41 0.59 0.75 1.22 4.34 Gambar 17. Diagram Batang Residual Data Pengamatan Kadar Gliserol Peluang % Normal 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000-0.2000-0.4000-4.00-2.00 0.00 2.00 4.00 6.00 Residual Gambar 18. Plot Residual Data Pengamatan Kadar Gliserol Analisis sidik ragam dengan taraf nyata (α) 5% pada Lampiran 6 menunjukkan bahwa perlakuan jenis, jumlah mmol asam, dan interaksinya berpengaruh nyata terhadap kadar gliserol (F hitung > F tabel ). Kadar gliserol tertinggi dihasilkan pada perlakuan penambahan 126 mmol asam sulfat (kadar gliserol 77,98%; ph 1,40) atau 126 mmol asam fosfat (kadar gliserol 78,77%; ph 6,63). Hasil uji lanjut Duncan s (Lampiran 7) menunjukkan bahwa kadar gliserol kedua perlakuan tersebut berbeda nyata dengan perlakuan lain, dan tidak berbeda nyata antarkeduanya (kelompok Duncan F). Adapun di antara perlakuan asam nitrat, kadar gliserol tertinggi (kadar gliserol 70,97%; ph 6,74) diperoleh pada penambahan asam sejumlah 126 mmol. Kadar gliserol terbaik yang diperoleh masih di bawah kadar gliserol sesuai SNI 06-1564-1989 tentang Gliserol Kasar, yaitu minimum 80%. Untuk meningkatkan kadar gliserol, perlu dilakukan penguapan metanol (sekaligus 27

untuk mengambil kembali kelebihan metanol). Penguapan metanol pada suhu di atas 65 0 C mampu menghasilkan gliserol dengan kemurnian mencapai 85% (Diwani et al., 2009; Gerpen, 2005). Selain penguapan metanol, keasaman gliserol perlu diatur agar tepat pada ph 4,50 untuk memastikan bahwa semua sabun telah dipecah menjadi asam lemak bebas dan garam (Kocsisová dan Cvengroś, 2006) dan mencegah pembusaan (Ooi et al., 2001). Untuk memperoleh ph optimum tersebut, jumlah asam perlu diatur berdasarkan interpolasi pada kurva linear yang ditunjukkan Gambar 10. Asam sulfat perlu diatur antara 54 mmol (ph 8,63) sampai dengan 126 mmol (ph 1,40). Jumlah asam nitrat perlu diatur antara 126 mmol (ph 6,74) sampai dengan 162 mmol (ph 1,82). Jumlah asam fosfat perlu diatur antara 126 mmol (ph 6,63) sampai dengan 162 mmol (ph 2,39). Perbandingan Gambar 10 dan Gambar 16 menunjukkan bahwa penambahan asam berlebih dan asam kuat, selain menurunkan ph, dapat menurunkan kadar gliserol. Penurunan kadar gliserol dapat terjadi karena kerusakan terhadap gliserol akibat reaksi dehidrasi atau oksidasi. Gliserol dapat mengalami dehidrasi pada ph rendah menghasilkan akrolein atau propenal (Adkins dan Hartung, 1941; Hedtke, 1996) dengan reaksi yang ditunjukkan Gambar 19. Asam pekat, kalium sulfat, dan kalium bisulfit merupakan beberapa bahan yang dapat menyebabkan gliserol mengalami reaksi dehidrasi. KHSO 4, H 2 SO 4 K 2 SO 4 Gliserol Akrolein (Propenal) Gambar 19. Reaksi Dehidrasi Gliserol (Adkins dan Hartung, 1941) Kadar gliserol yang lebih rendah juga disebabkan oleh meningkatnya kelarutan garam dalam gliserol karena meningkatnya kadar air hasil reaksi dehidrasi. Garam kalium nitrat memiliki kelarutan dalam gliserol yang lebih 28

baik daripada garam kalium sulfat dan kalium fosfat. Selain itu, garam (dalam keadaan asam) dan asam nitrat merupakan oksidator kuat terhadap molekul organik (Riswiyanto, 2009). Akibatnya, kadar gliserol pada perlakuan penambahan asam nitrat cenderung lebih rendah (setelah mencapai titik maksimum) daripada perlakuan asam yang lain. E. KADAR ABU Perlakuan terhadap gliserol hasil samping biodiesel jarak pagar berhasil menurunkan kadar abu dalam gliserol. Data hasil pengamatan kadar abu gliserol terlampir pada Lampiran 5. Kurva hubungan jenis dan jumlah mmol asam dengan kadar abu gliserol ditunjukkan pada Gambar 20. Gliserol hasil samping produksi biodiesel jarak pagar mempunyai kadar abu 5,16%; berasal dari kalium (berupa basa dan sabun) yang larut dalam gliserol. Perlakuan netralisasi basa dan pemecahan sabun (menghasilkan endapan garam) telah menurunkan kadar abu gliserol sebagaimana ditunjukkan Gambar 20. 5.50 4.50 Kadar Abu Gliserol (%) 3.50 2.50 1.50 1.76 1.09 H2SO4 HNO3 H3P O4 0.50 126 90 0 50 100 150 200 250 Jumlah mmol Asam / 200 g Bahan Gambar 20. Kurva Hubungan Jumlah mmol dan Jenis Asam dengan Kadar Abu 29

Gambar 21 dan Gambar 22 menunjukkan bahwa sebaran data hasil pengamatan kadar abu gliserol dapat dianggap mengikuti sebaran normal. Gambar 21 menunjukkan kecenderungan diagram bantang membentuk puncak di pusat sebaran. Gambar 22 menunjukkan plot residual terhadap peluang persentase sebaran normal yang mengikuti kecenderungan garis lurus dan sebagian besar residual yang lebih banyak terkumpul di sekitar nilai pusat daripada di sekitar nilai ekstrim sebaran. Frekuensi 3.5 3 2.5 2 1.5 1 0.5 0-0.36-0.29-0.23-0.15-0.10-0.07-0.02 0.00 0.02 Residual 0.04 0.06 0.09 0.17 0.20 0.38 Gambar 21. Diagram Batang Residual Data Pengamatan Kadar Abu 1.30 Peluang % Normal 1.10 0.90 0.70 0.50 0.30 0.10-0.10-0.40-0.20 0.00 0.20 0.40 0.60 Residual Gambar 22. Plot Residual Data Pengamatan Kadar Abu Gliserol Analisis sidik ragam dengan taraf nyata (α) 5% pada Lampiran 6 menunjukkan bahwa perlakuan jenis, jumlah mmol asam, dan interaksinya 30

berpengaruh nyata terhadap kadar abu gliserol kasar yang dihasilkan (F hitung > F tabel ). Kadar abu terendah dihasilkan pada perlakuan penambahan 126 mmol asam fosfat. Uji lanjut Duncan s (Lampiran 7) menunjukkan bahwa kadar abu pada perlakuan ini menunjukkan perbedaan yang nyata terhadap perlakuan lain (kelompok Duncan A). Hasil ini berbeda dengan penelitian Kocsisová dan Cvengroś (2006) yang menunjukkan bahwa kadar abu terendah diperoleh dengan dengan penambahan asam sulfat 40%. Perbedaan ini terutama disebabkan perbedaan rancangan percobaan, konsentrasi asam sulfat, dan ph gliserol yang diperoleh. Kocsisová dan Cvengroś (2006) merancang percobaan dengan faktor jenis asam dan ph sebagai variabel bebas yang diteliti. Dengan rancangan tersebut diperoleh ph optimum bagi pemisahan gliserol, asam lemak bebas, dan garamnya yaitu pada ph 4,50. Adapun pada penelitian ini, variabel bebasnya adalah jenis dan jumlah mmol asam. Selain itu, asam sulfat yang digunakan adalah asam sulfat pekat 18,01M (96%) dan perlakuan terbaik menghasilkan ph 6,63. Gambar 20 menunjukkan bahwa kadar abu cenderung meningkat setelah melampaui titik minimum. Peningkatan kadar abu menunjukkan bahwa kelarutan garam meningkat. Peningkatan kelarutan garam ini dapat disebabkan oleh meningkatnya kandungan air akibat reaksi dehidrasi gliserol menghasilkan akrolein dan air (Adkins dan Hartung, 1941; Hedtke, 1996). F. GARAM KALIUM Pemurnian gliserol (hasil samping transesterifikasi minyak jarak pagar dengan katalis KOH) menggunakaan asam mineral memberikan hasil samping berupa garam kalium. Garam dihasilkan oleh netralisasi basa kalium dan reaksi pemecahan sabun kalium menggunakan asam mineral. Garam kalium dipisahkan dari gliserol dengan cara filtrasi. Analisis dilakukan terhadap garam kalium hasil perlakuan terbaik, yaitu perlakuan 126 mmol asam fosfat dalam 200 g gliserol. Analisis terdiri atas: kadar kalium, fosfat, klorida, zat menguap (130 0 C), dan asam bebas. Hasilnya ditunjukkan pada Tabel 5. 31

Analisis filtrat garam dilakukan terhadap garam filtrat dari perlakuan pemurnian terbaik karena garam merupakan salah satu bahan yang dipisahkan dari gliserol untuk meningkatkan kemurnian gliserol. Kadar zat menguap pada garam dilakukan sesuai dengan metode analisis kadar air pada garam kalium (Horwitz, 2000). Kadar zat menguap (130 0 C) sebesar 33,93 %. Tingginya zat menguap disebabkan kandungan gliserol, metanol, asam lemak bebas, dan air yang tersisa bersama garam setelah filtrasi. Tabel 5. Hasil Analisis Garam Filtrat Perlakuan Pemurnian Terbaik Jenis Analisis Hasil (% b / b ) Kadar Zat Menguap (130 0 C) 33,93 % Kadar Total Asam Bebas (berupa H 3 PO 4 )* 26,18 % Kadar Kalium (berupa K 2 O)* 13,17 % Kadar Fosfor (berupa P 2 O 5 )* 20,14 % Kadar Klorida* 2,67 % * Berdasarkan basis kering Kadar total asam bebas diukur dengan prosedur uji kadar asam bebas pada Lampiran 4. Hasilnya menunjukkan kadar asam bebas sebesar 26,18 %. Kadar ini sangat tinggi karena garam yang dianalisis adalah garam hasil filtrasi tanpa pencucian. Selain itu, kadar asam bebas dihitung berdasarkan basis kering sesuai dengan syarat mutu pupuk anorganik dalam SNI. Adapun kadar asam bebas berdasarkan basis basah adalah 17,29 % (faktor koreksi kadar air = 1,5114). Asam bebas berasal dari kelebihan asam fosfat yang ditambahkan dalam perlakuan pemurnian gliserol. Kadar asam bebas dalam pupuk menjadi salah satu syarat pupuk komersial. Produksi pupuk anorganik banyak melibatkan reaksi dengan asam anorganik seperti asam nitrat, asam sulfat, dan asam fosfat. Asam yang tidak bereaksi ikut tersisa bersama garam anorganik hasil reaksi. Kadar kalium, fosfor, dan klorida dianalisis di Laboratorium Pengujian Departemen Teknologi Industri Pertanian menggunakan metode nyala secara langsung dengan campuran udara-asetilena sesuai prosedur analisis APHA (American Public Health Association). Kadar kalium dan fosfor (Tabel 5) menunjukkan bahwa garam hasil filtrasi pemurnian gliserol ini belum 32

memenuhi standar pupuk kalium fosfat (Tabel 6). Hal ini terjadi karena kandungan gliserol, metanol, asam lemak bebas, dan air. Kadar klorida dimungkinkan masih terdapat pada garam hasil industri. Di alam, sebagian besar garam yang diperoleh berupa NaCl dan KCl. Dalam industri kimia, KCl digunakan sebagai bahan dalam produksi garam kalium lain maupun produksi KOH. Kadar klorida menjadi salah satu parameter syarat mutu pupuk karena kekepekaan beberapa jenis tanaman terhadap klorida. Di lain pihak, penggunaan pupuk kalium selain KCL sebagai sumber unsur hara makro K adalah untuk mengatasi masalah tersebut. Tabel 6. Standar Kadar K (K 2 O) dan P (P 2 O 5 ) Pupuk Anorganik Nama Pupuk Sumber Rujukan Kadar K 2 O Min. (%) Kadar P 2 O 5 Min. (%) Kadar Cl Maks. (%) Kadar Asam Bebas Maks. (%) Kalium nitrat SNI 02-2808-1992 44,0 0,5 Kalium dihidrofosfat Roy (2007) 35,0 52,0 Kalium monohidrofosfat Roy (2007) 40,0 54,0 Kalium sulfat SNI 02-2809-2005 50,0 2,5 2,5 Kalium klorida SNI 02-2805-2005 60,0 Diamonium fosfat SNI 02-2858-2005 46,0 Monoamonium fosfat SNI 02-2810-2005 48,0 SP-36 SNI 02-3769-2005 36,0 6,0 TSP SNI 02-0086-2005 45,0 6,0 Normal superfosfat Slack, 1972 0,2 18,0 0,3 Pemurnian perlu dilakukan untuk memisahkan garam dari pengotor seperti gliserol, metanol, asam lemak bebas, dan air. Pemurnian garam dapat dilakukan dengan beberapa metode. Aral et al. (2007) melakukan beberapa metode pemurnian garam sebagai berikut. 1. Pencucian dengan air, filtrasi, evaporasi, dan kristalisasi pendinginan. 2. Pengabuan (>300 0 C), pencucian dengan air, filtrasi, evaporasi, dan kristalisasi garam pada suhu kamar. 3. Pengendapan garam dengan penambahan pelarut organik (etanol), filtrasi, dan pengeringan pada suhu kamar. Umumnya, garam organik sukar larut dalam pelarut organik seperti etanol sebagaimana ditunjukkan Tabel 7. Aral et al. (2007) menyatakan bahwa metode pengendapan garam dengan penambahan pelarut organik (etanol) merupakan metode yang paling mudah karena energi yang diperlukan jauh lebih kecil daripada metode lain 33

yang dilakukannya. Selain itu, etanol dapat diambil kembali dengan distilasi. Kelemahannya adalah jumlah garam yang dapat diambil dari limbah cair (industri susu) dengan metode ini jauh lebih rendah. Selain itu, garam yang diperoleh dari penelitian yang dilakukan Aral et al. (2007) masih heterogen. Tabel 7. Kelarutan Garam Kalium Garam Kelarutan dalam Air (g/100 ml air) a Kelarutan dalam Gliserol b Kelarutan dalam Etanol b KNO 3 38,3 (25 0 C) Larut Sedikit Larut KHSO 4 50,56 (25 0 C) K 2 SO 4 12,09 (25 0 C) Sedikit Larut Tidak Larut KH 2 PO 4 25 (25 0 C) Sedikit Larut K 2 HPO 4 168 (25 0 C) Larut K 3 PO 4 106 (25 0 C) Tidak Larut a b Hammond (2006) Potnaik (2003) Hal ini berbeda dengan garam hasil pemurnian gliserol biodiesel jarak pagar dengan katalis basa homogen. Jenis garam relatif homogen sesuai dengan katalis basa dan asam mineral yang digunakan. Endapan garam yang perlu dimurnikan berupa pasta, sebagian besar berupa campuran garam, gliserol, dan metanol. Kelarutan garam dalam gliserol dan metanol sangat rendah sebagaimana dijelaskan Tabel 7. Pencucian garam sebaiknya dilakukan dengan metanol, karena metanol dapat melarutkan gliserol dan asam lemak yang tersisa dalam garam. Metanol dapat diambil kembali dengan distilasi. Selain itu, metanol sudah terdapat dalam garam hasil esterifikasi-transesterifikasi minyak jarak pagar. Hal ini bertujuan menjaga kemurnian metanol ketika diambil kembali dengan distilasi. 34