Total emisi gas metan (CH4) di lahan sawah di

dokumen-dokumen yang mirip
Pendapat selama ini mengatakan bahwa lahan

HASIL DAN PEMBAHASAN. Gambar 12. Dinamika unsur N pada berbagai sistem pengelolaan padi sawah tanah Inseptisol, Jakenan

PERAN BAHAN ORGANIK DAN TATA AIR MIKRO TERHADAP KELARUTAN BESI, EMISI CH 4, EMISI CO 2 DAN PRODUKTIVITAS PADI DI LAHAN SULFAT MASAM RINGKASAN

HASIL. Gambar 4 Fluks CH 4 dari beberapa perlakuan selama satu musim tanam pada sawah lahan gambut

IV. HASIL DAN PEMBAHASAN

Pemanfaatan lahan sawah secara intensif dalam

TINJAUAN PUSTAKA Karakteristik dan Klasifikasi Bakteri Metanotrof Metanotrof sebagai Bakteri Pengoksidasi Metan

RESPONS TANAMAN KEDELAI TERHADAP PEMBERIAN PUPUK FOSFOR DAN PUPUK HIJAU PAITAN

I. PENDAHULUAN. tanahnya memiliki sifat dakhil (internal) yang tidak menguntungkan dengan

PENGARUH DOSIS BOKASHI TERHADAP PERTUMBUHAN DAN HASIL TIGA VARIETAS PADI. The Effect of Bokashi Dosages on Growth and Yield of Three Varieties of Rice

I. PENDAHULUAN. Perubahan dramatis paradigma pemanfaatan sumberdaya alam yang terjadi

II. TINJAUAN PUSTAKA 2.1. Emisi Gas Rumah Kaca di Indonesia

PENDAHULUAN. Latar Belakang. Rataan suhu di permukaan bumi adalah sekitar K (15 0 C ), suhu

BAB IV HASIL DAN PEMBAHASAN

Lampiran 1. Deskripsi padi varietas Ciherang (Supriatno et al., 2007)

Oleh TIMBUL SIMBOLON ILMU TANAH DEPARTEMEN ILMU TANAH FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA MEDAN. Universitas Sumatera Utara

THE INFLUENCE OF N, P, K FERTILIZER, AZOLLA (Azolla pinnata) AND PISTIA (Pistia stratiotes) ON THE GROWTH AND YIELD OF RICE (Oryza sativa)

TEHNIK PENGAMBILAN SAMPEL EMISI GAS N2ODI LAPANGAN

IV. HASIL DAN PEMBAHASAN

TINJAUAN PUSTAKA. sektor pertanian (MAF, 2006). Gas rumah kaca yang dominan di atmosfer adalah

HASIL DAN PEMBAHASAN


Hanafi Ansari*, Jamilah, Mukhlis

rv. HASIL DAN PEMBAHASAN

I. PENDAHULUAN 1.1. Latar Belakang

Pengaruh Sistem Tanam dan Pemberian Jerami Padi Terhadap Emisi Metana dan Hasil Padi Ciherang di Ekosistem Sawah Tadah Hujan

PERTUMBUHAN DAN HASIL BAWANG DAUN (Allium fistulosum L.) VARIETAS LINDA AKIBAT PEMBERIAN PUPUK KANDANG AYAM DAN PUPUK UREA

Pengaruh Pemberian Jerami dan Pupuk Kandang terhadap Emisi N 2. O dan Hasil Padi pada Sistem Integrasi Tanaman-Ternak

HASIL DAN PEMBAHASAN

Aplikasi Pupuk Kandang dan Pupuk SP-36 Untuk Meningkatkan Unsur Hara P Dan Pertumbuhan Tanaman Jagung (Zea mays L.) di Tanah Inceptisol Kwala Bekala

BAHAN DAN METODE. Bahan dan Alat

I. PENDAHULUAN. pertambahan jumlah penduduk dan peningkatan konsumsi per kapita akibat

SIMULASI LAJU EMISI METAN PADA LAHAN PADI SAWAH DENGAN MODEL DENITRIFIKASI-DEKOMPOSISI (DNDC) (STUDI KASUS DI KABUPATEN TASIKMALAYA)

Budidaya Padi Organik dengan Waktu Aplikasi Pupuk Kandang yang Berbeda dan Pemberian Pupuk Hayati

PERTUMBUHAN DAN PRODUKSI PADI SAWAH PADA BEBERAPA VARIETAS DAN PEMBERIAN PUPUK NPK. Oleh:

BAB IV BASIL DAN PEMBAHASAN

TINJAUAN PUSTAKA. Karakteristik Lahan Sawah. reduksi (redoks) dan aktifitas mikroba tanah sangat menentukan tingkat

BAB II TINJAUAN PUSTAKA

Hasil dan pembahasan. A. Pertumbuhan tanaman. maupun sebagai parameter yang digunakan untuk mengukur pengaruh lingkungan

BAB I PENDAHULUAN. I.1 Latar Belakang

HASIL DAN PEMBAHASAN

SERAPAN CD OLEH TANAMAN MENDONG (Fimbristylis globulosa (Retz.) Kunt) PADA TANAH YANG DIBERI PUPUK KANDANG SAPI DAN PUPUK HAYATI ABSTRAK

DAMPAK PENAMBAHAN BAHAN AMANDEMEN DI BERBAGAI KELENGASAN TANAH TERHADAP KETERSEDIAAN HARA PADA VERTISOL. Oleh: Moch. Arifin 1)

BAB II TINJAUAN PUSTAKA

PENDAHULUAN. Latar Belakang. Penggunaan varietas unggul baru padi ditentukan oleh potensi hasil,

SELEKSI POTENSI HASIL BEBERAPA GALUR HARAPAN PADI GOGO DI DESA SIDOMULYO KABUPATEN KULON PROGO

IV. HASIL DAN PEMBAHASAN

KAJIAN APLIKASI PEMBERIAN KOMBINASI PUPUK ORGANIK DAN AN- ORGANIK TERHADAP PRODUKSI PADI SAWAH

1.PENDAHULUAN. Salah satu pupuk organik yang dapat digunakan oleh petani

I. PENDAHULUAN. Kedelai (Glycine max [L.] Merr.) merupakan tanaman pangan terpenting ketiga

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN. kompos limbah tembakau memberikan pengaruh nyata terhadap berat buah per

Fluks Metana dan Karakteristik Tanah pada Budidaya Lima Macam Tanaman

HASIL DAN PEMBAHASAN Kondisi Umum Percobaan

II. TINJAUAN PUSTAKA Produksi dan Emisi Metan dari Lahan Sawah

PENGARUH PENGGUNAAN PUPUK KANDANG DAN NPK TERHADAP PERTUMBUHAN DAN HASIL TANAMAN KACANG TANAH

HASIL ANALISIS DAN PEMBAHASAN. A. Kondisi Umum Penelitian. pengomposan daun jati dan tahap aplikasi hasil pengomposan pada tanaman sawi

MITIGASI EMISI GAS METANA MELALUI PENGELOLAAN LAHAN SAWAH Mitigation of Methane Emission Through Lowland Management

I. PENDAHULUAN Latar Belakang

BAB IV HASIL DAN PEMBAHASAN

MENINGKATKAN PROUKSI PADI DENGAN PENERAPAN TEKNOLOGI HEMAT AIR

BAHAN DAN METODE. Sumatera Utara, Medan dengan ketinggian tempat ± 25 meter diatas permukaan

IV HASIL DAN PEMBAHASAN. Tabel 1. Tinggi tanaman padi akibat penambahan jenis dan dosis amelioran.

BAHAN DAN METODE Waktu dan Tempat Bahan dan Alat Metode Penelitian

II. TINJAUAN PUSTAKA 2.1. Emisi Gas Rumah Kaca (GRK) Karbondioksida (CO2)

THE EFFECT OF AZOLLA AND N FERTILIZER APLICATION ON RICE FIELD (Oryza sativa L.) VARIETY INPARI 13

APLIKASI PUPUK UREA PADA TANAMAN JAGUNG. M. Akil Balai Penelitian Tanaman Serealia

TINJAUAN PUSTAKA Padi Varietas Way Apoburu Pupuk dan Pemupukan

IV. HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Kondisi Umum

IV. HASIL DAN PEMBAHASAN

EFEKTIVITAS KOMPOS SAMPAH PERKOTAAN SEBAGAI PUPUK ORGANIK DALAM MENINGKATKAN PRODUKTIVITAS DAN MENURUNKAN BIAYA PRODUKSI BUDIDAYA PADI

PENGELOLAAN HARA TANAMAN PADI SISTEM GOGORANCAH DI LAHAN SAWAH TADAH HUJAN NUTRIENTS MANAGEMENT OF THE GOGO RANCAH RICE SYSTEM IN RAINFED SKRIPSI

ANALISIS PERTUMBUHAN TANAMAN DAN HASIL UBI JALAR (Ipomoea batatas (L.) Lam.) PENDAHULUAN

I. PENDAHULUAN. Peningkatan aktivitas manusia di muka bumi telah mendorong terjadinya

I. PENDAHULUAN. Tanaman jagung merupakan salah satu komoditas strategis yang bernilai

PENGARUH PEMBERIAN PUPUK ORGANIK DAN PUPUK ANORGANIK TERHADAP KADAR N, P, DAN K TANAH, SERAPAN N, P, DAN K SERTA PERTUMBUHAN PADI DENGAN SISTEM SRI

PERANAN UREA TABLET DAN VARIETAS UNTUK MENINGKATKAN PRODUKSI PADI DI LAHAN RAWA LEBAK

KAJIAN POLA TANAM TUMPANGSARI PADI GOGO (Oryza sativa L.) DENGAN JAGUNG MANIS (Zea mays saccharata Sturt L.)

PENGARUH AKSESI GULMA Echinochloa crus-galli TERHADAP PERTUMBUHAN DAN PRODUKSI PADI

RESPON PERTUMBUHAN DAN HASIL KACANG TANAH PADA APLIKASI DOSIS PUPUK ORGANIK PADAT DAN CAIR

IV. HASIL DAN PEMBAHASAN

Pemanfaatan Pupuk Organik untuk Meningkatkan Populasi Bakteri dan Produksi Tanaman Padi Gogorancah

BAB III METODE PENELITIAN

Optimalisasi Cahaya Matahari Pada Pertanaman Padi (Oryza sativa L.) System of Rice Intensification (SRI) Melalui Pendekatan Pengaturan Jarak Tanam

II. TINJAUAN PUSTAKA. A. Mineralisasi N dari Bahan Organik yang Dikomposkan

UJI DAYA HASIL BEBERAPA GALUR HARAPAN PADI SAWAH DI SUBAK DANGIN UMAH GIANYAR BALI

Prosiding Seminar Nasional Lahan Suboptimal 2015, Palembang Oktober 2015 ISBN:

Perlu Inovasi Teknologi Mengurangi Emisi Gas Rumah Kaca dari Lahan Pertanian

PENGARUH DOSIS PUPUK MAJEMUK NPK DAN PUPUK KANDANG SAPI TERHADAP PERTUMBUHAN DAN HASIL TANAMAN MELON (Cucumis melo L.)

II. TINJAUAN PUSTAKA. Tanaman kopi merupakan tanaman yang dapat mudah tumbuh di Indonesia. Kopi

Pengaruh Aplikasi Pupuk Kandang dan Sistim Tanam Terhadap Hasil Varietas Unggul Padi Gogo Pada Lahan Kering Masam di Lampung

EFISIENSI PENGGUNAAN PUPUK NITROGEN DENGAN PENGGUNAAN PUPUK ORGANIK PADA TANAMAN PADI SAWAH

PENGARUH MANAJEMEN JERAMI TERHADAP PERTUMBUHAN DAN PRODUKSI PADI SAWAH (Oryza sativa L.) Oleh: MUDI LIANI AMRAH A

Beberapa Sifat Kimia Tanah antara lain :

SISTEM BUDIDAYA PADI GOGO RANCAH

EFISIENSI PENGGUNAAN PUPUK N PADA JAGUNG KOMPOSIT MENGGUNAKAN BAGAN WARNA DAUN. Suwardi dan Roy Efendi Balai Penelitian Tanaman Serealia

PENDAHULUAN Latar Belakang

Pengaruh Tiga Jenis Pupuk Kotoran Ternak (Sapi, Ayam, dan Kambing) Terhadap Pertumbuhan dan Produksi Rumput Brachiaria Humidicola

PERBEDAAN UMUR BIBIT TERHADAP PERTUMBUHAN DAN PRODUKSI PADI SAWAH (Oryza sativa L)

Transkripsi:

MULYADI ET AL.: EMISI DAN MITIGASI CH DI LAHAN SAWAH TADAH HUJAN Penekanan Emisi dan Mitigasi Gas CH melalui Teknik Budi Daya Padi Walik Jerami di Lahan Sawah Tadah Hujan Mulyadi 1, A. Wiharjaka 1, Shri Hari Mulya 2, I. Johari Sasa 1 dan S. Partohardjono 3 1 Loka Penelitian Tanaman Pangan, Jakenan 2 Balai Penelitian Tanaman Padi, Sukamandi 3 Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor ABSTRACT. Emission and Mitigation of Methane Through Tillage, Variety and Organic Matter Application from Walik Jerami Rice in Rainfed Lowland Areas. Glasshouse gases such as CO2, CH, N2O can cause global warning. Emission of CO 2, CH, N 2O contribute about 55, 15, 6% of total glasshouse effects. Atmospheric methane as glasshouse gas is more effective than CO 2. Therefore, cultural techniques for food crops that consider environment are necessary. A field experiment was conducted in Pati, Central Java during the 21 dry season to determine the effect of soil tillage, rice variety, and organic matter application on emission and mitigation of methane. The experiment used split plot design replicated three times. Soil tillage treatment as the main plot consisted of zero tillage (t1) and maximum tillage (t2). Rice variety as sub plot consisted of Limboto (v1), Way Rarem (v2), and IR6 (v3); fertilization tested as sub-sub plot was 5 t straw/ha + 9 kg N/ha (n1), 5 t farmyard manure/ha + 9 kg N/ha (n2), 9 kg N/ha (n3). As nitrogen source, ammonium sulphate (ZA) was used. Zero tillage minimised methane emission, and gave insignificant grain and biomassa yields. Way Rarem variety that was transplanted using walik jerami system emitted methane lower than Lomboto which was tolerant to drought and IR6. Farmyard manure application in maximum tillage plot emitted methane lower than rice straw; on the other hand, rice straw in zero tillage plot emitted methane lower than farmyard manure. Key words: Methane, walik jerami, rainfed lowland areas, rice. ABSTRAK. Gas rumah kaca (CH, N 2O dan CO 2) merupakan salah satu penyebab pemanasan bumi. Emisi gas CO 2, CH (metan) dan N 2O masing-masing menyumbang 55, 15 dan 6% dari total efek rumah kaca. Gas metan di atmosfer 25-35 kali lebih efektif daripada CO 2 sebagai gas rumah kaca. Bertolak dari hal tersebut perlu dicari teknik budidaya tanaman pangan yang ramah lingkungan. Penelitian emisi dan mitigasi gas CH melalui pengolahan tanah, pemilihan varietas dan pemberian bahan organik pada padi walik jerami dilaksanakan pada MK I 21 di Pati Jawa Tengah, menggunakan rancangan petak petak terpisah dengan tiga ulangan. Petak utama adalah cara olah tanah: (t1) tanpa olah tanah, (t2) olah tanah sempurna. Anak petak adalah varietas: (v1) Limboto, (v2) Way Rarem dan (v3) IR6. Anakanak petak adalah pemupukan (n1) jerami 5 t + 9 kg N/ha (n2) pupuk kandang 5 t + 9 kg N/ha, dan (n3) 9 kg N/ha, pupuk ZA sebagai sumber N. Hasil penelitian menunjukkan perlakuan tanpa olah tanah mampu menekan emisi gas CH. Padi gogo yang ditanam secara walik jerami (varietas Way Rarem), emisi gas CH lebih rendah di- banding padi sawah yang toleran kekeringan (varietas Limboto) mau- pun IR6. Pemberian pupuk kandang pada perlakuan olah tanah sempurna (OTS), emisi gas CH lebih rendah dari pemberian jerami. Pada TOT, pemberian jerami justru sebaliknya. Kata kunci: Gas CH, walik jerami, sawah tadah hujan. Total emisi gas metan (CH) di lahan sawah di Indonesia berkisar antara 2,5-9, Tg/tahun (Japan Environmental Agency, 1992; Bachelet dan Neue, 1992 dan ALGAS, 199). Emisi gas rumah kaca pada lahan sawah dipengaruhi oleh kondisi oksidasi dan reduksi. Emisi gas metan lebih tinggi pada kondisi sawah. Sebaliknya, emisi gas N2O lebih tinggi pada kondisi kering. Akhir-akhir ini pengurangan pemakaian pupuk anorganik dilakukan karena harganya relatif mahal dan dalam jangka panjang kurang menguntungkan bagi lingkungan. Pengurangan penggunaan pupuk anorganik perlu diimbangi oleh pemberian pupuk organik. Pupuk organik di samping merupakan sumber unsur hara juga dapat meningkatkan kadar bahan organik tanah yang pada gilirannya dapat dimanfaatkan oleh mikroba tanah sebagai sumber energi (Wihardjaka et al., 1999). Pupuk organik merupakan sumber karbon yang dapat menyumbang pembentukan gas metan tetapi mendukung upaya peningkatan produktivitas tanah. Gas metan lepas ke atmosfer melalui degadrasi anaerobik bahan organik (biogenik) dan nonbiogenik (Cicerone and Oremland, 19). Proses dekomposisi bahan organik secara anaerobik menghasilkan gas N 2, H 2, CH, C 2 H 6, propana dan sebagainya. Ketersediaan gas CO 2, CH, dan N 2 lebih besar dalam tanah yang tergenang (Neue and Scharpensell, 199). Pemilihan varietas umur pendek dan toleran kekeringan diperlukan dalam pola tanam padi-palawija di lahan sawah tadah hujan, karena distribusi dan intensitas curah hujan pada agroekosistem ini tidak menentu. Tujuan penelitian adalah untuk mendapatkan data volume emisi gas CH melalui pengaturan pengolahan tanah, varietas dan bahan organik dalam upaya menekan emisi gas tersebut tanpa mengurangi hasil padi walik jerami di lahan sawah tadah hujan. BAHAN DAN METODE Penelitian dilaksanakan pada lahan sawah tadah hujan jenis tanah Inceptisol di Pati, Jawa Tengah, pada MK 21, (Maret - Juni). Penelitian menggunakan rancangan petak petak terpisah, dengan tiga ulangan. Ukuran petak percobaan 5 x m. Petak utama adalah 33

PENELITIAN PERTANIAN TANAMAN PANGAN VOL. 21 NO. 1 22 cara olah tanah yang terdiri atas tanpa olah tanah dan olah tanah sempurna. Anak petak adalah varietas yang meliputi Limboto, Way Rarem dan IR6, sedangkan anak-anak petak adalah penggunaan jerami 5 t + 9 kg N/ha, pupuk kandang 5 t + 9 kg N/ha, dan 9 kg N/ha. Sebagai sumber N adalah pupuk ZA. Parameter yang diamati meliputi emisi gas CH dan N 2 O, C organik tanah dan bahan organik, N total tanah dan tanaman, Eh dan ph tanah, tinggi tanaman, jumlah anakan, komponen hasil, hasil, dan iklim. Contoh gas diambil dua minggu sekali dan dilaksanakan pada pukul 6.. Contoh gas ditampung dalam boks yang terbuat dari feksiglas ukuran x x 6 cm (boks kecil) dan x x 11 cm (boks besar). Penggunaan boks disesuaikan dengan fase pertumbuhan tanaman. Contoh gas diambil dengan menggunakan jarum suntik ukuran 6 ml dengan interval waktu 5, 1, 15, dan 2. Contoh gas dianalisis dengan menggunakan gas kromatografi pada suhu injektor 11 o C dan suhu kolom 92 o C. HASIL DAN PEMBAHASAN bakteri methanogen dalam pembentukan gas CH. Gas CH terbentuk secara optimal pada nilai Eh rata-rata kurang dari -2 mv, karena pada kondisi tersebut bakteri methanogen sebagai penghasil gas metan sangat aktif sehingga proses dekomposisi bahan organik berlangsung cepat (Alexander, 1977). Emisi gas CH (ugm2./menit) 12 1 6 2 2 5 6 2 9 96 Hari setelah tanam (HST) Gambar 1. Pola emisi gas CH harian pada perlakuan tanpa olah tanah padi walik jerami, Jakenan, MK 21. TOT OTS Emisi gas CH Pola emisi gas CH harian diamati dengan interval dua minggu sekali, kemudian dilanjutkan pengamatan setiap minggu setelah tanaman berumur 2 hari setelah tanam (HST) hingga menjelang panen. Emisi gas CH pada perlakuan tanpa olah tanah (TOT) lebih rendah dari olah tanah sempurna (OTS). Pada varietas IR6, emisi gas CH cenderung lebih tinggi dari Limboto dan Way Rarem. Pemberian bahan organik berupa jerami maupun pupuk kandang menyebabkan emisi harian lebih tinggi dibanding tanpa bahan organik. Rata-rata fluk harian metan pada sistem olah tanah, varietas dan bahan organik dari pengamatan awal 26 HST sampai umur 6 HST relatif tinggi, kemudian menurun hingga menjelang panen (Gambar 1, 2 dan 3). Hal ini berkaitan dengan tergenangnya lahan selama pertumbuhan tanaman yang berpengaruh terhadap nilai redoks potensial (Eh tanah). Redoks potensial merupakan ukuran intensitas oksidasi atau reduksi. Tanah tergenang dicirikan oleh Eh tanah yang rendah atau negatif. Pada tanah yang tidak tergenang (kondisi oksidasi), nilai Eh berkisar antara + sampai +7 mv, sedangkan pada kondisi reduksi -25 sampai -35 mv (Ponnamperuna, 1972). Selama pertumbuhan tanaman, lahan sawah dalam kondisi tergenang, kecuali menjelang panen. Hal ini terlihat dari nilai Eh tanah yang berkisar antara -169 sampai -5 (Gambar ). Kondisi reduksi menguntungkan Emisi gas CH (/m2/menit) 16 12 2 5 6 2 9 96 Limboto Wayrarem IR6 Gambar 2. Pola emisi gas CH harian dari berbagai varietas padi walik jerami. Jakenan, MK 21. Emisi gas CH (ug/m2/menit) 1 6 2 2 5 6 2 9 96 Jerami 5 t/ha P. kandang 5 t/ha 9 kg N/ha Gambar 3. Pola emisi gas CH harian dari perlakuan bahan organik pada padi walik jerami. Jakenan, MK 21. 3

MULYADI ET AL.: EMISI DAN MITIGASI CH DI LAHAN SAWAH TADAH HUJAN Eh tanah - - -12-16 26 5 6 2 OTS TOT Emisi gas CH kg/ha/musi 2 2 16 12 7.9 13.6 Jerami 5 t/ha P. kandang 5 t/ha 9 kg N/ha 7.9 5. 63.9. 66.1 167.1 6.7-2 Limboto Wayrarem IR 6 Gambar. Redoks potensial tanah dari perlakuan olah tanah pada padi walik jerami. Jakenan, MK 21. Gambar 6. Emisi gas CH pada perlakuan TOT padi walik jerami. Jakenan, MK 21. ph tanah 7 6 5 3 2 1 TOT OTS 26 5 6 2 Emisi gas CH (kg/ha/musim) 2 15 1 5 Jerami 5 t/ha P. Kandang 5 t/ha 9 kg N/ha Limboto Wayrarem IR6 Gambar 5. Nilai ph tanah pada perlakuan tanpa olah tanah pada padi walik jerami. Jakenan, MK 21. Gambar 7. Emisi gas CH pada perlakuan OTS pada padi walik jerami. Jakenan, MK 21. Pada tanah masam, penggenangan akan meningkatkan ph tanah, sedangkan pada tanah alkalin akan menurunkan ph tanah. Selanjutnya, selama -12 minggu penggenangan, nilai ph akan stabil berkisar antara 6,5-7,. Pada perlakuan TOT, dari awal pengamatan sampai 5 HST, ph meningkat dari, menjadi 7,1, selanjutnya menurun pada kisaran 5-6 (Gambar 5). Hal ini berkaitan dengan Fe (OH) 2 atau Fe (OH) dan bahan tereduksi lainnya. Selanjutnya Neue (1993) menyatakan, fluk emisi gas CH tertinggi terjadi pada saat tanaman berumur 5 HST. Pembentukan gas CH pada tanah masam terjadi 5-6 minggu setelah penggenangan. Menurut Sanchez (1976), peningkatan ph terjadi karena karena adanya pelepasan ion hidroksida ketika Fe (OH)3 dengan senyawa oksida lainnya direduksi menjadi aktivitas bakteri methanogen optimal sebagai penghasil gas CH pada kisaran ph tanah antara 6-. Penambahan pupuk N pada tanah secara langsung akan dihidrolisis oleh enzim urease menjadi CO 2 dan NH 3, sehingga ph tanah cenderung naik yang diikuti oleh turunnya Eh tanah. Nilai ph tanah pada OTS justru sebaliknya, turunnya Eh tanah diikuti oleh turunnya ph tanah. Pada perlakuan kombinasi antara pengolahan tanah dan varietas, besarnya emisi gas CH berbeda. Varietas Way Rarem mengemisi gas CH lebih rendah dibanding Limboto dan IR6 dalam perlakuan TOT, masing-masing 59,73; 69,96 dan 16,6 kg/ha/musim, sedangkan pada perlakuan OTS sebesar 123,5; 12,5 dan 13, kg/ha/musim (Gambar 6). Masing-masing varietas memiliki umur, sifat dan aktivitas akar yang berbeda. Ini berkaitan dengan volume emisi gas metan. Eksudat akar merupakan karbohidrat, asam organik dan asam amino yang mudah berfermentasi menjadi asetat atau CO 2 + H + yang kemudian menjadi gas metan dengan bantuan bakteri methanogen (Yagi and Minami, 199). Kombinasi jerami + ZA pada perlakuan TOT ratarata mengemisi gas CH lebih rendah dibanding pemberian pupuk kandang + ZA maupun dipupuk ZA saja, yaitu sebesar 51,; 115,2 dan 69,6 kg/ ha/musim. Pada perlakuan OTS, pemberian jerami mengemisi gas CH lebih tinggi dibanding pemberian pupuk kandang namun masih lebih rendah jika dipupuk ZA saja, masingmasing 15,5; 121,3 dan 115 kg/ha/musim (Gambar 7). Tingginya emisi gas CH dari pupuk kandang pada 35

PENELITIAN PERTANIAN TANAMAN PANGAN VOL. 21 NO. 1 22 perlakuan TOT disebabkan karena bahan organik diberikan dengan cara tebar di permukaan tanah, sehingga pupuk kandang lebih cepat terdekomposisi yang menghasilkan hara dan juga karbon yang merupakan unsur utama pembentukan CH. Sedangkan proses dekomposisi jerami membutuhkan waktu yang lama. Dilaporkan oleh Ponnamperuna (19) bahwa meskipun laju mineralisasi bahan organik pada kondisi anaerob lebih lambat, tetapi jumlah bahan organik yang termineralisir lebih besar karena yang terimobilisasi lebih kecil, dapat mencapai sekitar dua kali lipat daripada kondisi aerob. Neue (195) melaporkan bahwa selama proses dekomposisi pada minggu pertama, N anorganik banyak lepas. Pada kondisi anaerob dan nisbah C/N tinggi, pelepasan N masih terus berjalan, tetapi remineralisasi N yang terimobilisasi lebih lambat. Selanjutnya produk akhir dari proses dekomposisi anaerobik adalah: CH, CO 2, H 2, H 2 S, NH 3, R-COOH, RNH 2, RSH dan sisa-sisa yang tahan. Selanjutnya Ponnamperuna (19) melaporkan, pembenaman jerami ke dalam tanah secara anaerobik akan meningkatkan pro- duksi CH, kandungan C dan N organik. Nisbah C/N yang tinggi pada bahan organik berkaitan erat dengan perkembangan bakteri methanogen dalam mem- produksi CH. Besarnya kadar C organik dan N Tabel 1. Kadar C organik dan N total jerami dan pupuk kandang pada padi walik jerami, Jakenan MK. 21. Bahan organik C organik Bahan N total Nisbah (%) organik (%) (%) C/N Jerami padi 3,31 52,25,93 32,7 Pupuk kandang 7,2 12,56,26 2,3 total jerami dan pupuk kandang disajikan dalam Tabel 1. Hasil dan Komponen Hasil Hasil analisis sidik ragam menunjukkan ada interaksi yang nyata perlakuan olah tanah, varietas, dan bahan organik hanya terjadi pada bobot jerami dan jumlah gabah hampa (Tabel 2). Varietas nyata mempengaruhi komponen hasil padi walik jerami, antara lain jumlah gabah hampa, panjang malai, jumlah malai, dan bobot 1 butir. Pemberian bahan organik hanya nyata mempengaruhi hasil gabah. Pada perlakuan olah tanah sempurna, hasil meningkat lebih tinggi dibandingkan tanpa olah tanah. Tanah yang diolah sempurna menghasilkan gabah,6 t/ha lebih tinggi daripada tanpa olah tanah (Tabel 3). Varietas IR6 menghasilkan gabah lebih tinggi daripada Way Rarem dan Limboto. Tanpa penambahan bahan organik ke dalam tanah, varietas Limboto dan Way Rarem menghasilkan gabah relatif rendah. Namun dengan pemberian bahan organik, hasil kedua varietas meningkatkan. Penambahan bahan organik dapat meningkatkan kapasitas menahan air dan memperbaiki struktur tanah, sehingga akar berkembang lebih baik dalam menyerap air dan hara yang dibutuhkan oleh tanaman. Tanggap padi walik jerami terhadap pemberian bahan organik nyata pada perlakuan olah tanah. Peningkatan hasil sebesar 17% jika diberikan pupuk kandang. Pemberian jerami segar hanya meningkatkan hasil 1%, dan tidak beda nyata dibanding hasil pada perlakuan tanpa bahan organik. Pengembalian jerami Tabel 2. Uji F beberapa parameter hasil dan komponen hasil pada padi walik jerami, Jakenan MK. 21. Nilai F hitung Sumber Derajat Keragaman bebas Hasil Bobot Gabah Gabah Bobot 1 Panjang Jumlah gabah jerami hampa isi butir malai malai Ulangan 2 - - - - - - - Olah tanah (T) 1 - - - - - - - Galat (a) 2 Varietas (V) 2 1,7 tn 1,6 tn 39,3 ** <1 tn 12,35 **,9 ** 36,6 ** TXV 2 1,31 tn <1 tn 5,7 * 1,5 tn 1,1 tn 1,3 tn <1 tn Galat (b) Bahan organik (o) 2 3,5 * 1,91 tn <1 tn 1,2 tn 1,15 tn <1 tn <1 tn TxO 2 1, tn <1 tn <1 tn 1,3 tn 1,6 tn 1,7 tn 1,97 tn VxO <1 tn 1,3 tn 2,76 tn 1,29 tn <1 tn 1,6 tn <1 tn TxVxO <1 tn,61 ** 2,5 tn <1 tn 1,22 tn <1 tn <1 tn Galat (c) 2 KK (a)% KK (a)% 2,1 2,1 15,9 19,1 3,5 6,9 17,3 KK (a)% 9, 13, 23,7 29,2 2,9 3,2 15, ** Nyata pada taraf 1%; * Nyata pada taraf 5%; tn tidak nyata 36

MULYADI ET AL.: EMISI DAN MITIGASI CH DI LAHAN SAWAH TADAH HUJAN Tabel 3. Hasil dan komponen hasil dari berbagai olah tanah, varietas dan bahan organik pada padi walik jerami, Jakenan MK. 21. Varietas N/ha Tanpa olah tanah Tanpa olah tanah Jerami 5 t/ha + Pukan 5 t/ha + 9 kg N/ha Jerami 5 t/ha + Pukan 5 t/ha + 9 kg 9 kg N/ha 9 kg N/ha 9 kg N/ha 9 kg N/ha Limboto 3,19 a 3,31 a 2,5 a 3,27 a 3,1 a 3,6 a Wayrarem 2,1 a 2, a 2,3 a 3,2 a 3, a 3,33 a IR6 2,9 a 3,33 a 2,9 a 3,95 a 3,96 a,11 a Bobot jerami (t/ha) Limboto,27 a 9,33 a 6,21 a 9,7 a,23 a, a Wayrarem, a 6,53 b 6,13 a,12 ab 9,59 a,53 a IR6 7,2 a 5,71 b 7,27 a 7,1 b,95 a,1 a Jumlah gabah hampa/rumpun Limboto 251 a 25 b 123 b 251 a 225 a 1 c Wayrarem 256 a 19 c 11 a 2 a 177 c 166 b IR6 19 b 27 a 13 a 23 a 1 b 172 a Jumlah isi hampa/rumpun Limboto 9 a 53 b 367 b 55 a 56 a 69 c Wayrarem 6 a 57 b 3 c 51 a 1 c 6 b IR6 52 a 55 a 57 a 552 a 537 b 621 a Panjang malai (cm) Limboto 22, a 2, a 21,6 a 23,3 a 2,9 a 22,9 a Wayrarem 22, a 2,1 a 21,2 a 23,6 a 2,1 a 2, a IR6 22,3 a 2,1 a 21,3 a 23,1 a 25,6 a 23,7 a Bobot 1 butir (g) Limboto 26, a 25,7 a 2,9 a 27,2 a 25,9 a 25,9 a Wayrarem 27, a 25,2 a 25, a 27, a 27,1 a 26,5 a IR6 26,9 a 25, a 25,2 a 26,7 a 26, a 25, a Jumlah malai/rumpun Limboto 6,7 a 7,3 a 1, a 6, a 7,5 a 9, a Wayrarem 7,3 a 6,9 a 1,2 a 6,1 a 6,7 a 1,6 a IR6 5,9 a 7,1 a 9,1 a 6,6 a 7,5 a 11,5 a Angka dalam lajur diikuti huruf yang sama tidak bebeda nyata pada taraf 5 % menurut Uji DMRT Pukan = pupuk kandang ke dalam tanah relatif tidak meningkatkan hasil. Hal ini diduga karena proses imobilisasi dan dihasilkannya asam-asam organik slama proses perombakan yang dapat mengganggu pertumbuhan tanaman padi. Varietas Limboto dan Way Rarem cenderung menghasilkan jerami lebih tinggi daripada IR6. Hasil jerami kedua varietas tersebut nyata lebih tinggi pada perlakuan tanpa olah tanah dengan pemberian bahan organik, baik berupa jerami segar maupun pupuk kandang. Interaksi perlakuan olah tanah dan varietas mempengaruhi jumlah gabah hampa. Jumlah gabah hampa varietas IR6 nyata lebih rendah daripada Limboto dan Way Rarem, baik pada perlakuan tanpa olah tanah maupun olah tanah sempurna. Menurut Yoshida (191), kekeringan terutama pada saat tanaman berbunga menyebabkan banyak gabah yang hampa akibat tidak terbentuknya asimilat berupa karbohidrat dalam gabah selama fotosintesis. Varietas IR6 juga memberikan panjang malai dan bobot 1 butir lebih rendah daripada Way Rarem dan Limboto, namun jumlah malai dari IR6 nyata lebih banyak. KESIMPULAN Emisi gas CH harian meningkat seiring dengan turunnya redok potensial tanah, emisi CH meningkat pada 5 dan 6 HST. Perlakuan TOT menekan emisi gas CH sebesar 65% lebih rendah dari OTS. 37

PENELITIAN PERTANIAN TANAMAN PANGAN VOL. 21 NO. 1 22 Varietas padi gogo Way Rarem dan Limboto dapat menekan emisi gas CH sebesar 3% dan 2% tetapi hasil gabah kedua varietas lebih rendah,5 t dan,3 t/ha daripada IR6. Pemberian pupuk kandang pada perlakuan OTS, dapat menekan emisi gas CH 27% dibandinkan jerami. Pada perlakuan TOT, pemberian jerami justru dapat menekan emisi gas CH sebesar 12% dibanding pem- berian pupuk kandang. DAFTAR PUSTAKA Alexander, M. 1977. Introduction to soil microbiology. Second edition John Wiley & Sons. Nw York. 67 p. ALGAS. 199. National report on Asean least-cost greenhause gas abatement strategy for agricultural sector. Bachelet, D dan H.U. Neue. 1992. Methane emission from wetland rices areas of Asia Chemosphere (in press). Cicerone, R.J. dan R.S. Oremland. 19. Biogeochemical aspect of atmospheric methane. Global Biogeochem Cycles 2:299-327. Japan Enviromental Agency 1992. The basic study on strategic response against the global warning climate change and their adverse effect. Ministry of population and environmet of Indonesia, Jakarta. Neue, H.U. 195. Organic matter dynamics in wetland soils. p.19-122. In: Wetland soils: Characterization, classification. and utilization. IRRI, Los Banos, Philipines. Neue, H.U. 1993. Methane emission from rice fields: Wetland rice fields may make a major contribution to global warning. Bio Science 3. Neue, H.U. and H.W. Scharpenseel. 199. Gaseous product of the decomposition of organic matter in sub mergend soils. In: Organic matter & soil. International Rice Research Institute. Los Banos, Philippines. p. 311-32. Ponnamperuna, F.N. 1972. The Chemistry on submerged soils. Adv. In Agron. 2: 29-66. Ponnamperuna, F.N. 19. Straw as a soerce of nutrients for wetland rice, In: Organic matter and rice. International Rice Research Institute. Los Banos, Philippines. p. 311-32. Sanchez, P.A. 1976. Properties and Management of soils in the tropics. Departement of Soil Science North Carolina State University. John Wiley and Sons, New York, London, Toronro, Sydney. Schultz. 199. A three years continuous record of the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J. Geophys. Res. 9:165 Wiharjaka, A, P. Setyanto dan A. Karim Makarim, 1999. Pengaruh penggunaan bahan organik terhadap hasil padi dan emisi gas metan pada padi sawah. Risalah Seminar Hasil Penelitian Emisi Gas Rumah Kaca dan Peningkatan Produktivitas Padi Sawah, Puslitbangtan, Bogor. Yagi, K. and Minami. 199. Effect of organik matter application of methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36: 599-61. Yoshida,S. 191. Fundamentals of rice crop science science crop science. International Rice Research Institute. Los Banos, Laguna, Philippines. 3