Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

dokumen-dokumen yang mirip
BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

LAMPIRAN A GRAFIK DAN TABEL. 1. Grafik untuk menentukan dimensi optimal bejana tekan. [Ref.5 hal 273]

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK

BAB II LANDASAN TEORI

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah.

ANALISIS KEKUATAN COMPRESIVE NATURAL GAS (CNG) CYLINDERS MENGGUNAKAN METODE ELEMEN HINGGA

PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1

TUGAS AKHIR. Mirtha Angga S.R

ANALISA STIFFENER RING DAN KONSTRUKSI VESSEL HP FLARE KO DRUM PADA PROYEK PUPUK KALTIM-5 MENGGUNAKAN SOFTWARE COMPRESS 6258

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF)

PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK SEPARASI 3 FASA

BAB 8. BEJANA TEKAN (Pressure Vessel)

Analisis Kekuatan Tangki CNG Ditinjau Dengan Material Logam Lapis Komposit Pada Kapal Pengangkut Compressed Natural Gas

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB VII PENUTUP Perancangan bejana tekan vertikal separator

Sumber : Brownell & Young Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : Abdul Wahid Surhim

PENGARUH VARIASI JARAK DAN SUDUT KONTAK SADDLE TERHADAP DISTRIBUSI TEGANGAN PADA BEJANA TEKAN HORIZONTAL

Disusun oleh: KHAMDAN KHAMBALI

BAB II LANDASAN TEORI

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

PERANCANGAN DAN ANALISATEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA

PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA

BAB III METODOLOGI PENELITIAN

BAB III ANALISA DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang

DESIGN KONSTRUKSI BEJANA TEKANUNTUK SEPARATOR GAS (KAP. 9 MMSCFD), OIL (KAP. 200 BARREL/HARI) DAN WATER (KAP. 200 BARREL/HARI)

BAB IV PELAKSANAAN DAN PEMBAHASAN

PERENCANAAN BEJANA TEKAN (PRESSURE VESSEL) TIPE SEPARATOR UNTUK FLUIDA GAS

PERANCANGAN BEJANA TEKAN HORISONTAL

BAB II TINJAUAN PUSTAKA

DAFTAR ISI. i ii iii iv v vi

TUTUP BEJANA ( HEAD )

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang

III. METODE PENELITIAN

METODOLOGI PENELITIAN

BAB I PENDAHULUAN. Dalam beberapa industri dapat ditemukan aplikasi sains yakni merubah suatu

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II

PERANCANGAN DAN PENGEMBANGAN CYLINDER BLOCK DAN CRANKCASE MESIN OTTO SATU SILINDER EMPAT LANGKAH BERKAPASITAS 65CC

SEPARATOR. Nama Anggota: PITRI YANTI ( } KARINDAH ADE SYAPUTRI ( ) LISA ARIYANTI ( )

ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT 2 MENUJU HEAT EXCHANGERDI PLTU BELAWAN

DAFTAR ISI. i ii iii iv vi v vii

DESAIN TANGKI DAN TINJAUAN KEKUATANNYA PADA KAPAL PENGANGKUT COMPRESSED NATURAL GAS (CNG)

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai

BAB VII PENUTUP Perancangan sistem perpipaan

Perancangan Heat Exchanger pada Binary Power Plant Kapasitas 100 KW yang Memanfaatkan Uap Sisa PLTP Ulu Belu

BAB I PENDAHULUAN 1.1. Latar Belakang

LAMPIRAN A TABEL. 1. Tabel Dimensi Class 300 Flanges Drilling

TUGAS AKHIR. Oleh: EKO PRIYANTO NIM : D

Proses Pembuatan Vessel Closed Drain (9501-V-060) Di PT. Sanggar Sarana Baja (SSB) Oleh : Fajarudin IC 02

TUGAS AKHIR. Diajukan Sebagai Syarat Untuk Memperoleh Gelar Sarjana Teknik. Program Studi S-1 Teknik Mesin Fakultas Teknik

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

Jurnal Online Poros Teknik Mesin Volume 5 Nomor 2 92

ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II

PERANCANGAN DONGKRAK DAN JACK STAND 2IN1

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI

RANCANG BANGUN TUNGKU PIROLISA UNTUK MEMBUAT KARBON AKTIF DENGAN BAHAN BAKU CANGKANG KELAPA SAWIT KAPASITAS 10 KG

Perancangan Ulang Vacuum Evaporator Untuk Pengering Madu Kapasitas 50 Liter

PERANCANGAN SISTEM ANGKAT FORKLIFT DENGAN KAPASITAS ANGKAT 7 TON

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E

III. METODE PENELITIAN. Penelitian dilakukan dibeberapa tempat, sebagai berikut:

Pengaruh Panjang Busur Pemotongan Dinding terhadap Tegangan Maksimum Bejana Tekan Vertikal selama Proses Window Patching

Journal of Mechanical Engineering Learning

BAB III PERANCANGAN EVAPORATOR Perencanaan Modifikasi Evaporator

ANALISA PERHITUNGAN, PEMBUATAN DAN PENGUJIAN KEKUATAN MATERIAL PLATE SA 516 GR 70 UNTUK SHELL TEST SEPARATOR 1219 mm ID x 3048 mm S/S

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Abstrak. Kata kunci: Hydrotest, Faktor Keamanan, Pipa, FEM ( Finite Element Method )

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa?

ANALISIS KESELAMATAN KAPSUL FASILITAS IRADIASI PRTF

PERANCANGAN BEJANA TEKAN HORIZONTAL UNTUK PENYIMPANAN ACRYLONITRILE

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus

METODE UNTUK MENGGANTUNG ATAU MENUMPU PIPA PADA INSTALASI PERPIPAAN. Murni * ) Abstrak

TUGAS AKHIR ANALISA TEGANGAN PADA KETEL UAP PABRIK TAHU BERDASARKAN STANDAR MEGYESY DENGAN BANTUAN SOFTWARE CATIA

II. TINJAUAN PUSTAKA. Kelapa sawit (Elaeis) adalah tumbuhan industri penting penghasil minyak yang

BAB III METODOLOGI PENELITIAN

PERANCANGAN DAN ANALISIS PEMBEBANAN GERGAJI RADIAL 4 ARAH

LAMPIRAN A REAKTOR. = Untuk mereaksikan Butanol dengan Asam Asetat menjadi Butil. = Reaktor Alir Tangki Berpengaduk Dengan Jaket Pendingin

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13

ANALISIS TEGANGAN PADA SAMBUNGAN NOSEL MASUK DAN KELUAR BEJANA TEKAN REAKTOR DENGAN MEH

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya

ANALISA STRUKTUR RANGKA DUDUKAN WINCH PADA SALUTE GUN 75 mm WINCH SYSTEM


TEORI SAMBUNGAN SUSUT

TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON

PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN kn LOGO

PERHITUNGAN TEBAL DAN TUTUP TANGKI REAKTOR GELEMBUNG PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe UNTUK PLTN DI INDONESIA

Rancang Bangun Alat Bantu Potong Plat Bentuk Lingkaran Menggunakan Plasma Cutting

BAB III PERANCANGAN SISTEM DAN ANALISIS

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN HORIZONTAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR

Transkripsi:

Jurnal FEMA, Volume 1, Nomor 4, Oktober 013 PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK PENGOLAHAN LIMBAH KELAPA SAWIT DENGAN VARIABEL KAPASITAS PRODUKSI 10.000 TON/BULAN Meylia Rodiawati 1) A. Yudi Eka Risano ), Ahmad Su udi ) 1 Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik Universitas Lampung, Dosen Jurusan Teknik Mesin, Fakultas Teknik Universitas Lampung, Jl. Prof. Soemantri Brodjonegoro, No.1, Bandar Lampung 35145 Abstrak Kelapa sawit adalah tumbuhan industri penghasil minyak yang dapat dikonsumsi maupun minyak industri. Bagaimanapun pengolahan kelapa sawit akan menghasilkan limbah. Lebih lanjut, diketahui bahwa limbah tersebut berpotensi sebagai sumber biomassa untuk dikonversikan menjadi biodiesel yang salah satu tahapannya ialah perebusan. Kemudian, proses perebusan yang umum diaplikasikan ialah menggunakan bejana tekan sederhana yang kekuatan dan kapasitasnya terbatas sehingga berimplikasi pada hasil produksi yang tidak maksimal. Oleh sebab itu, penting untuk merancang bejana tekan untuk pengolahan limbah kelapa sawit sesuai spesifikasi yang diperlukan. Tujuan dari penelitian ini adalah menghitung dan menentukan dimensi bejana tekan untuk menampung 10.000 Ton limbah kelapa sawit / bulan dan mengetahui tegangan yang terjadi pada bejana tekan pada saat pengolahan limbah kelapa sawit. Perancangan dilakukan dengan menentukan jenis bejana tekan yang akan dipakai kemudian melakukan perhitungan dan penentuan diameter bejana, jenis material, jenis shell, nozlle, lifting lug dan head, ketebalan tiap komponen, stress maksimum yang terjadi tiap komponen dan menggambar desain menggunakan software CAD. Hasil dari penelitian menunjukkan bahwa dimensi yang sesuai dengan spesifikasi yang diperlukan adalah bejana tekan berdiameter 3,8 m dan panjangnya 30 m. Kemudian tebal shell 3/8" (0,00955m), head tipe torispherical dengan tebal 0,5" (0,017m), pipa nozzle 16" schedule 0 dengan ketebalan dinding pipa 7,948mm, pipa manhole NPS 4 SCH 0 dengan ketebalan dinding pipa manhole 9,55mm. Setelah dilakukan perhitungan tegangan longitudinal diperoleh nilai sebesar 9,4 MPa, tegangan circumferential 58,9 MPa dan tegangan total yang terjadi akibat termal Tegangan ini jika dibandingkan dengan tegangan ijinnya sebesar 174,8 MPa maka tegangan yang terjadi masih dalam kondisi aman. Kata kunci: Limbah kelapa sawit, Bejana Tekan (pressure vessel), ASME Section VIII Div.1, Shell, Head, Nozzle, Manhole. PENDAHULUAN Kelapa sawit adalah tumbuhan industri penghasil minyak yang dapat dikonsumsi maupun minyak industri. Bagaimanapun pengolahan kelapa sawit akan menghasilkan limbah. Lebih lanjut, diketahui bahwa Indonesia merupakan produsen utama minyak sawit yang berimplikasi pada kuantitas limbah yang dihasilkan. Kemudian, diketahui pula bahwa limbah tersebut berpotensi sebagai sumber biomassa untuk dikonversikan menjadi biodiesel yang salah satu tahapannya ialah perebusan. Proses perebusan yang umum diaplikasikan ialah dengan menggunakan tangki sederhana yang kekuatan dan kapasitasnya terbatas sehingga berimplikasi pada efisiensi produksi. Oleh karena itu, penting untuk merancang bejana tekan untuk pengolahan limbah kelapa sawit sesuai spesifikasi yang diperlukan. Adapun tujuan dari penelitian ini adalah 36

JURNAL FEMA, Volume 1, Nomor 4, Oktober 013 menghitung dan menentukan dimensi bejana tekan untuk menampung 10.000 Ton limbah kelapa sawit / bulan dan mengetahui tegangan yang terjadi pada bejana tekan pada saat pengolahan limbah kelapa sawit. METODOLOGI PENELITIAN Pada penelitian ini akan dilakukan perhitungan dan penentuan dimensi bejana tekan sesuai spesifikasi yang diperlukan berdasarkan aturan yang tertera pada ASME Section VIII Div 1. Secara garis besar penelitian ini, melalui dua tahapan yaitu tahapan perhitungan dan proses desain bejana tekan serta perhitungan tegangan longitudinal dan circumferential sebagai tolak ukur apakah dimensi yang telah didesain masih dalam kondisi aman atau tidak. Adapun langkah-langkah yang akan dilakukan peneliti guna memenuhi tujuan penelitian dan penyelesaian rumusan masalah di atas seperti terlihat pada Gambar 1 berikut: Gambar 1. Diagram Alir Penelitian HASIL DAN PEMBAHASAN a. Data Perancangan Sebelum melakukan perancangan ada beberapa kriteria perancangan yang dijadikan acuan dalam mendesain bejana tekan, sebagai berikut: 1. Jenis Bejana Tekan : Horizontal Cylinder 3-Phase. Kapasitas Produksi :10.000 ton / bulan : 333 ton / hari 3. Tekanan Desain :,94 x 10 5 Pa 4. Temperatur Desain : 80 O C 5. CA : 0,00318 meter [1] 6. Jenis material yang digunakan [6] a. Shell : SA 516 Gr 70 b. Head : SA 516 Gr 70 c. Nozzle : SA 106B d. Saddle : SA 85 C b. Dimensi Bejana Tekan Perhitungan dimensi bejana tekan meliputi perhitungan dimensi umum dan dimensi tiap-tiap komponen. Dimensi secara umum dimaksudkan berupa diameter dan panjang bejana tekan. Penentuan dimensi secara umum tersebut perlu mempertimbangkan ketersediaan bahan di pasaran. Lebih lanjut, diketahui bahwa panjang plat maksimum adalah 6 meter dan lebar 1,5 meter [10]. Kemudian dimensi plat tersebut digunakan sebagai asumsi pada desain diameter bejana tekan. Disisi lain, dengan mempertimbangkan kapasitas dari bahan baku sesuai spesifikasi yang diperlukan maka digunakan dua plat dalam mendesain diameter. 37

Jurnal FEMA, Volume 1, Nomor 4, Oktober 013 menggunakan shell berbentuk silinder horizontal (horizontal cylinder) dengan material yang digunakan adalah SA 516 Gr 60. Gambar 3. Dimensi Tebal Shell Gambar. Penggabungan dua plat 1 = r = Jadi, jari-jari diameter luar pada shell adalah 1,91 meter. Langkah selanjutnya, perhitungan panjang bejana sesuai kapasitas dapat diselesaikan menggunakan persamaan volume. Akan tetapi, densitas sampel limbah perlu dihitung terlebih dahulu menggunakan rumus sebagai berikut: Lalu, perhitungan ketebalan shell dapat ditentukan sebagai berikut: t PR = SE + 0,4P rs + j CA Dimana: P = 94.000 Pascal R = 1,91 meter S a = 17.500 Psi = 10,66 MPa (Tabel material SA 516 Gr 70 dengan temperatur kerja sampai 650 o F) E = 1 (Radiografi) maka : Lebih lanjut, untuk panjang shell bejana tekan dapat dihitung berdasarkan kapasitas produksi per 0 hari sebagai berikut: ρ = m v L = ( 16x10000) /( 0x4) π. ( 3,8 / ) ( 956,39) = 30,415 meter 30 m Jadi, panjang shell yang didesain adalah 30 meter dengan plat yang digunakan 0 pasang atau sebanyak 40 lembar. Setelah diperoleh dimensi umum dari bejana tekan maka dilakukan perhitungan dimensi tiap-tiap komponen sebagai berikut: Jadi, tebal yang didesain pada shell adalah 3/8 atau 0,00955 meter.. Tebal head Pada perencanaan kepala bejana tekan menggunakan tipe torispherical dengan jenis material sama dengan shell yaitu SA 516 Gr 70 dan penentuan ketebalan komponen menggunakan persamaan berikut: t 0,885. PL = SE + 0,8. P rh + j CA 1. Tebal shell Pada perencanaan bejana tekan ini, 38

JURNAL FEMA, Volume 1, Nomor 4, Oktober 013 Dimana: Jadi, tebal head yang digunakan pada plat adalah ½ atau 0,017 meter. t rn 3. Tebal pipa nozzle Jenis material yang digunakan pipa nosel ini yaitu SA 106B. Kemudian, tebal pipa yang diperlukan dapat diperoleh menggunakan rumus sebagai berikut : Gambar 4. Dimensi Tebal pipa nozzle 94000 1,91 = 106600000 1.0,6 = 0,0078357 m ( ) () ( 9400) + 0,003175 Gambar 5. Posisi penyangga (saddle) bejana tekan Dimana: A = 0,5R = 0,5 (1,90985) = 0.95495 meter 1 meter 5. Beban angin (P w ) Dengan mengasumsikan shell yang siap pakai dengan kondisi lapangan adalah dengan percepatan angin rata-rata 34 km/jam atau 9,44 m/detik sehingga beban angin yang teraplikasi pada bejana tekan dapat diketahui menggunakan persamaan sebagai berikut: P w = 0,005. V w = 0,005. ( 9,44) = 0,99 kg / m Setelah dilakukan perhitungan dimensi bejana tekan dan digambar mengguanakn software CAD seperti tampak pada Gambar 6. Sehingga, berdasarkan perhitungan diatas, diperoleh tebal nosel sebesar 0.00783571 meter. Jadi standar flange dan pipa yang digunakan adalah 16 schedule 0. 4. Letak posisi saddle Agar kedudukan bejana tekan seimbang maka diperlukan dua penyangga (saddle). Untuk merencanakan penyangga yang lebih hemat dari segi material dan biaya, maka pada desain ini tidak menggunakan plat pengaku (stiffener ring). Karena bejana tekan yang direncanakan besar dan panjang maka letak penyangga harus dekat dengan kepala bejana tekan. Gambar 6. Bejana tekan (Pressure vessel) c. Analisa Perhitungan Bejana Tekan 1. Analisa tegangan searah (longitudinal) yang terjadi pada dinding bejana tekan Dengan adanya pengaruh dari fluida yang bekerja di dalam bejana tekan maka akan menimbulkan suatu tegangan, salah satunya 39

Jurnal FEMA, Volume 1, Nomor 4, Oktober 013 tegangan longitudinal. Jika tegangan tersebut melebihi tegangan ijinnya [6] (tegangan yield SA 516 Gr 70 adalah 38000 Psi =,6 x 10 8 Pa), kemungkinan bejana tekan yang direncanakan akan mengalami kegagalan (belah). Gambar 7. Longitudinal stress Setelah dilakukan perhitungan diatas maka dapat dianalisa bahwa tegangan melingkar pada dinding bejana lebih kecil dari tegangan ijin pelat yaitu σ S atau ). Sehingga dapat dikatakan bahwa dinding tersebut mampu menahan tegangan yang terjadi atau aman. 3. Analisa beban total yang terjadi akibat termal pada bejana tekan Sedangkan tegangan ijin material yaitu (Sf = 1,5): Berdasarkan hasil perhitungan diatas, dapat dianalisa bahwa tegangan searah (longitudinal stress) pada dinding bejana tekan lebih kecil dari pada tegangan ijinnya (17,48 x 10 7 Pa). Sehingga dinding tersebut mampu menahan tegangan yang terjadi pada bejana tekan dan dapat dinyatakan aman.. Analisa tegangan melingkar (Circum ferential) yang terjadi pada dinding bejana tekan Jika tegangan searah (Longitudinal stress) dapat mengakibatkan bejana tekan belah, maka tegangan melingkar (circumferential stress) dapat mengakibatkan bejana putus seperti tampak pada Gambar 8. Hal ini juga dipengaruhi oleh aktivitas fluida yang bekerja selama proses produksi.adapun perhitungan tegangan melingkar sebagai berikut: Gambar 10. Penambahan panjang yang terjadi pada bejana tekan Jika diketahui bahwa: Suhu lingkungan (T 1 ) = 80 o C Suhu bejana tekan (T ) = 600 o C Koefisien muai steel (α) = 0,00001 / o C Panjang mula-mula (L o ) = 30 meter Maka, besarnya penambahan panjang menggunakan persamaan sebagai berikut: L = α L o T = 0,00001 (30) (50) = 0,187 m = 187, mm Dari penambahan panjang yang diperoleh di atas, maka regangan yang dihasilkan adalah: Gambar 8. Tegangan melingkar (Circumferential Stress) Ternyata regangan yang didapat pada perhitungan diatas lebih kecil jika dibandingkan dengan regangan yang terdapat pada propertis material yang dipakai yaitu 1% 40

JURNAL FEMA, Volume 1, Nomor 4, Oktober 013 atau 0,1[6]. Sedangkan untuk menghitung tegangan total yang dihasilkan dari regangan tersebut adalah sebagai berikut: σ y = 6, x 10 6 Pa ɛ y = 0,1 4. Dengan adanya penambahan panjang sebesar 0,187 m akan mempengaruhi jenis saddle yang digunakan, sehingga dapat menghindari tegangan atau kerusakan pada sambungan pengelasan. Oleh karena itu, jenis saddle yang didesain pada perencanaan ini adalah fix dan sliding. DAFTAR PUSTAKA Maka : [1] ASME Committe, 004, ASME Boiler and Pressure Vessel Code, Section VIII σ 3 = E y. ɛ =,185 x 10 9 (0,0064) = 1,3634 x 10 7 Pa Rule for Contruction of Pressure Vessel, Division 1, 004 Edition, The American Society of Mechanical Engineers Three Park Avenue, New York. σ total = σ 3 + σ = 1,3634 x 10 7 + 5,89 x 10 7 [] Brownell, Lloyd E. dan Edwin H. = 7,434 x 10 7 Pa Young, 1959, Process Equipment Desain (Vessel Desain) First Edition, Published by Mohinder Singt Sejwal For Wiley Easterm Limited. Karena regangan yang dihasilkan lebih kecil pada perhitungan sebelumnya dan juga tegangan total yang dihasilkan juga lebih kecil dari tegangan yield (σ y > σ total ), maka bejana tekan ini masih dikatakan aman untuk digunakan. Selain itu, untuk mengantisipasi tegangan tersebut maka dalam memilih tipe penyangga atau sadlle harus tepat. Oleh karena itu, dalam perencanaan desain tugas akhir ini menggunakan saddle jenis fix dan sliding. KESIMPULAN Berdasarkan perhitungan yang dilakukan maka dapatkan kesimpulan sebagai berikut: [3] Khurmi, R.S, 1991, A Text Book of Machine Design, Published by Eurasia Publishing House (Pvt), New Delhi. [4] Megyesy, Eugene F, 197, Pressure Vessel Handbook Sixth Edition, Pressure Vessel Handbook Publishing Inc. [5] Moss, Dennis, 004, Pressure Vessel Desain Manual Third Edition, Published by Gulf Proffesional. [6] Praspa, Sandi, 010, Analisis Hasil Perencanaan Ulang Bejana Tekan Jenis Saparator 3-Phase Pada Kilang Onshore, www.library.upnvj.ac.id/pdf/s1teknikm esin/09303114/.pdf. Diakses pada 16 Maret 01. 1. Dimensi konstruksi bejana tekan a. Diameter = 3,8 meter b. Panjang = 30 meter [7] Risal, Muhammad, 013, Pemuaian Zat c. Tebal shell =0,00955 m = 9,55 mm d. Tebal head = 0,017 m = 1,7 mm. Tegangan searah (longitudinal stress) pada dinding bejana tekan lebih kecil (9,47 MPa) dari pada tegangan ijin material yang digunakan (174,8 MPa), maka bejana tekan dinyatakan aman. 3. Tegangan melingkar (Circumferential Stress) pada dinding bejana tekan lebih kecil 58,9 MPa dari pada tegangan ijin material yang digunakan (174,8 MPa), maka bejana tekan dinyatakan aman. Padat, http://www.rumusfisika.com/01/10 /pemuaian-zatpadat.html. Diakses 17 Febuari 013. [8] Sundaryono, Agus, 010, Karakteristik Biodiesel dan Blending Biodiesel dari Oil Losses Limbah Cair Pabrik Minyak Limbah KelapaSawit, http://journal.ipb.ac.id/index.php/jurnalti n/article/view/3665/516. Diakses 17 Febuari 013 [9] http://www.jayaparisteel.co.id 41