BAB 2 TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
BAB II TINJAUANPUSTAKA. dan ubi kayu.tanaman jarak pagar berupa perdu dengan tinggi 1-7 m, bercabang

BAB 2 TINJAUAN PUSTAKA

Lemak dan minyak adalah trigliserida atau triasil gliserol, dengan rumus umum : O R' O C

BAB 2 TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

REAKSI SAPONIFIKASI PADA LEMAK

A. Sifat Fisik Kimia Produk

BAB II TINJAUAN PUSTAKA. Sabun adalah senyawa garam dari asam-asam lemak tinggi, seperti

Memiliki bau amis (fish flavor) akibat terbentuknya trimetil amin dari lesitin.

BAB II TINJAUAN PUSTAKA. Tanaman jarak duri (Ricinus communis L.) termasuk dalam famili

PERCOBAAN II PENGARUH SURFAKTAN TERHADAP KELARUTAN A. Tujuan 1. Mengetahui dan memahami pengaruh penambahan surfaktan terhadap kelarutan suatu zat 2.

BAB II TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

SAINS II (KIMIA) LEMAK OLEH : KADEK DEDI SANTA PUTRA

BAB II TINJAUAN PUSTAKA. lemak sebagian besar terdiri dari asam oktadekanoat, C 18 H 36 O 2 dan asam

IV. HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

B. Struktur Umum dan Tatanama Lemak

KIMIA. Sesi HIDROKARBON (BAGIAN II) A. ALKANON (KETON) a. Tata Nama Alkanon

TUGAS FISIKA FARMASI TEGANGAN PERMUKAAN

II. TINJAUAN PUSTAKA. Minyak jelantah merupakan minyak goreng yang telah digunakan beberapa kali.

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

BAB II TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB I P E N D A H U L U A N

BAB 3 BAHAN DAN METODE PENELITIAN. Alat-alat yang digunakan dalam penelitian ini adalah : - Labu leher tiga Pyrex - Termometer C

Bab IV Hasil dan Pembahasan

A. RUMUS STRUKTUR DAN NAMA LEMAK B. SIFAT-SIFAT LEMAK DAN MINYAK C. FUNGSI DAN PERAN LEMAK DAN MINYAK

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut

HASIL DAN PEMBAHASAN. dicatat volume pemakaian larutan baku feroamonium sulfat. Pembuatan reagen dan perhitungan dapat dilihat pada lampiran 17.

HASIL DAN PEMBAHASAN

Chapter 20 ASAM KARBOKSILAT

Biodiesel Dari Minyak Nabati

Senyawa Alkohol dan Senyawa Eter. Sulistyani, M.Si

BAB 1 PENDAHULUAN Latar Belakang

IV. HASIL DAN PEMBAHASAN

BAB 2 TINJAUAN PUSTAKA

PENUNTUN PRAKTIKUM KIMIA DASAR II KI1201

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

SIFAT KIMIA DAN FISIK SENYAWA HIDROKARBON

Prarancangan Pabrik Metil Ester Sulfonat dari Crude Palm Oil berkapasitas ton/tahun BAB I PENGANTAR

SIFAT PERMUKAAN SISTEM KOLOID PANGAN AKTIVITAS PERMUKAAN

BAB I PENDAHULUAN Pengertian Minyak dan Lemak 1.1 TUJUAN PERCOBAAN. Untuk menentukan kadar asam lemak bebas dari suatu minyak / lemak

C3H5 (COOR)3 + 3 NaOH C3H5(OH)3 + 3 RCOONa

Materi Penunjang Media Pembelajaran Kimia Organik SMA ALKENA

BAB II TINJAUAN PUSTAKA

LAPORAN PRAKTIKUM BIOKIMIA PANGAN LEMAK UJI SAFONIFIKASI

BAB II TINJAUAN PUSTAKA

ASAM KARBOKSILAT. Deskripsi: Struktur, tata nama, penggolongan dan manfaat asam karboksilat

Perbandingan aktivitas katalis Ni dan katalis Cu pada reaksi hidrogenasi metil ester untuk pembuatan surfaktan

BAB 11 TINJAUAN PUSTAKA. yang jika disentuh dengan ujung-ujung jari akan terasa berlemak. Ciri khusus dari

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah

BAB I PENDAHULUAN BAB I PENDAHULUAN

LAPORAN LENGKAP PRAKTIKUM BIOKIMIA. (Uji Pembentukan Emulsi Lipid)

KONSENTRASI KRITIS MISEL

BAB 2 TINJAUAN PUSTAKA

BAB IV HASIL DAN PEMBAHASAN

II. TINJAUAN PUSTAKA. Kelapa sawit (Elaeis Guineesis Jacq) merupakan salah satu tanaman perkebunan

KONSEP DASAR KIMIA ORGANIK YANG MENUNJANG PEMBELAJARAN KIMIA SMA GEBI DWIYANTI

berupa ikatan tunggal, rangkap dua atau rangkap tiga. o Atom karbon mempunyai kemampuan membentuk rantai (ikatan yang panjang).

HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Sebelum mengenal bahan bakar fosil, manusia sudah menggunakan biomassa

SURFACE TENSION ( Tegangan Permukaan )

IV. HASIL DAN PEMBAHASAN

Bab IV Hasil dan Pembahasan

HASIL DAN PEMBAHASAN A. Penelitian Pendahuluan (Pembuatan Biodiesel)

UJI IDENTIFIKASI ETANOL DAN METANOL

HASIL DAN PEMBAHASAN

Fransiska Victoria P ( ) Steffy Marcella F ( )

BAB II TINJAUAN PUSTAKA DAN PERUMUSAN HIPOTESIS

Struktur Aldehid. Tatanama Aldehida. a. IUPAC Nama aldehida dinerikan dengan mengganti akhiran a pada nama alkana dengan al.

MAKALAH PRAKTIKUM KIMIA DASAR REAKSI-REAKSI ALKOHOL DAN FENOL

D. Tinjauan Pustaka. Menurut Farmakope Indonesia (Anonim, 1995) pernyataan kelarutan adalah zat dalam

BAB 1 PENDAHULUAN Latar Belakang

BAB 2 TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

Bab IV Hasil dan Pembahasan

BAB 2 TINJAUAN PUSTAKA

Gugus Fungsi Senyawa Karbon

BAB II TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. baku baru yang potensial. Salah satu bahan yang potensial untuk pembuatan surfaktan adalah

BAB 1 TINJAUAN PUSTAKA

LAPORAN PRAKTIKUM KIMIA ORGANIK I PERCOBAAN III SIFAT-SIFAT KIMIA HIDROKARBON

Laporan Kimia Fisika Penentuan Tegangan Permukaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Banyak fenomena-fenomena alam yang kurang kita perhatikan akan

BAB I PENDAHULUAN. Latar Belakang

Protein (asal kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. sehingga mengakibatkan konsumsi minyak goreng meningkat. Selain itu konsumen

Perbedaan minyak dan lemak : didasarkan pada perbedaan titik lelehnya. Pada suhu kamar : - lemak berwujud padat - minyak berwujud cair

1.Pengertian alkohol 2.Klasifikasi alkohol 3.Sifat-sifat fisika dan kimia alkohol 4.Sintesis alkohol 5.Reaksi-reaksi alkohol 6.

4 Pembahasan Degumming

contoh-contoh sifat Pengertian sifat kimia perubahan fisika perubahan kimia ciri-ciri reaksi kimia percobaan materi

BAB I PENDAHULUAN Latar Belakang

Bab IV Hasil dan Pembahasan

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

MODUL SENYAWA KARBON ( Alkohol dan Eter )

BAB II PUSTAKA PENDUKUNG. Ketersediaan energi fosil yang semakin langka menyebabkan prioritas

Transkripsi:

BAB 2 TINJAUAN PUSTAKA 2.1 Minyak Jarak Tanaman jarak (Ricinus communis Linn) termasuk famili Euphorbiceae, merupakan tanaman tahunan yang hidup di daerah tropik maupun subtropik dan dapat tumbuh pada ketinggian sekitar 800 m dari permukaan laut. Adapun komposisi dari biji jarak adalah 75% kernel (daging biji ) dan 25 % kulit dan terdiri dari 13% karbohidrat, 54% minyak, 12,5% serat, 2,5% abu dan 18 % protein (Ketaren.,1984). Tabel 2.1 Komposisi Asam Lemak dari Minyak Jarak Asam Lemak Asam Palmitat Asam Stearat Asam leat Asam Linoleat Asam Linolenat Asam Risinoleat Persentase 1,5 % 0,5 % 5,0 % 4,0 % 0,5 % 87,5 % (Johnson,R.,1989) Minyak jarak mempunyai rasa asam dan dapat dibedakan dengan trigliserida lainnya karena bobot jenis, kekentalan (viskositas), dan bilangan asetil serta kelarutannya dalam alkohol yang sangat tinggi. Minyak jarak larut dalam alkohol 95%

6 pada suhu kamar serta pelarut organik yang polar dan sedikit larut dalam pelarut hidrokarbon alifatis. Minyak jarak mempunyai sifat yang sangat beracun disamping kandungan asam lemak essensialnya yang sangat rendah sehingga minyak jarak tidak dapat digunakan sebagai minyak makan dan bahan pangan. Minyak jarak dan turunannya digunakan dalam industri cat, pelumas, tinta cetak, linoleum, oil cloth dan bahan baku industri plastik dan nilon. Dalam jumlah kecil minyak jarak dan turunannya juga digunakan untuk pembuatan kosmetik, semir dan lilin (Ketaren., 1984). 2.2 leokimia leokimia pada dasarnya merupakan cabang ilmu kimia yang mempelajari trigliserida yang berasal dari minyak dan lemak menjadi asam lemak dan gliserin serta turunan asam lemak baik dalam bentuk ester, amida, sulfat, sulfonat, alkohol, alkoksi, maupun sabun. leokimia merupakan turunan gliserol dengan asam lemak yang berubah dalam bentuk turunannnya yang digunakan baik sebagai surfaktan, deterjen, polimer, aditif bahan bakar dan sebagainya. Bahan dasar oleokimia seperti gliserol, asam lemak, alkil ester asam lemak, amina asam lemak dan alkohol asam lemak dapat diperoleh dengan mengubah lipida baik dari yang berasal hewan maupun tumbuhan menmjadi gliserol dan turunan asam lemak. Penggunaan terbesar daripada asam lemak adalah dengan mengubahnya menjadi alkohol asam lemak, amida, garam asam lemak dan juga plastik termasuk nilon (hampir mencapai 40% dari total penggunaannya). Penggunaan terbesar berikutnya sebesar 30% untuk dijadikan sabun, deterjen, dan kosmetik. Asam lemak juga digunakan sebagai bahan dasar pembuatan resin dan cat sekitar 15%, sisanya digunakan sebagai pembantu dalam industri pembuatan ban, tekstil, kulit kertas, pelumas, lilin (Richtler dan Knaut, 1984).

7 Tabel 2.2 Diagram Alur leokimia 2.3 Ester Asam Lemak Asam lemak di alam terdapat dalam bentuk ester dimana gliserol dengan asam lemak, ataupun terkadang ada gugus hidroksinya yang teresterkan tidak dengan asam lemak melainkan dengan posfat seperti phospolipid. Di samping itu ada juga ester antara asam lemak dengan alkoholnya yang membentuk monoester seperti yang terdapat pada minyak jojoba. Dalam hal ini, ester asam lemak yang dimaksud adalah ester hasil sintesis ataupun transformasi, untuk menghasilkan ester asam lemak dengan monoalkohol maupun polialkohol. Ester asam lemak yang paling sederhana adalah ester antara metanol dengan asam lemak yang dikenal luas sebagai metil ester asam lemak pada industri oleokimia. Metil ester asam lemak ini dapat dihasilkan melalui reaksi transesterifikasi secara metanolisis terhadap ester asam lemak dengan gliserol (gliserida).

8 Reaksi transesterifikasi antara metanol dengan gliserida dapat dilakukan dengan dua cara, yakni: 1. Metanolisis trigliserida dengan katalis asam yang memerlukan pemanasan. Reaksi ini dapat berjalan walaupun trigliserida tersebut mengandung air dan asam lemak bebas lebih besar dari 2,5%. 2. Metanolisis trigliserida dengan katalis basa tanpa pemanasan dengan bantuan pengadukan kecepatan tinggi. Reaksi ini menghendaki gliserida yang bebas air serta kadar asam lemak bebas tidak lebih dari 2,5% (Mittlebach dan Tritthart.,1988). 2.4 Epoksidasi Alkena dapat dioksidasi menjadi anekaragam produk, bergabung pada reagensia yang digunakan. Reaksi yang melibatkan oksidasi ikatan rangkap karbon-karbon dapat dikelompokkan menjadi dua gugus umum : 1. ksidasi ikatan pi tanpa memutuskan ikatan sigma 2. ksidasi ikatan pi yang memutuskan ikatan sigma. Produk oksidasi tanpa pemutusan ikatan sigma ialah suatu epoksida atau 1,2- diol.reagensia yang paling popular dipakai untuk mengubah alkena menjadi suatu 1,2-diol adalah larutan kalium permanganat (dalam air) basa dan dingin (meskipun biasanya reagensia ini memberikan rendemen yang rendah). smium tetraoksida (s 4 ) diikuti reduksi dengan reagensia seperti Na 2 S 3 atau NaHS 3 menghasilkan diol dengan rendemen yang lebih baik, tetapi penggunaan terbatas karena mahal dan bersifat racun (Fessenden,R.J.,1997). Epoksidasi dari minyak nabati merupakan hal yang penting dan sangat berguna terutama dalam hal sebagai stabilisator dan plastisasi bahan polimer. Berdasarkan pada kereaktifan yang tinggi dari cincin oksiran, epoksida juga dapat dipakai untuk berbagai jenis bahan kimia yaitu alkohol, glikol, alkanolamin, senyawa karbonil, senyawa olefin, dan polimer seperti poliester, poliuretan.

9 Adapun contoh reaksi epoksidasi terhadap senyawa alkena dan menghasilkan senyawa diol adalah sebagai berikut: R H + H 2 2 R H + H 2 Asam karboksilat Peroksida Peracid R Peracid H + H H H H lefin Epoksida + R H H H Epoksida H + H 2 H H Ada empat teknik yang dapat digunakan untuk menghasilkan epoksida dari molekul olefin: 1. Epoksida dengan asam perkarboksilat yang sering digunakan dalam industri dan dapat dipercepat dengan bantuan katalis atau enzim 2. Epoksida dengan peroksida organik dan anorganik, termasuk epoksidasi alkali dengan hydrogen peroksida nitril dan epoksida yang dikatalisis logam transisi. 3. Epoksida dengan halohidrin, menggunakan asam hipohalogen (HX) dengan garamnya sebagai reagen, dan epoksida olefin dengan defisiensi elektron ikatan rangkap. 4. Epoksida dengan menggunakan molekul oksigen, untuk minyak nabati jarang digunakan karena dapat menyebabkan degadrasi dari minyak menjadi senyawa yang lebih kecil seperti aldehid dan keton atau asam dikarboksilat berantai pendek sehingga oksidasi dengan 2 merupakan metode yang tidak efisien untuk epoksida minyak nabati (Goud, dkk.,2006). 2.5 Surfaktan Molekul-molekul atau ion-ion yang teradsorbsi pada perbatasan (interfasa) disebut dengan bahan aktif permukaan (surface active agents) atau surfaktan. Surfaktan

10 mempunyai peran penting untuk menurunkan tegangan permukaan bahan yang dikenai. Penggunaan surfaktan terbagi atas tiga golongan, yaitu sebagai bahan pembasah (wetting agent), bahan pengemulsi (emulsifying agents), dan sebagai bahan penglarut (solubilizing agents). Aktifitas kerja suatu surfaktan karena sifat ganda dari molekul tersebut (Pavia D.,1976). Struktur kimia surfaktan mempengaruhi sifat kelarutan yang cocok untuk aktifitas surfaktan tersebut tergantung pelarut dan dan kondisi yang digunakan. Di dalam bentuk surfaktan yang umum, kepala menggambarkan gugus yang larut dalam air, sering disebut gugus hidrofil atau gugus lipofob dan ekor menggambarkan gugus lipofil atau hidrofob di dalam air. Klasifikasi kimia yang paling berguna dari surfaktan didasarkan pada sifat hidrofil dan lipofilnya. Di bawah ini ada empat klasifikasi dasar dari surfaktan yaitu : 1. Surfaktan anionik, memiliki gugus hidrofil yang bermuatan negatif seperti gugus karboksilat (R - M + - ), sulfonasi (RS 3 M + - ), sulfat (RS 3 M + ) - atau posfat (RP 3 M + ). 2. Surfaktan kationik, gugus hidrofil memiliki muatan positif. Sebagai contoh ammonium halida kwartener (R4N + X - ). 3. Surfaktan nonionik, dimana gugus hidrofil tidak memiliki muatan tetapi turunannya memiliki kelarutan yang besar terhadap air dibandingkan gugus polar tertinggi seperti senyawa (PE atau R-H2H 2 -) R adalah gugus poliol termasuk gula. 4. Surfaktan amfoter (zwitter ion) memiliki muatan positif dan muatan negatif, sebagai contoh sulfobetain RN + - (H 3 ) 2 H 2 H 2 S 3. Secara umum, gugus hidrofob memiliki lebih banyak variasi dibandingkan gugus hidrofil. Selain gugus hidrokarbon berantai panjang, di bawah ini merupakan variasi struktur gugus hidrofob lainnya, yaitu: 1. Gugus alkil rantai panjang lurus (n = 8-22 dengan substitusi dari gugus kepala) H 3 (H 2 ) n -S 2. Gugus alkil rantai panjang bercabang (n = 8-22, substitusi internal) H 3 (H 2 ) n (H 3 )H(H 2 ) m H 2 -S

11 3. Rantai alkena tidak jenuh, contohnya turunan dari minyak nabati H 3 (H 2 ) n H=H(H 2 ) m -S 4. Alkil benzena (8-15 6 H 4 dengan bentuk substitusi yang berbeda-beda) 9 H 19 ( 6 H 4 )-S 5. Alkil naftalena (alkil R biasanya 3 atau lebih besar) R n - 10 H (7-n) -S 6. Gugus Fluroalkil (n > 4, sebagian atau seluruhnya terfluoronasi) F3(F 2 ) n -S 7. Polidimetilsiloksan, H3-(si[H 3 ] 2 ) n -S 8. Turunan polioksipropilena glikol H3H(H)-H 2 -(-H(H 3 )H 2 ) n -S 9. Biosurfaktan 10. Turunan polimer alami dan sintetik Dengan banyaknya variasi struktur senyawa yang dapat digunakan sebagai surfaktan maka akan memberikan banyak aplikasi surfaktan yang dihasilkan tergantung kepada kegunaannya (Myers,D.,2006) 2.5.1 Sabun Garam dari alkali asam lemak merupakan sabun dari reaksi safonifikasi, seperti yang ditunjukkan pada reaksi di bawah. aranya lemak dan minyak dipanaskan dengan natrium hidroksida sampai terhidrolisis sempurna. Penambahan Nal ke dalam campuran kemudian menyebabkan sabun mengendap. Sabun yang masih belum murni dapat dimurnikan dengan beberapa represipitasi ( Solomons T.W.G, 2004). R R + 3 NaH H 2 H H + 3 R Na R H Trigliserida Basa Gliserol Sabun

12 Sabun kalium disebut sabun lunak dan digunakan sebagai sabun untuk bayi. Asam lemak yang digunakan untuk sabun umumnya adalah asam palmitat atau stearat. Dalam industri, sabun tidak dibuat dari asam lemak tetapi langsung dari minyak yang berasal dari tumbuhan. Minyak adalah ester asam lemak tidak jenuh dengan gliserol. Melalui proses hidrogenasi dengan bantuan katalis logam Pt atau Ni, asam lemak tidak jenuh diubah menjadi asam lemak jenuh dan melalui proses penyabunan dengan basa NaH atau KH akan terbentuk sabun dan gliserol (Poejiadi,A., 1994). Molekul sabun terdiri atas rantai hidrokarbon panjang dan atom karbon dengan gugus yang sangat polar atau ionik pada satu ujungnya. Rantai karbon bersifat lipofilik (tertarik pada atau larut dalam lemak dan minyak), dan ujung polar yang hidrofilik (tertarik atau larut dalam air). Bila sabun dikocok dengan air akan membentuk dispersi koloid, bukannya larutan sejati. Larutan sabun ini mengandung agregat molekul sabun yang disebut misel (Hart, H.,2003). Setiap molekul sabun memiliki gugus hidrofil dan hidrofob dimana dapat ditulis sebagai RNa. Ketika sabun dilarutkan ke dalam air maka akan terionisasi menjadi R - Na +. Bagian yang berperan aktif dalam sifat deterjennya ialah R - dan menghasilkan anion, sehingga sabun dimasukkan ke dalam jenis suirfaktan anion. Fungsi dari sabun ialah untuk menghilangkan kotoran dari permukaan seperti kulit, lantai atau pakaian. Kotoran biasanya campuran bahan berlemak dan partikel padat. Meskipun dapat berupa kotoran tanpa lemak, partikel padat dapat berupa pigmen, karbon, karat besi. Lemak yang dihasilkan dari kulit ataupun sumber lain dapat dihilangkan dari permukaan dengan menggunakan deterjen dengan cara : a. Mereduksi atau menurunkan tegangan permukaan dari air b. Memindahkan atau mengangkat kotoran c. Mendispersikan kotoran Pada saat lemak ikut bersama kotoran lainnya, bagian hidrofob masuk ke dalam permukaan daripada lemak tersebut dan bagian hidrofil larut dalam air.

13 Partikel berkarat akan ikut bersama bagian hidrofil dari molekul deterjen dan akan diangkut bersama bagian hidrofob (Parasuram, K.S.,1995). 2.5.2 Misel Air memiliki tegangan permukaan yang tinggi, tetapi ketika surfaktan dilarutkan ke dalam air maka tegangan permukaan dari larutan itu akan turun sampai tercapainya suatu konsentrasi. Konsentrasi dimana tegangan permukaan turun disebut M (konsentrasi misel kritis). M ini dapat ditentukan dari ketika sejumlah kecil dari surfaktan ditambahkan ke dalam air, ion-ion surfaktan (atau molekul pada surfaktan nonionik) terkonsentrat pada permukaan tipis dari cairan. Pada permukaan cairan, ion-ion surfaktan terorientasi pada gugus hidrofil ke dalam air dan gugus hidrofob ke udara (menjauhi air). Secara bersamaan, jika surfaktan dapat dilarutkan dalam minyak maka gugus hidrofob akan ikut dengan minyak dan gugus hidrofil akan ke udara (menjauhi minyak). Pada M, larutan menjadi jenuh dalam keadaan normal, tetapi pada kebanyakan surfaktan, apabila dilarutkan pada cairan maka akan membentuk misel. Misel ini adalah kumpulan ionion surfaktan atau molekul surfaktan yang berkumpul menjadi satu bentuk, dengan gugus hidrofil di luar dan terikat pada air sedangkan gugus hidrofob berada di dalam untuk membentuk globulan-globulan minyak. Dalam hal surfaktan yang terionisasi, akan ada beberapa gegenion (seperti ion Na + pada garam Nal atau l - dari surfaktan kationik) kemungkinan ikut pada misel dan berpengaruh kepada titik M. Gambar 2.1 Skema Penampang Melintang dari Misel sabun

14 Kelarutan dari surfaktan berubah sesuai temperatur dan temperatur sangat penting dikenal dengan titik Krafft, dimana kelarutan naik secara cepat dengan berubahnya bentuk dari misel. Misel merupakan bagian dari larutan surfaktan yang menyebabkan larutan itu disebut dengan larutan koloid murni dan sangat penting hubungannya dengan sifat deterjen karena : Misel mempertahankan permukaan larutan agar tetap jenuh dan tegangan permukaan dari larutan berada pada titik minimumnya Misel dapat melarutkan bahan berlemak. Bagian misel yang hampir menyerupai pelarut hidrokarbon yang mana dapat melarutkan bahan berminyak dan membawanya dalam proses pencucian. Sifat ini digunakan ketika larutan sabun digunakan untuk melarutkan kresol untuk menghasilkan Lysol (sejenis desinfektan) serta penggunaan yang sama lainnya. (Woollatt, E.,1985) 2.5.3 Tegangan Permukaan Tegangan permukaan (γ) suatu cairan dapat didefenisikan sebagai banyaknya kerja yang dibutuhkan untuk memperluas permukaan cairan sebanyak satu satuan luas. Tegangan permukaan suatu larutan akan bergantung pada sifat zat terlarut. Bila molekul zat terlarut cenderung untuk mengumpul pada permukaan, tegangan permukaan akan turun. Misalnya pada sabun, molekul-molekul sabun terdiri dari bagian hidrofobik yaitu rantai hidrokarbon yang panjang dan bagian hidrofilik yaitu gugus karboksilat - Na +. Karena itu, molekul-molekul sabun cenderung untuk tersusun pada batas antara air dan udara, akibatnya tegangan permukaan akan menurun (Bird, T.,1985). Tegangan permukaan cairan (γ), berbeda-beda bergantung pada jenis cairan dan suhu. Pada umumnya cairan yang memiliki gaya tarik antara molekulnya besar seperti air, maka tegangan permukaannya juga besar. Sebaliknya pada cairan seperti bensin karena gaya tarik antara molekulnya kecil maka tegangan permukaannya kecil.

15 Tegangan permukaan cairan turun bila suhu naik, karena dengan bertambahnya suhu molekul-molekul cairan bergerak lebih cepat dan pengaruh interaksi antara molekulnya berkurang sehingga tegangan permukaannya menurun. Pada suhu yang sama tegangan permukaan logam cair dan lelehan garam lebih besar bila dibandingkan dengan cairan organik. Adanya zat terlarut pada cairan dapat menaikkan atau menurunkan tegangan permukaan bergantung sifat zat terlarutnya. Untuk air adanya elektrolit anorganik dan nonelektrolit tertentu seperti sukrosa dan gliserin menaikkan tegangan permukaan. Sedangkan adanya zat-zat seperti sabun, deterjen, dan alkohol adalah efektif dalam menurunkan tegangan permukaan atau tegangan antarmuka. Zat ini sering disebut dengan surface active agents atau surfaktan. Penurunan tegangan permukaan oleh sabun menyebabkan perluasan film air dengan pembentukan gelembung atau busa. Adanya hubungan antara besar kecilnya tegangan permukan cairan dengan kemampuannya untuk membasahi benda. Makin kecilnya nilai tegangan permukaan suatu cairan maka makin besar kemampuan zat tersebut untuk membasahi benda. Hubungan ini banyak dimanfaatkan dalam kehidupan sehari-hari; misalnya untuk menghasilkan cucian pakaian agar lebih bersih dapat digunakan air panas atau air sabun. Keduanya dapat menurunkan tegangan permukaan air sehingga meningkatkan kemampuan air untuk membasahi kotoran pakaian. Akibatnya kotoran mudah larut dan terbawa oleh air pada saat pembilasan (Yazid,E.,2005). 2.5.4 Penentuan Uji HLB (Hydrophilic Lipophilic Balance) Griffin merancang suatu skala sembarang dari berbagai angka untuk dipakai sebagai suatu ukuran keseimbangan hidrofilik-lipofilik (HLB) dari zat-zat aktif permukaan (surfaktan). Dengan bantuan angka ini, adalah mungkin untuk membentuk suatu jarak HLB untuk efisiensi optimum atau terbaik dari masing-masing golongan surfaktan seperti terlihat pada gambar 2.2 sebagai berikut.

16 Gambar 2.2 Skala Petunjuk Fungsi Surfaktan Berdasarkan Nilai HLB HLB dari sejumlah senyawa dapat dihitung dengan menggunakan rumus sebaagi berikut : HLB = 20 (1 S/A) Dimana S adalah bilangan penyabunan senyawa tersebut dan A adalah bilangan asam senyawa tersebut. Tabel 2.3 Nilai HLB Beberapa Surfaktan Zat Asam leat Gliseril Monostearat Sorbitan mono-oleat Sorbitan monolaurat Trietanolamin oleat Polioksitilena sorbitan mono-oleat Polioksitilena sorbitan monolaurat Natrium oleat Natrium lauril sulfat HLB 1 3,8 4,3 8,6 12 15 16,7 18 40

17 Davies telah menghitung nilai HLB untuk zat aktif permukaan dengan memecah berbagai molekul surfaktan ke dalam gugus-gugus penyusunnya, yang masing-masing diberi suatu angka gugus. Penjumlahan dari angka-angka gugus untuk suatu surfaktan tertentu memungkinkan perhitungan nilai HLB-nya menurut persamaan berikut : HLB = Σ (angka-angka gugus hidrofilik) - Σ (angka-angka gugus lipofilik) + 7 Tabel 2.4 Harga HLB Gugus Fungsi Gugusan senyawa Gugus hidrofilik - -S 4 Na + - - Na + Ester (cincin sorbitan) Ester (bebas) Hidroksil (bebas) Hidroksil (cincin sorbitan) Grup lipofilik -H- -H 2 - -H 3 - =H- Angka gugus 38,7 19,1 6,8 2,4 1,9 0,5 0,475 0,475 0,475 0,475 (Martin,A., 1993)