BAB IV MANIFESTASI PANAS BUMI DI GUNUNG RAJABASA

dokumen-dokumen yang mirip
BAB IV SISTEM PANAS BUMI DAN GEOKIMIA AIR

BAB IV GEOKIMIA AIR PANAS

BAB IV KARAKTERISTIK AIR PANAS DI DAERAH TANGKUBAN PARAHU BAGIAN SELATAN, JAWA BARAT

BAB IV MANIFESTASI PERMUKAAN PANASBUMI DI DATARAN TINGGI DIENG DAN SEKITARNYA

BAB I PENDAHULUAN I.1 LATAR BELAKANG

BAB IV GEOKIMIA AIR PANAS DI DAERAH GUNUNG KROMONG DAN SEKITARNYA, CIREBON

BAB III METODE PENELITIAN. panasbumi di permukaan berupa mataair panas dan gas. penafsiran potensi panasbumi daerah penelitian.

BAB 3 PENGOLAHAN DAN INTERPRETASI DATA

BAB V KIMIA AIR. 5.1 Tinjauan Umum

Potensi Panas Bumi Berdasarkan Metoda Geokimia Dan Geofisika Daerah Danau Ranau, Lampung Sumatera Selatan BAB I PENDAHULUAN

BAB VI INTERPRETASI DATA GEOKIMIA

BAB III PENGOLAHAN DAN INTERPRETASI DATA

BAB IV MANIFESTASI PANAS BUMI CIMANDIRI

BAB IV PENENTUAN POTENSI PANAS BUMI

BAB 5 PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA

PATIR - BATAN. Satrio, Wibagiyo, Neneng L., Nurfadhlini

BAB V PENGOLAHAN DAN INTERPRETASI DATA GEOKIMIA

BAB 4 PENENTUAN POTENSI PANAS BUMI

SURVEI PENDAHULUAN PANAS BUMI GEOLOGI DAN GEOKIMIA

PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI MASSEPE KABUPATEN SINDENRENG RAPPANG PROVINSI SULAWESI SELATAN

Penyelidikan Pendahuluan Panas Bumi Kabupaten Nunukan, Kabupaten Bulungan, dan Kabupaten Malinau, Provinsi Kalimantan Timur

PENYELIDIKAN GEOKIMIA DAERAH PANAS BUMI TAMBU KABUPATEN DONGGALA, SULAWESI TENGAH

V.2.4. Kesetimbangan Ion BAB VI. PEMBAHASAN VI.1. Jenis Fluida dan Posisi Manifestasi pada Sistem Panas Bumi VI.2.

PENGUJIAN UAP/MONITORING SUMUR PANAS BUMI MATALOKO, NUSA TENGGARA TIMUR TAHUN 2006

Analisis Geokimia Fluida Manifestasi Panas Bumi Daerah Maribaya

KATA PENGANTAR. Penelitian dengan judul Pendugaan Suhu Reservoar Lapangan Panas. Bumi X dengan Metode Multikomponen dan Pembuatan Model Konseptual

BAB V ALTERASI PERMUKAAN DAERAH PENELITIAN

Pengujian Uap/Monitoring Sumur Panas Bumi MT-2, MT-3, dan MT-4 Mataloko Kabupaten Ngada, Nusa Tenggara Timur Tahun 2005

PENYELIDIKAN GEOKIMIA PANAS BUMI DAERAH LOMPIO KABUPATEN DONGGALA, SULAWESI TENGAH Oleh: Dedi Kusnadi, Supeno, dan Sumarna SUBDIT PANAS BUMI

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI MAPOS, KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR

GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI GERAGAI KABUPATEN TANJUNG JABUNG TIMUR PROVINSI JAMBI

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN BONE DAN KABUPATEN SOPPENG, PROVINSI SULAWESI SELATAN

BAB II TEORI DASAR 2.1. Metode Geologi

TUGAS AKHIR GEOLOGI DAERAH WAYMULI DAN SEKITARNYA SERTA GEOKIMIA FLUIDA PANAS BUMI DI GUNUNG RAJABASA, KABUPATEN LAMPUNG SELATAN, PROVINSI LAMPUNG

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, PROVINSI NUSA TENGGARA TIMUR. Dahlan, Eddy M., Anna Y.

SURVEI PENDAHULUAN GEOLOGI DAN GEOKIMIA PANAS BUMI KABUPATEN BANGGAI DAN KABUPATEN BANGGAI KEPULAUAN PROVINSI SULAWESI TENGAH

SISTEM PANAS BUMI DAERAH WANAYASA, BANJARNEGARA

BAB I PENDAHULUAN. Zona Bogor (Van Bemmelen, 1949). Zona Bogor sendiri merupakan antiklinorium

Bab I Pendahuluan I.1 Latar Belakang

BAB V HASIL DAN PEMBAHASAN. yang diambil dari beberapa manifestasi yang tersebar di sekitar area lapangan panas

GEOLOGI DAN GEOKIMIA DAERAH BANDA NEIRA DAN HUBUNGANNYA TERHADAP SISTEM PANAS BUMI KEPULAUAN BANDA

Tanggapan Laporan Masyarakat Kepulan Asap dari dalam Tanah di Gedangsari GunungKidul

Karakterisasi Temperatur Bawah Permukaan Daerah NZU : Integrasi Data Geotermometer, Mineral Alterasi dan Data Pengukuran Temperatur Bawah Permukaan

BAB IV STUDI KHUSUS GEOKIMIA TANAH DAERAH KAWAH TIMBANG DAN SEKITARNYA

BAB V HASIL DAN PEMBAHASAN

BAB 6 PEMBAHASAN POTENSI PANAS BUMI DAERAH PENELITIAN

GEOLOGI DAN GEOKIMIA PANAS BUMI DAERAH PERMIS KABUPATEN BANGKA SELATAN, PROVINSI BANGKA BELITUNG S A R I

BAB I PENDAHULUAN. pembentuk tanah yang intensif adalah proses alterasi pada daerah panasbumi.

BAB I PENDAHULUAN. Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN MINAHASA UTARA DAN KOTA BITUNG - PROVINSI SULAWESI UTARA SARI

BAB III ALTERASI HIDROTERMAL BAWAH PERMUKAAN

Bab IV Sistem Panas Bumi

BAB I PENDAHULUAN I.1. Latar Belakang

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI AMOHOLA, KABUPATEN KONAWE SELATAN PROVINSI SULAWESI TENGGARA

PERCOBAAN VII PEMBUATAN KALIUM NITRAT

STUDI GEOKIMIA AIR PANAS AREA PROSPEK PANASBUMI GUNUNG KENDALISODO KABUPATEN SEMARANG, PROVINSI JAWA TENGAH. Yoga Aribowo*, Heri Nurohman**)

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, NTT TAHUN

DAFTAR ISI. Halaman HALAMAN JUDUL...i. HALAMAN PENGESAHAN...ii. HALAMAN PERSEMBAHAN...iii. UCAPAN TERIMAKASIH...iv. KATA PENGANTAR...vi. SARI...

MONITORING SUMUR-SUMUR EKSPLORASI LAPANGAN PANAS BUMI MATALOKO, KABUPATEN NGADA, PROVINSI NUSA TENGGARA TIMUR TAHUN 2015

SURVEI PENDAHULUAN DAERAH PANAS BUMI KABUPATEN MAHAKAM HULU DAN KABUPATEN KUTAI KARTANEGARA, PROVINSI KALIMANTAN TIMUR

PENYISIHAN KESADAHAN dengan METODE PENUKAR ION

PENENTUAN TIPE FLUIDA SUMBER MATA AIR PANASDI KECAMATAN GUNUNG TALANG, KABUPATEN SOLOK

BAB I PENDAHULUAN. Perubahan kimia airtanah dipengaruhi oleh faktor geologi dan faktor antropogen.

UNIVERSITAS PENDIDIKAN GANESHA

Bab VI Larutan Elektrolit dan Nonelektrolit

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

PENYELIDIKAN TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI G. KAPUR KABUPATEN KERINCI PROVINSI JAMBI

SURVEI TERPADU GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI SAJAU KABUPATEN BULUNGAN, PROVINSI KALIMANTAN UTARA

kimia ASAM-BASA III Tujuan Pembelajaran

BAB I PENDAHULUAN. dan perekonomian. Data Kementerian ESDM (2014) menyatakan bahwa

MONITORING SUMUR EKSPLORASI PANAS BUMI MT-2 MATALOKO KABUPATEN NGADA, NUSA TENGGARA TIMUR (TAHAP 1-6), 2004 Oleh: Bangbang Sulaeman dan Dedi Kusnadi

KARAKTERISTIK MATA AIR PANAS DAERAH PANAS BUMI DESA AKESAHU GAMSUNGI KECAMATAN JAILOLO TIMUR KABUPATEN HALMAHERA BARAT PROPINSI MALUKU UTARA

ABSTRAK. : Panas bumi, Geokimia, Reservoar panas bumi, Geoindikator Cl-HCO3-SO4, Geotermometer Silika, Binary Cycle

ABSTRAK. Kata kunci : Panas bumi, reservoar, geotermometer, Pembangkit Listrik Tenaga Panas bumi.

BAB II TINJAUAN PUSTAKA

MODUL I Pembuatan Larutan

Penentuan Kesadahan Dalam Air

Survei Terpadu Geologi Daerah Panas Bumi Kalawat, Kabupaten Minahasa Utara, Provinsi Sulawesi Utara SARI

TINJAUAN UMUM DAERAH PENELITIAN

LOGO. Analisis Kation. By Djadjat Tisnadjaja. Golongan V Gol. Sisa

(25-50%) terubah tetapi tekstur asalnya masih ada.

SURVEI GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI TAMIANG HULU KABUPATEN ACEH TAMIANG, PROVINSI ACEH

PENYELIDIKAN GEOKIMIA PANAS BUMI LAU SIDEBUK-DEBUK KABUPATEN KARO SUMATERA UTARA. Juliper Nainggolan ABSTRACT

SISTEM PANASBUMI: KOMPONEN DAN KLASIFIKASINYA. [Bagian dari Proposal Pengajuan Tugas Akhir]

: Komposisi impurities air permukaan cenderung tidak konstan

PENYELIDIKAN PENDAHULUAN GEOLOGI DAN GEOKIMIA DAERAH PANAS BUMI KABUPATEN KAMPAR DAN KUANTAN SINGINGI, PROVINSI RIAU

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang-

BAB 6. Jika ke dalam air murni ditambahkan asam atau basa meskipun dalam jumlah. Larutan Penyangga. Kata Kunci. Pengantar

Wardaya College IKATAN KIMIA STOIKIOMETRI TERMOKIMIA CHEMISTRY. Part III. Summer Olympiad Camp Kimia SMA

Tabel klasifikasi United State Department of Agriculture (USDA) fraksi tanah (Notohadiprawiro, 1990).

BAB I PENDAHULUAN. Tatanan Geologi Lapangan Panas Bumi Kamojang

BAB I PENDAHULUAN. Cekungan Air Tanah Magelang Temanggung meliputi beberapa wilayah

LOGO ANALISIS KUALITATIF KATION DAN ANION

BAB II METODE PENELITIAN

BAB 2 TEORI DASAR 2.1 Metode Geologi

LEMBARAN SOAL 5. Pilih satu jawaban yang benar!

BAB III METODOLOGI PENELITIAN. Ruang lingkup penelitian ini adalah Ilmu Kimia Analisis.

BAB 3 METODE PERCOBAAN

KONDISI LINGKUNGAN PASCA PENGEBORAN SUMUR EKSPLORASI AT-1 DAN AT-2 DI LAPANGAN PANAS BUMI ATADAI, LEMBATA, NUSA TENGGARA TIMUR

Kelas : XI IPA Guru : Tim Guru HSPG Tanggal : Senin, 23 Mei 2016 Mata pelajaran : Kimia Waktu : WIB

Transkripsi:

BAB IV MANIFESTASI PANAS BUMI DI GUNUNG RAJABASA IV.1 TINJAUAN UMUM Manifestasi panas bumi adalah keluaran fluida panas bumi dari reservoar ke permukaan melalui rekahan atau melalui suatu unit batuan yang permeabel (Wohletz dan Heiken, 1992). Kemunculan manifestasi ini tergantung dari kondisi reservoar termasuk fluida panas bumi dan proses-proses yang terjadi pada fluida panas bumi tersebut. Manifestasi permukaan dari suatu sistem panas bumi di daerah gunung api merupakan fitur penting yang dapat diteliti pertama kali pada tahap penyelidikan pendahuluan dan penyelidikan lanjutan dalam tahapan kegiatan pengusahaan panas bumi. Pada tahap ini, sistem panas bumi di suatu daerah dikaji secara hidrogeokimia dengan cara pengambilan sampel air dan gas untuk memperkirakan temperatur dan komposisi fluida reservoar (Wohletz dan Heiken, 1992). Manifestasi panas bumi di permukaan dapat dibagi menjadi manifestasi aktif (keluaran fluida) dan manifestasi fosil (alterasi batuan). Contoh manifestasi aktif adalah mata air panas, fumarola, kolam lumpur, tanah beruap, geiser, dan lainlain. Contoh manifestasi fosil adalah alterasi batuan. Di daerah penelitian, sampel air dan gas diambil dari manifestasi panas bumi aktif. Sampel air dianalisis untuk mengetahui kandungan unsur, senyawa, dan isotop stabilnya, sedangkan sampel gas dianalisis untuk mengetahui kandungan gas yang dikeluarkan oleh manifestasi tersebut. Data hasil analisis ini digunakan untuk mengetahui asal fluida panas bumi, karakteristik fluida panas bumi di reservoar, dan proses pada fluida panas bumi di bawah permukaan. IV.2 STUDI KHUSUS IV.2.1 Lokasi Studi khusus dilakukan pada setiap manifestasi panas bumi yang ditemukan di kaki Gunung, terutama di kaki gunung bagian selatan dan utara. Lokasi 26

5 50 00 LS studi khusus di bagian utara Gunung termasuk ke dalam Desa Sumur Kumbang dan Desa Kecapi, Kecamatan Kalianda, sedangkan lokasi studi khusus di bagian selatan Gunung termasuk ke dalam Desa Waymuli, Kecamatan Kalianda dan Desa Kunjir, Kecamatan, Kabupaten Lampung Selatan. 105 36 00 BT Gambar IV.1 Lokasi manifestasi di Gunung. IV.2.2 Manifestasi Panas Bumi Di Gunung, lima manifestasi panas bumi ditemukan di kaki gunung bagian utara dan selatan (Gambar IV.1). Kelima manifestasi ini berupa mata air hangat, mata air panas, geiser, kolam lumpur, dan fumarola (Gambar IV.2). Pada setiap manifestasi dilakukan pengamatan manifestasi (penentuan lokasi dan kenampakan manifestasi), pengukuran karakteristik manifestasi (temperatur, ph, dan debit), dan pengambilan sampel fluida (air dan gas) yang hasilnya terangkum pada Tabel IV.1. 27

Gambar IV.2 Manifestasi panas bumi di Gunung, (a) Mata air hangat (AP-1.1), (b) Mata air hangat Sumur Kumbang (AP-1.2), (c) Mata air hangat Kecapi (AP-2.4), (d) Kolam lumpur dan fumarola Kunjir (AP-2.5), (e) Geiser Gunung Botak (AP-1.3) saat geiser muncul, (f) Geiser Gunung Botak (AP-1.3) saat geiser tidak muncul. 28

29 Tabel IV.2 Lokasi dan karakteristik manifestastasi panas bumi di Gunung. No. Nama Koordinat Kode Lokasi LS BT Jenis Manifestasi 1 5 45 52,2 105 36 41,5 AP-1.1 Mata air hangat 2 Sumur 5 44 53,6 105 36 58,3 AP-1.2 Mata air Kumbang hangat 3 Kecapi 4 Gunung Botak 5 45 08,0 105 38 02,8 AP-2.4 Mata air panas Tanggal Pengambilan Sampel 22 Januari 2011 22 Januari 2011 23 Januari 2011 5 50 06,9 105 57 40,7 AP-1.3 Geiser 22 Januari 2011 5 Kunjir 5 49 36,8 105 38 45,8 AP-2.5 Kolam Lumpur 23 Januari 2011 Jenis Sampel Temperatur ( C) Fumarola Gas 100, 0 ph Debit (ml/s) Karakteristik Manifestasi Udara Mani festasi Air 20,3 25,7 4,66 135 Air jernih, sedikit bau belerang. Air 22,5 35,4 4,82 2,5 Air jernih, sedikit bau belerang, terlihat gelembung-gelembung, terdapat endapan sinter silika. Air 23,0 56,0 2,91 325 Air agak keruh, bau belerang kuat, banyak endapan sulfur. Air 27.1 99,0 6,59 200 Mata air, air jernih, tidak tercium bau belerang, muncul tiap 10 menit sekali dengan tinggi 50 cm selama 5 menit, terdapat endapan sinter silika. Air 26.9 100, 1,99 225 Tanah di sekitarnya 0 hangat, air keruh, bau belerang kuat, banyak lumpur panas, terdapat endapan silika residu. - - Lubang keluaran gas, terdengar suara gemuruh, asap berwarna putih. 29

IV.2.3 Tata Cara Pengambilan Sampel Air, Isotop dan Gas Pengambilan sampel dilakukan berdasarkan prosedur yang disebutkan di dalam Nicholson (1993). IV.2.3.1 Pengambilan Sampel Air Peralatan yang dibutuhkan adalah gelas ukur, kertas saring 40 μm, corong, larutan HNO 3 5 N, pipet tetes, kertas lakmus, botol plastik (untuk setiap manifestasi dibutuhkan dua botol), dan cool box. Sampel air diambil sebanyak 500 ml (untuk dua botol dan setiap botol 250 ml) di lokasi manifestasi dengan temperatur tertinggi dan keluaran langsung. Air dimasukkan ke dalam botol plastik dengan disaring. Sampel air di botol plastik pertama langsung ditutup, sedangkan botol kedua diasamkan dengan cara diberi larutan HNO 3 5 N hingga ph larutan di bawah 2. Langkah selanjutnya adalah memberi keterangan di setiap botol yang meliputi kode sampel, temperatur, ph, diasamkan atau tidak, dan jenis sampel (air, isotop atau gas). Sampel air ini kemudian disimpan di dalam cool box. IV.2.3.2 Pengambilan Sampel Isotop Peralatan yang dibutuhkan hampir sama dengan peralatan untuk mengambil sampel air, tetapi botol yang digunakan adalah botol kaca. Peralatan tambahan yang diperlukan adalah kertas dan selotip. Sampel air diambil sebanyak 100 ml (untuk satu botol) di lokasi manifestasi dengan temperatur tertinggi menggunakan gelas ukur dan disaring dengan kertas saring seperti pengambilan sampel air di atas. Botol langsung ditutup dan dilapisi seluruh bagiannya dengan kertas dan selotip untuk menghindari kontaminasi cahaya. Langkah selanjutnya adalah memberi keterangan di setiap botol yang meliputi kode sampel, temperatur, ph, dan jenis sampel (air, isotop atau gas). Sampel isotop ini kemudian disimpan di dalam cool box. IV.2.3.3 Pengambilan Sampel Gas Peralatan yang dibutuhkan adalah tabung Giggenbach, larutan NaOH 5 N, corong, selang silikon, tabung pipa, dan busa. Tabung Giggenbach diisi dengan larutan NaOH 5 N yang kemudian divakum pada tekanan -5 bar. Untuk mengambil gas dari manifestasi, peralatan yang digunakan adalah rangkaian corong, selang silikon, dan tabung Giggenbach yang saling dihubungkan. Corong diletakkan di atas 30

manifestasi dan perlu ditunggu cukup lama agar gas terkumpul dan mengalir melalui selang. Saat gas sudah mengalir di selang, katup tabung Giggenbach dibuka sedikit demi sedikit agar gas masuk ke dalam tabung Giggenbach. Selama proses pemasukan gas, tabung Giggenbach digoyang pelan agar gas yang masuk larut ke dalam larutan NaOH. Setelah 15 hingga 20 menit, katup tabung Giggenbach ditutup lalu selang dilepaskan dari tabung Giggenbach. Untuk penyimpanan, tabung Giggenbach dimasukkan ke dalam tabung pipa yang sudah dilapisi busa di bagian dalamnya. Langkah selanjutnya adalah memberi keterangan di setiap tabung Giggenbach dan tabung pipa yang meliputi kode sampel, temperatur, dan jenis sampel (air, isotop atau gas). IV.2.4 Hasil Analisis Sampel Sampel air dan gas yang diambil dari manifestasi panas bumi Gunung dianalisis kimia air, isotop stabil, dan kimia gas di laboratorium. Hasil analisis ini ditampilkan pada Tabel IV.3 hingga IV.5. Tabel IV.3 Hasil analisis kimia air. Manifestasi Lokasi AP-1.1 Utara Gunung AP-1.2 Sumur Kumbang Utara Gunung AP-2.4 Kecapi Utara Gunung AP-1.3 Gunung Botak Selatan Gunung AP-2.5 Kunjir Selatan Gunung SiO 2 (mg/kg) 102,50 89,28 104,43 123,93 360,21 Ca 2+ (mg/kg) 24,73 121,60 97,00 401,70 141,20 Mg 2+ (mg/kg) 4,86 20,10 13,70 267,00 54,30 Na + (mg/kg) 14,85 32,08 63,00 4948,00 95,40 K + (mg/kg) 15,15 18,6 23,93 402,43 18,91 Li + (mg/kg) 0,00 0,00 0,00 2,24 0,30 NH 3 (mg/kg) 13,33 14,17 13,13 12,00 66,67 Cl - (mg/kg) 50,10 64,52 82,67 7986,58 223,70 2- SO 4 (mg/kg) 88,51 389,66 365,52 795,06 2643,68 - HCO 3 (mg/kg) 13,82 26,57 0,00 66,96 0,00 CO 2 (mg/kg) - - 139,67-2514,07 B (mg/kg) 1,07 1,29 0,69 7,34 3,86 ph Lab 4,66 4,81 2,91 6,59 2,35 Kesetimbangan Kation (meq) 2,67 9,59 9,32 267,85 9,95 Kesetimbangan Anion (meq) 3,44 10,30 9,95 242,76 61,39 Kesetimbangan Ion (%) 12,71 3,54 3,26 4,91 67,63 31

Tabel IV.4 Hasil analisis isotop stabil. Manifestasi Lokasi δd ( ) δ 18 O ( ) AP-1.1 Utara Gunung -42,8 ± 1,7-6,77 ± 0,23 AP-1.2 Sumur Kumbang Utara Gunung -45,0 ± 0,9-7,41 ± 0,17 AP-2.4 Kecapi Utara Gunung -42,8 ± 0,4-6,88 ± 0,22 AP-1.3 Gunung Botak Selatan Gunung -27,6 ± 0,6-4,66 ± 0,31 AP-2.5 Kunjir Selatan Gunung -5,7 ± 0,7-0,79 ± 0,09 Tabel IV.5 Hasil analisis kimia gas. Manifestasi Lokasi Gas Unit (% mol) SG 01 Kunjir Selatan Gunung He 0,000 H 2 0,014 O 2 + Ar 3,257 N 2 2,654 CH 4 0,100 CO 0,000 CO 2 7,815 SO 2 0,000 H 2 S 0,172 HCl 0,000 H 2 O 85,988 IV.2.4 Analisis Geokimia IV.2.4.1 Tipe Air Fluida panas bumi dibedakan berdasarkan kandungan anion utamanya yaitu Cl - 2- - (klorida), SO 4 (sulfat), dan HCO 3 (bikarbonat). Berdasarkan pengeplotan kandungan ketiga anion tersebut, manifestasi panas bumi Gunung menunjukkan tiga tipe air (Gambar IV.3). Tipe yang pertama adalah tipe air klorida yang ditunjukkan oleh fluida dari manifestasi geiser di Gunung Botak. Tipe air ini menunjukkan air reservoar yang dicirikan oleh ph mendekati netral (6,59), jernih, dan keterdapatan endapan sinter silika di dekat manifestasi. Tipe air panas yang kedua adalah tipe air sulfat yang ditunjukkan oleh fluida dari manifestasi kolam lumpur Kunjir. Tipe air ini terbentuk akibat kondensasi gas H 2 S (uap air dan volatil lainnya) ke dalam air tanah dekat permukaan (steam heated 32

water). Pada sistem panas bumi bertopografi tinggi, air sulfat merupakan upflow dari reservoar. Tipe air ini memiliki ph asam (2,35). Tipe air yang ketiga adalah tipe klorida-sulfat ber-ph asam yang ditunjukkan oleh manifestasi mata air hangat dan Sumur Kumbang serta mata air panas Kecapi. Tipe air seperti ini dapat terbentuk akibat pencampuran air reservoar dengan air kondensat atau pencampuran air meteorik dengan air magmatik. Untuk itu, data isotop dan geoindikator digunakan untuk mengkonfirmasi adanya proses pencampuran ini. Keterangan: Sumur Kumbang Kecapi Gunung Botak Kunjir Gambar IV.3 Tipe air pada manifestasi panas bumi Gunung berdasarkan diagram Cl-SO 4 -HCO 3. IV.2.4.2 Geoindikator Klorida (Cl - ), litium (Li + ), dan boron (B) merupakan unsur konservatif di dalam sistem panas bumi dan termasuk unsur terlarut yang dapat digunakan untuk mengetahui asal fluida panas bumi. Berdasarkan hasil pengeplotan kandungan ketiga unsur tersebut pada diagram segitiga Cl-Li-B, sistem panas bumi Gunung terdiri dari tiga reservoar. Reservoar pertama terletak di kaki utara Gunung yaitu yang mengeluarkan mata air hangat dan Sumur Kumbang serta mata air panas 33

Kecapi. Reservoar ini menunjukkan nilai B/Cl antara 0,02-0,07. Proses yang terjadi pada fluida di reservoar ini adalah proses interaksi dengan batuan sekitar yang dicirikan oleh kandungan Li dan B yang hampir sama (Gambar IV.4). Nilai rasio yang rendah mencirikan bahwa manifestasi yang keluar merupakan upflow dari reservoar. Hal ini dibuktikan oleh nilai rasio Na/K kurang dari 15, Na/Ca antara 0.5-1, Cl/SO 4 antara 0,45-1,53, dan HCO 3 /SO 4 antara 0,00-0,25 (Tabel IV.6). Keterangan: Sumur Kumbang Kecapi Gunung Botak Kunjir Gambar IV.4 Diagram Cl-Li-B yang menunjukkan tiga reservoar pada Sistem Panas Bumi Gunung. Reservoar kedua terletak di Gunung Botak yaitu di kaki selatan Gunung dan mengeluarkan manifestasi geiser Gunung Botak. Reservoar ini menunjukkan nilai Cl yang lebih tinggi dibandingkan dengan manifestasi lain dan memiliki nilai rasio B/Cl sekitar 0,01 (Gambar IV.4). Lokasi geiser Gunung Botak yang berada di pantai mengindikasikan bahwa ada kemungkinan fluida di manifestasi ini sudah bercampur dengan air laut. Pada kimia air, hal ini diindikasikan oleh konsentrasi unsur terlarut yang lebih tinggi dibandingkan konsentrasi unsur terlarut air panas lainnya. Manifestasi dari reservoar kedua ini merupakan upflow dari reservoar. Hal ini ditunjukkan oleh nilai rasio Na/Ca, Na/K, Cl/SO 4, dan HCO 3 /SO 4 yang rendah (Tabel IV.6). Reservoar ketiga adalah reservoar Kunjir yang mengeluarkan manifestasi kolam lumpur dan fumarola Kunjir. Tipe air di manifestasi ini adalah air sulfat yang merupakan steam heated water. Proses pemanasan oleh uap (kondensasi) ini dapat 34

ditunjukkan oleh nilai SO 4, NH 3, dan B yang tinggi (Nicholson, 1993). Tipe air ini sudah mengalami proses interaksi dengan batuan sekitar sehingga nilai B dan Li meningkat dengan rasio B/Cl sekitar 0,057 (Gambar IV.4). Pada sistem panas bumi bertopografi tinggi seperti di Gunung, air sulfat merupakan upflow dari reservoar. Tabel IV.6 Nilai rasio unsur-unsur yang menunujukkan aliran upflow di setiap manifestasi panas bumi Gunung. Sumur Gunung Lokasi Kecapi Kunjir Kumbang Botak Kode Lokasi AP 1-1 AP 1-2 AP 2-4 AP 1-3 AP 2-5 Na (mg/kg) 14,85 32,08 63 4948 95,4 K (mg/kg) 15,15 18,6 23,93 402,43 18,91 Ca (mg/kg) 24,73 121,6 97 401,7 141,2 Cl (mg/kg) 50,1 64,52 82,67 7986,58 223,7 SO 4 (mg/kg) 88,51 389,66 365,52 795,06 2643,68 HCO 3 (mg/kg) 13,82 26,57 0,00 66,96 0,00 Na/K 1,67 2,93 4,48 20,91 8,58 Na/Ca 1,05 0,46 1,13 21,47 1,18 Cl/SO 4 1,53 0,45 0,61 27,22 0,23 HCO 3 /SO 4 0,25 0,11 0,00 0,13 0,00 IV.2.4.3 Isotop Stabil Analisis isotop yang digunakan adalah isotop deuterium (δd atau δ 2 H) dan oksigen-18 (δ 18 O). Isotop stabil ini diaplikasikan untuk mengetahui proses dan asal fluida panas bumi (Nicholson, 1993). Menurut Craig (1963 dalam Nicholson, 1993), kandungan δd di fluida panas bumi memiliki nilai yang hampir sama dengan air meteoriknya sementara nilai δ 18 O di fluida panas bumi lebih positif daripada air meteorik. Hal ini menunjukkan, bahwa fluida panas bumi berasal dari air meteorik (Craig dkk., 1956 dan Craig, 1963 dalam Nicholson, 1993). Hasil analisis isotop stabil yang digambarkan pada Gambar IV.5 memperkuat pernyataan mengenai keberadaan tiga reservoar di sistem panas bumi Gunung. Ketiga reservoar tersebut adalah reservoar 1 yang mengeluarkan mata air hangat dan Sumur Kumbang, serta mata air panas Kecapi, 35

reservoar 2 yang mengeluarkan geiser Gunung Botak, dan reservoar 3 yang mengeluarkan kolam lumpur dan fumarola Kunjir. Berdasarkan pengeplotan kandungan δd dan δ 18 O setiap manifestasi, fluida panas bumi di Gunung memiliki kandungan δd dan δ 18 O yang tidak berbeda jauh dengan air meteorik (Gambar IV.5). Sedikit pergeseran nilai δ 18 O menunjukkan bahwa fluida panas bumi telah mengalami interaksi dengan batuan sekitar. Hasil pengeplotan kandungan δd dan δ 18 O pada Gambar IV.5 menunjukkan keterdapatan tiga kelompok reservoar yang berbeda. Gambar IV.5 Data isotop stabil manifestasi Gunung. Kelompok yang pertama terdiri dari mata air hangat dan Sumur Kumbang serta mata air panas Kecapi. Kelompok ini memiliki nilai δd antara - 44,60 hingga -41,50 dan δ 18 O antara -7,28 hingga -6,59 (Gambar IV.5). Proses interaksi antara fluida dengan batuan sekitar menyebabkan terjadinya penambahan nilai δ 18 O relatif terhadap air meteorik. Reaksi antara batuan dengan fluida di kedalaman menyebabkan pertukaran oksigen dengan isotop yang lebih berat akan terkonsentrasi dalam fase larutan (Nicholson, 1993). 36

Kelompok kedua ditunjukkan oleh geiser Gunung Botak. Nilai δd dan δ 18 O di geiser Gunung Botak adalah -27,60 dan -4,66 (Tabel IV.3). Air panas ini, dari kimia air, merupakan pencampuran antara air klorida dengan air laut tetapi data isotop stabilnya tidak menunjukkan keterdapatan pencampuran dengan air laut tersebut. Kelompok ketiga ditunjukkan oleh kolam lumpur Kunjir yang mempunyai nilai δd -5,70 dan δ 18 O -0,79. Air ini mempunyai kandungan isotop paling berat di antara manifestasi yang lain. Peningkatan nilai δ 18 O dan δd menunjukkan adanya proses steam heating atau surface evaporation. IV.2.4.4 Sumber Gas Gas pada fluida panas bumi berasal dari fluida magmatik (magmatic origin), misalnya H 2 S dan SO 2, air meteorik (meteoric origin), misalnya He dan Ar, serta batuan, misalnya CO 2 pada batuan karbonat. Pengeplotan kandungan relatif N 2 -He- Ar dilakukan untuk menentukan asal gas pada fluida panas bumi. Gambar IV.6 Penentuan sumber gas pada sistem panas bumi Gunung berdasarkan diagram N 2 -He-Ar. Kandungan gas H 2 S dan CO 2 menunjukkan sumber magmatik tetapi gas yang diambil dari Kunjir menunjukkan nilai H 2 S dan CO 2 yang rendah. Hal ini menunjukkan bahwa gas di Gunung tidak berasal dari sumber magmatik. Berdasarkan kandungan relatif He, N 2, dan Ar (Gambar IV.6), gas yang diambil dari fumarola Kunjir berasal dari meteorik (meteoric origin). 37

IV.2.4.5 Temperatur Reservoar Geotermometer merupakan suatu perhitungan untuk memperkirakan temperatur reservoar pada suatu sistem panas bumi. Geotermometer unsur terlarut digunakan berdasarkan variasi kandungan beberapa unsur dalam fluida panas bumi yang hadir sebagai fungsi dari temperatur, misalnya SiO 2, rasio Na/K, dan lain-lain. Selain unsur terlarut, temperatur reservoar juga dapat diperkirakan berdasarkan kandungan gas dan isotop stabil δd dan δ 18 O. Berdasarkan kandungan fluida panas bumi, tiga reservoar diindentifikasi terbentuk pada sistem panas bumi Gunung. Reservoar 1 (, Sumur Kumbang, dan Kecapi) mempunyai temperatur yang diperkirakan berdasarkan keberadaan endapan sinter silika di sekitar mata air hangat Sumur Kumbang, yaitu sekitar 260 C. Geotermometer unsur terlarut tidak bisa digunakan karena air di reservoar 1 merupakan immature water. Keterangan: Sumur Kumbang Kecapi Gunung Botak Kunjir Gambar IV.7 Geotermometer Na-K-Mg untuk menentukan temperatur reservoar 2 (Gunung Botak). Perkiraan temperatur reservoar 2 (Gunung Botak) dilakukan dengan menggunakan dua metode. Metode yang pertama adalah geotermometer unsur terlarut Na-K-Mg karena geiser Gunung Botak merupakan air klorida yang termasuk partial mature. Berdasarkan hasil pengeplotan nilai Na, K, dan Mg dari geiser Gunung Botak, temperatur reservoar yang didapatkan adalah 220 C (Gambar IV.7). 38

Metode yang kedua adalah keberadaan endapan sinter silika yang menunjukkan temperatur di bawah permukaan sekitar 260 C berdasarkan solubilitas silika (Nicholson, 1993). Berdasarkan kedua metode di atas, temperatur di reservoar ini diperkirakan antara 220 C hingga 260 C. Karena kolam lumpur Kunjir merupakan air sulfat, maka temperatur reservoar 3 diperkirakan dengan menggunakan geotermometer gas CO 2, karena CO 2 adalah gas yang paling dominan pada sistem panas bumi Gunung. Geotermometer CO 2 tidak dipengaruhi oleh proses kondensasi sehingga dapat digunakan pada manifestasi fumarola dengan temperatur di atas 100 C, dan hanya dapat digunakan pada sistem panas bumi lingkungan vulkanik, seperti di sistem panas bumi Gunung (Arnorsson dkk., 1983 dalam Nicholson, 1993). Perhitungan temperatur reservoar berdasarkan geotermometer CO 2 dilakukan dengan menggunakan rumus berikut: Dengan trial dan error, nilai temperatur reservoar 3 adalah 260 C. Perkiraan temperatur di ketiga reservoar pada sistem panas bumi Gunung dirangkum dalam Tabel IV.7. IV.2.4.6 Kedalaman Reservoar Kedalaman setiap reservoar dilakukan dengan menggunakan dua metode. Metode pertama menggunakan data statistik pengukuran temperatur reservoar di beberapa lokasi pemboran lapangan panas bumi di Indonesia yang dikemukakan oleh Hochstein dan Sudarman (2008, Gambar IV.7). Metode kedua menggunakan data gradien panas bumi di lokasi panas bumi Gunung yaitu sebesar 1,73-2,85 C/10 m (Pusat Survei Geologi, 1992 dalam Pusat Survei Geologi, 2009). Kedalaman setiap reservoar pada sistem panas bumi Gunung ditampilkan pada Tabel IV.7. 39

Gambar IV.8 Penentuan kedalaman reservoar berdasarkan data statistik kedalaman reservoar dan hasil pengukuran temperatur di beberapa lokasi pemboran lapangan panas bumi di Indonesia (Hochstein dan Sudarman, 2008). Tabel IV.7 Perkiraan temperatur dan kedalaman reservoar di reservoar 1 (, Sumur Kumbang, dan Kecapi), reservoar 2 (Gunung Botak), dan reservoar 3 (Kunjir). Reser voar Lokasi Temperatur Kedalaman Reservoar Metode T ( C) Metode h (m) 1, Sumur Kumbang, Kecapi Keberadaan endapan sinter silika 2 Gunung Botak Geotermometer Na-K-Mg Keberadaan endapan sinter silika 3 Kunjir Geotermometer CO 2 260 Data statistik Hochstein dan Sudarman (2008) 1400 Gradien panas bumi 1000-1500 220-260 Data statistik Hochstein dan 1400 Sudarman (2008) Gradien panas bumi 1000-1500 260 Data statistik Hochstein dan 1400 Sudarman (2008) Gradien panas bumi 1000-1500 40

IV.2.4 Model Sistem Panas Bumi Model tentatif sistem panas bumi di Gunung dibuat berdasarkan lokasi manifestasi, tipe air, asal fluida, geotermometer, dan kedalaman reservoar (Gambar IV.9). Dilihat dari topografi dan sumber panasnya, sistem panas bumi di Gunung merupakan sistem panas bumi yang berasosiasi dengan gunung api strato andesitik (Hochstein, 1991). Sistem panas bumi Gunung dapat digambarkan pada Gambar IV.9. Sumber panas pada sistem panas bumi Gunung merupakan sumber panas vulkanogenik yang berasal dari intrusi magma. Berdasarkan kondisi geologi, magma ini sendiri berasal dari dua sumber berbeda, yaitu sumber panas Gunung Botak dan Gunung. Panas dari kedua sumber panas ini dialirkan ke tiga reservoar, yaitu reservoar Sumur Kumbang, Gunung Botak, dan Kunjir. Reservoar Sumur Kumbang dan Kunjir kemungkinan besar mendapatkan suplai panas dari sumber panas Gunung, sedangkan reservoar Gunung Botak mendapat suplai panas dari sumber panas Gunung Botak (Gambar IV.9). Keterangan: Transfer panas Air Cl (reservoar) Sumber Panas Gunung Botak Sumber Panas Gunung Air meteorik (dingin) Air kondensat Gambar IV.9 Model tentatif sistem panas bumi di Gunung (tidak berskala). 41

Air meteorik di kaki utara Gunung terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung. Air meteorik ini kemudian terpanaskan, naik, dan terkumpul di reservoar Sumur Kumbang dengan temperatur 260 C. Batuan reservoar diperkirakan berada di kedalaman 1000 hingga 1500 meter dan merupakan breksi piroklastik dari Satuan Piroklastik Aliran Cugung. Di dekat permukaan, fluida panas bumi akan mengalami kondensasi dan membentuk air klorida sulfat yang keluar sebagai manifestasi mata air hangat dan Sumur Kumbang serta mata air panas Kecapi. Air meteorik di kaki selatan Gunung terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung Botak. Air laut dari Teluk Lampung juga terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung Botak. Air meteorik dan air laut ini kemudian terpanaskan, naik, dan terkumpul di Reservoar Gunung Botak dengan temperatur 220 C hingga 260 C. Batuan reservoar diperkirakan berada di kedalaman 1000 hingga 1500 meter dan merupakan breksi piroklastik dari Satuan Piroklastik Aliran Cugung. Di dekat permukaan, fluida panas bumi membentuk air klorida yang keluar sebagai manifestasi geiser Gunung Botak. Air meteorik di kaki selatan Gunung terserap ke bawah permukaan dan terpanaskan oleh intrusi magma Gunung. Air meteorik ini kemudian terpanaskan, naik, dan terkumpul di reservoar Kunjir dengan temperatur 260 C. Di dekat permukaan, fluida panas bumi akan mengalami kondensasi dan membentuk air sulfat yang keluar sebagai manifestasi kolam lumpur Kunjir. Gas dan uap air dari bawah permukaan mengalami migrasi secara cepat ke permukaan dan muncul sebagai manifestasi fumarola Kunjir. Batuan reservoar diperkirakan berada di kedalaman 1000 hingga 1500 meter dan merupakan breksi piroklastik dari Satuan Piroklastik Aliran Cugung. Sedangkan batuan yang berperan sebagai batuan penudung (caprock) diperkirakan berupa breksi piroklastik dari Satuan Piroklastik Aliran Cugung yang berada di atas reservoar. Batuan ini diperkirakan mengalami proses alterasi sehingga membentuk mineral lempung yang sesuai untuk membentuk lapisan tidak permeabel pada batuan penudung. 42