Ukuran: px
Mulai penontonan dengan halaman:

Download ""

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Menurut Popov (1996) bejana tekan berdinding tipis adalah bejana yang memiliki dinding yang idealnya bekerja sebagai membran, yaitu tidak terjadi lenturan dari dinding tersebut. Sebenarnya bola merupakan bentuk bejana tekan tertutup yang paling ideal bila isinya memiliki berat yang bisa diabaikan, tetapi pada kenyataannya pembuatan bejana tekan berbentuk bola sangat sulit sehingga orang lebih memilih bejana tekan berbentuk silinder. Bejana berbentuk silindris pada umumnya baik kecuali pada sambungan-sambungan lasnya. Untuk menghasilkan kekuatan sambungan las yang baik maka material yang digunakan untuk merancang bejana tekan harus memenuhi persyaratan yang tertulis dalam UG-4 sampai UG-15 dan harus memiliki sifat mampu las yang baik (UW-5 ASME). Sedangkan bahan yang mengalami tegangan karena tekanan harus memenuhi salah satu dari spesifikasi yang terdapat dalam ASME Section II dan harus dibatasi pada bahan yang diijinkan dalam Part of Subsection C (UG-4(a), ASME). Selain itu suhu desain harus tidak kurang dari suhu ratarata logam dari seluruh tebalnya yang mungkin terjadi pada kondisi operasi bejana tersebut (UG-20(a), ASME) dan tidak boleh melampaui suhu maksimum yang tertera dalam setiap spesifikasi dan grade material untuk harga tegangan tarik ijin maksimum yang diberikan dalam tabel Material Section II Part D (UG-23). Universitas Mercu Buana 5

2 2.2 Definisi Bejana Tekan Definisi Bejana Tekan Bejana tekan merupakan suatu wadah untuk menyimpan fluida bertekanan. Fluida yang disimpan dapat mengalami perubahan keadaan pada saat berada di dalam seperti pada kasus boiler atau dapat digabungkan dengan suatu reagen lainnya seperti pada pabrik kimia. Bejana tekan dirancang dengan pertimbangan yang perlu diperhatikan karena pecahnya bejana tekan berarti terjadinya ledakan yang dapat menyebabkan hilangnya nyawa dan kerusakan benda sekitar. Berdasarkan dimensinya bejana tekan dapat dibagi menjadi 2, yaitu : 1. Bejana tekan dinding tebal yaitu bejana yang memiliki ketebalan dinding shell lebih dari 1/20 diameter shell. 2. Bejana tekan dinding tipis yaitu bejana yang memiliki ketebalan dinding shell kurang dari 1/20 diameter shell. (a) (b) Gambar 2.1 (a) Bejana tekan dinding tipis (b) Bejana tekan dinding tebal Perbedaan bejana tekan dinding tipis dengan dinding tebal berada pada distribusi tegangan yang terjadi pada dinding bejana tekan tersebut, bejana tekan dinding tebal memiliki ditribusi tegangan yang harus diperhitungkan sedangkan pada bejana tekan dinding tipis distribusi tegangan dapat diabaikan karena perbedaan diameter luar dengan diameter dalam sangat tipis sehingga distribusi tegangan yang terjadi sangat kecil, dapat dilihat seperti pada Gambar 2.1 di atas. Universitas Mercu Buana 6

3 Bejana tekan dapat didefinisikan sebagai wadah yang memiliki perbedaan tekanan antara tekanan yang berada di dalam dan di luar. Tekanan dalam biasanya lebih tinggi daripada tekanan luar, kecuali untuk beberapa keadaan yang terisolasi. Bejana tekan kerap menggabungan antara tekanan yang tinggi dengan suhu yang tinggi, dan dalam kasus lainnya fluida yang mudah terbakar atau material dengan tingkat radio aktif yang tinggi. Karena bahaya tersebut, harus sangat diperhatikan pada saat perancangan sehingga kebocoran dalam bejana tidak terjadi. Selain itu bejana tekan ini harus dirancang dengan baik dalam mengatasi suhu dan tekanan operasi. Perlu diingat bahwa pecahnya suatu bejana tekan memiliki potensi untuk menyebabkan cedera fisik dan kerusakan pada benda di sekitarnya. Merencanakan keamanan dan kesesuaian merupakan dasar pemikiran yang harus lebih diperhatikan dalam merancang bejana tekan dan tentu saja semua ini berdasarkan ketentuan dan peraturan yang telah dibuat dalam standar perancangan. Bejana tekan digunakan dalam sejumlah industri, seperti industri pembangkit listrik dengan bahan bakar fosil dan nuklir, industri petrokimia sebagai tempat penyimpanan dan pengolahan minyak bumi dalam tangki seperti tempat penyimpanan pada stasiun bahan bakar, dan beberapa industri kimia (pada reaktor kimia). Penggunaannya telah berkembang di seluruh dunia. Bejana tekan dan tangki faktanya merupakan elemen penting pada industri perminyakan, kimia, petrokimia, dan industri nuklir. Hal ini dikarenakan peralatan tersebut merupakan tempat terjadinya suatu proses, pemisahan, dan penyimpanan bahan baku. Ukuran dan bentuk dari bejana tekan sangat bermacam seperti bejana silindris besar yang digunakan pada tekanan tinggi sebagai penyimpanan gas sampai kepada ukuran yang kecil yang digunakan sebagai bagian hidrolik pada pesawat udara. Beberapa terkubur dalam tanah atau jauh di dalam laut, tetapi sebagian besar berada di atas tanah atau ditumpu pada platform. Bejana tekan seringkali berbentuk bola atau silinder dengan ujung berkubah. Bejana tekan silinder lebih sering dipilih karena lebih sederhana dalam pembangunannya dan memiliki kesesuaian ruang yang lebih baik. Ketel uap, perubah panas, reaktor kimia, dan yang lainnya seringkali berbentuk silinder. Bejana tekan bola memiliki keuntungan dalam ketebalan dinding yang dibutuhkan berdasarkan tekanan yang Universitas Mercu Buana 7

4 diberikan. Oleh karena itu, seringkali bejana tekan bola digunakan pada penyimpanan gas atau fuida skala besar, pendingin gas pada reaktor, bangunan pada pembangkit nuklir dan lainnya Analisa Tegangan Pada BejanaTekan Misalkan tekanan dalam yang melebihi tekanan luar P (tekanan terukur), dan radius dalam silinder sebesar r i. Kemudian gaya pada suatu luasan yang kecil tak berhingga Lr i dθ (dimana dθ adalah sudut kecil tak berhingga) dari silinder tersebut yang disebabkan oleh tekanan dalam yang bekerja tegak lurus adalah PLr i dθ seperti Gambar 2.2. Komponen gaya yang bekerja dalam arah mendatar adalah (PLr i dθ)cosθ. Jadi gaya perlawanan total sebesar 2p yang bekerja pada segmen silindris adalah...(2.1) Gambar 2.2 Gaya dan tekanan pada bejana tekan Karena bentuk bejana yang simetri, maka setengah gaya total ini mendapatkan perlawanan pada potongan melalui silinder sebelah atas dan setengah lagi pada sebelah bawah. Tegangan normal y yang bekerja sejajar dengan sumbu silinder tidak masuk dalam integrasi di atas. Selain memperoleh gaya 2p yang disebabkan oleh tekanan dalam integrasi, seperti yang dapat dilihat di atas, dapat pula melakukan prosedur yang sederhana Universitas Mercu Buana 8

5 yang setara. Dari sudut tinjauan lain, kedua gaya p melawan gaya yang terbentuk oleh tekanan dalam P, yang bekerja tegak lurus terhadap luas proyeksi A 1 dari segmen silindris kepada bidang garis tengah silinder. Luas adalah 2r i L, jadi 2p = A 1 P = 2riLP. Gaya ini mendapat perlawanan dari gaya yang terbentuk dalam bahan dalam potongan yang membujur, dan berhubung radius luar silinder adalah ro, maka luas kedua potongan yang membujur adalah 2A = 2L(r o -r i ). Selanjutnya, jika tegangan normal rata-rata yang bekerja pada potongan yang membujur adalah y, maka gaya yang mendapat perlawanan dari dinding silinder adalah 2L(r o -r i ) y. Dengan mepersamakan kedua gaya, maka...(2.2) Karena (r o -r i ) adalah t maka persaman perhitungan tegangan pada bejana tekan dapat dituliskan sebagai berikut...(2.3) Tegangan normal yang diberikan oleh persamaan di atas biasa disebut tegangan circumferential atau hoop stress. Persamaan tersebut hanya berlaku pada bejana tekan berdinding tipis karena memberikan tegangan rata-rata dalam kelilingnya. Tegangan normal lain yang bekerja pada bejana tekan secara membujur adalah x yang dapat ditentukan dengan persoalan gaya aksial sederhana. Dengan membuat irisan melalui bejana yang tegak lurus terhadap sumbu silinder, maka diagram benda bebas dapat dilihat pada Gambar 2.3 di bawah ini. Gambar 2.3 Tegangan longitudinal dan tekanan pada bejana tekan Karena tekanan yang bekerja tersebut tidak tergantung pada lokasinya, maka tekanan pada bagian luas penampangnya adalah πr i 2 dan memiliki tekanan Universitas Mercu Buana 9

6 konstan P. Dengan x adalah konstan melalui dinding karena tebalnya jauh lebih kecil dari radius bejana tekan tersebut....(2.4) Maka persamaan tegangan longitudinal dapat dituliskan pada persamaan di atas, persamaan tersbut hanya berlaku pada bejana tekan dinding tipis tanpa adanya distribusi tegangan pada dindingnya. 2.3 Teori Kegagalan Dalam suatu rekayasa teknik, merupakan hal yang penting menentukan batasan tegangan yang menyebabkan kegagalan dari material tersebut. Dalam menggunakan teori kegagalan yang penting adalah menentukan tegangan utama (principal stress). Kriteria kegagalan statis Ada tiga teori kegagalan yang biasa dipakai antara lain: a. Teori tegangan normal maksimum Teori ini menyatakan bahwa kegagalan terjadi bila salah satu dari tegangan utama (principal stress) sama dengan kekuatan dari material. Sebagai contoh untuk tegangan utama setiap keadaan disusun dalam bentuk : Jika kriteria kegagalan adalah titik luluh (yield), teori ini memperkirakan kegagalan akan terjadi bila : 1 S yt atau 3 S yc...(2.5) Dimana S yt dan S yc adalah kekuatan luluh terhadap gaya tarik dan gaya tekan. Kalau yang dipakai adalah kekuatan akhir, seperti pada bahan yang rapuh, maka kegagalan terjadi jika : Universitas Mercu Buana 10

7 atau S...(2.6) 1 S ut 3 uc Persamaan yang berkaitan dengan suatu tegangan dalam tiga sumbu adalah: x y x y 2 2 maks xy...(2.7) 2 2 Dimana : x = Tegangan tekan atau tarik arah x [ N/mm 2 ] y = Tegangan tekan atau tarik arah y [ N/mm 2 ] = Tegangan geser x-y [ xy N/mm2 ] b. Teori tegangan geser maksimum Teori ini mengatakan bahwa kegagalan akan terjadi bila tegangan geser maksimum pada setiap elemen mesin sama dengan kekuatan geser dari material. Jika tegangan utama disusun dalam bentuk teori tegangan geser maksimal memperkirakan bahwa kegagalan akan terjadi bila : maks S y atau 1 3 S y...(2.8) 2 Teori ini menyatakan bahwa kekuatan luluh pada kekuatan geser diberikan oleh persamaan : S 0, 5...(2.9) sy S y c. Teori tegangan Von Misses Teori ini memperkirakan suatu kegagalan mengalah dalam tegangan geser yang memadai lebih besar dari yang diperkirakan oleh teori tegangan geser maksimal. Untuk analisis perancangan akan lebih mudah jika kita menggunakan tegangan Von Misses yaitu : (Persamaan yang berkaitan dengan suatu tegangan dalam tiga sumbu) adalah: Universitas Mercu Buana 11

8 ...(2.10) Hal ini akan terjadi kegagalan jika:...(2.11) Dari percobaan percobaan yang telah dilakukan, menunjukan bahwa teori energi distorsi (Von Misses) memperkirakan kegagalan dengan ketelitian tertinggi pada semua kuadran Beban Yang Bekerja Pada Bejana Tekan Bejana tekan dikenai bermacam-macam pembebanan yang berbedabeda pada setiap komponennya. Kategori dan intensitas gaya-gaya ini menjadi fungsi dari pembebanan alami dan geometri serta kontruksi dari komponen bejana Tekanan Desain Tekanan desain adalah tekanan yang digunakan untuk menentukan ketebalan shell minimum yang diperlukan bejana. Tekanan desain besarnya diatas tekanan operasi (10% dari tekanan operasi atau minimum10 psi) ditambah dengan besarnya static head dari fluida kerja. Tekanan desain minimum untuk bejana Code nonvacuum adalah 15 psi. Untuk tekanan desain yang lebih kecil Code tidak berlaku. Bejana dengan tekanan operasi terukur harganya negatif umumnya didesain untuk bejana vakum. Tekanan Kerja Ijin Maksimum (Maximum Allowable Working Pressure) didefinisikan sebagai tekanan maksimum yang terukur yang diijinkan yang diukur pada bagian paling atas dari bejana pada kondisi operasi dan pada tekanan desain. Definisi ini berdasarkan asumsi sebagai berikut: Pada kondisi korosi Masih di bawah pengaruh temperatur desain Universitas Mercu Buana 12

9 Pada kondisi operasi normal Di bawah pengaruh pembebanan lain Tekanan yang dialami bejana bisa dikategorikan menjadi dua jenis yaitu tekan dalam (internal pressure) dan tekanan luar (external pressure). Tekanan dalam pada bejana berasal dari fluida yang dikandung oleh bejana itu sendiri, biasanya adalah bejana yang memiliki tekanan kerja lebih besar dari tekanan atmosfir. Sedangkan tekanan luar adalah tekanan untuk bejana vakum Temperatur Desain Temperatur desain lebih mengarah kepada kondisi lingkungan apabila dibandingkan dengan beban yang terjadi pada bejana tekan, karena hanya perubahan suhu yang dikombinasikan dengan beberapa pengendalian pada badan atau gradien suhu tertentu akan berasal tegangan termal. Namun, kondisi desain penting yang mempengaruhi untuk gelar besar yang suitabilty dari bahan yang dipilih untuk konstruksi. 2.4 Komponen Utama Bejana Tekan Komponen utama bejana tekan merupakan komponen yang paling dominan dan selalu ada pada setiap bejana tekan. Komponen-komponen ini antara lain; shell, head, nozzle, support dan skirt support Shell Shell adalah komponen yang paling utama yang berisi fluida yang bertekanan. Pada umumnya ada dua tipe shell yang ada yaitu shell silindris dan spherical shell. Tetapi hanya shell silindris sering digunakan dalam desain bejana tekan. Ketebalan shell dipengaruhi oleh tekanan desain. Tekanan desain dibedakan menjadi dua yaitu tekanan desain internal dan tekanan desain eksternal. Untuk menentukan ketebalan shell harus memperhatikan beban yang terjadi pada shell. Arah penyambungan shell juga akan mempengaruhi perhitungan ketebalan shell. Universitas Mercu Buana 13

10 Berdasarkan standar ASME, ketebalan shell berdasarkan internal pressure bisa ditentukan dengan persamaan berikut: 1. Cylindrical Shell Untuk sambungan jenis ini ketebalan shell harus bisa menahan tegangan yang terjadi. Tegangan yang dominan pada sambungan memanjang adalah tegangan arah melingkar atau circumferential stress. Besarnya ketebalan shell ditentukan dengan persamaan berikut: t PR...(2.12) SE 0.6P P( MAWP ) SEt...(2.13) R 0,6t dimana: P = Tekanan internal [N/mm²] R = Jari-jari dalam [mm] S E = Tegangan yang dijinkan material [N/mm²] = Efisisensi sambungan las MAWP = Tekanan kerja maksimal yang diberikan ketebalan plat [N/mm 2 ] 2. Shell Conical Section Besarnya ketebalan shell ditentukan dengan persamaan berikut: PD t...(2.14) 2( SE 0,6P)cos 2SEt cos P ( MAWP )...(2.15) D 1,2t cos Universitas Mercu Buana 14

11 Dimana: P = Tekanan internal [N/mm²] D = Diameter dalam [mm] S E α = Tegangan yang dijinkan material [N/mm²] = Efisisensi sambungan las = Sudut cone MAWP = Tekanan kerja maksimal yang diberikan ketebalan plat [N/mm 2 ] Head Head adalah salah satu bagian penting dalam bejana tekan dan merujuk pada bagian-bagian bejana yang membatasi bagian bawah, atas, dan sisi dari shell. Ujung bejana tertutup dengan suatu head sebelum menempatkannya ke dalam kondisi operasi. Head biasanya terbuat dari bahan yang sama seperti shell dan dapat disambungkan dengan las ke shell itu sendiri. Komponen ini juga mungkin terpisahkan dengan shell dalam konstruksi cetakan (cast) atau tempa (forged). Desain geometris head tergantung pada geometri shell serta parameter desain lainnya seperti temperatur operasi dan tekanan. Ada berbagai macam head dalam bejana tekan, tetapi head yang dipakai Spherical Head. Besarnya ketebalan shell ditentukan dengan persamaan berikut: Gambar 2.4 Spherical Head Universitas Mercu Buana 15

12 t P R...(2.16) 2SE 0,2P P( MAWP ) 2SEt...(2.17) R 0,2t Dimana : P = Tekanan dalam [N/mm²] D = Diameter dalam [mm] S E α = Tegangan yang dijinkan material [N/mm²] = Efisisensi sambungan las = Sudut cone MAWP = Tekanan kerja maksimal yang diberikan ketebalan plat [N/mm 2 ] Nozzle/opening Nozel adalah komponen silinder yang berupa lubang yang menembus shell atau head dari bejana tekan. Nozel memiliki beberapa fungsi antara lain: o Merekatkan pipa yang berfungsi untuk mengalirkan fluida dari atau ke bejana tekan. o Sebagai tempat untuk sambungan instrumen, seperti level gauges, thermowells atau pressure gauges. o Sebagai tempat masuk orang untuk mempermudah perawatan. o Sebagai tempat untuk akses langsung ke peralatan lain misalnya heat exchanger. Universitas Mercu Buana 16

13 Gambar 2.5 Opening Tanpa Pad Perhitungan tebal dinding nozzle (t rn ) : t PR rn SE 0. 6 P...(2.18) Perhitungan tebal dinding Conical Section [t r ]: t r PD 2( SE 0,6P)cos...(2.19) Dimana : P = Tekanan dalam [N/mm²] D = Diameter dalam [mm] S = Tegangan yang dijinkan material shell [N/mm²] Sn E Α =Tegangan yang diijinkan nozzle pada suhu tertentu [N/mm²] = Efisisensi sambungan las = Sudut cone t n = tebal aktual nozzle [ mm] Universitas Mercu Buana 17

14 h [mm] s = ketinggian nozzle dalam terhadap dinding sheel dalam Fillet las = Tegangan yang dijinkan Las [N/mm 2 ] R n = jari-jari nominal nozzle [mm] Nilai Tegangan las : Tegangan geser fillet las = 0,49 x tegangan yang dijinkan shell [ N/mm 2 ] Tegangan tarik groove las = 0,74 x tegangan yang dijinkan shell [N/mm 2 ] Tegangan geser dinding Nozzle = 0,70 x tegangan yang dijinkan Nozzle \[mm 2 ] (Sumber : Moss Denis R, 1987) Gambar. 2.6 Reinforcements opening Universitas Mercu Buana 18

15 Perhitungan Reinforcements opening Luas penampang reinforcement yang di A dxt r...(2.20) Luas penampang reinforcement yang tersedia : A ( t t ) 1 r d ( mm 2 ) (excess in shell)...,...(2.21) A ( t t ) 5t 2 n rn n ( mm 2 )(excess in Nozzle neck)...(2.22) A tnx2h 3 (mm 2) (inside projection)...(2.23) A4 mm 2 (luas penampang las) A total = A 1 +A 2 +A 3+ A 4 (mm 2 )...(2.24) 2.5 Pengelasan Bejana Tekan Sambungan las pada bejana tekan dikategorikan menjadi beberapa bagian menurut standar ASME Part UW. 1) Kategori A Sambungan berlas longitudinal yang berada pada badan utama, ruang hubung, transisi diameter atau nozel; tiap sambungan berlas yang berada pada bejana berbentuk bola, pada formed head atau flat head, atau pada pelat sisi dari suatu bejana bersisi-datar; sambungan berlas melingkar yang menghubungkan hemisferis head ke badan utama, ke transisi diameter, ke nozel atau ke ruang hubung. 2) Kategori B Sambungan berlas melingkar yang berada pada badan utama, ruang hubung, nozzel, atau transisi diameter termasuk sambungan antara transisi dan silinder baik pada ujung besar maupun ujung kecilnya; sambungan berlas melingkar yang menghubungkan formed head selain hemisferis ke badan utama, ke transisi diameter, ke nozzel atau ke ruang hubung. Universitas Mercu Buana 19

16 3) Kategori C Sambungan berlas yang menghubungkan flensa, Van Stone Lap, dudukan tube, atau flat cover ke badan utama, ke formed head, ke transisi diameter, ke nozel atau ke ruang hubung; tiap sambungan berlas yang menghubungkan satu pelat sisi ke palat sisi lainya dari bejana bersisi-datar. 4) Kategori D Sambungan berlas yang menghubungkan ruang hubung atau nozzel ke badan utama, ke bejana berbentuk bola, ke transisi diameter, ke head atau bejana bersisi datar, dan sambungan yang menghubungkan nozzel ke ruang hubung (untuk nozzel pada ujung kecil dari trasnsisi diameter, lihat kategori B). Gambar 2.7 Kategori Sambungan Las Pada Bejana Tekan Universitas Mercu Buana 20

17 Tipe-tipe sambungan las bejana tekan: 1. Double-welded butt joint 2. Single-welded butt joint 3. Single-welded butt joint with backing strip 4. Double-full fillet lap joint 5. Single-full fillet lap joint with plug welds 6. Single-full fillet lap joint without plug welds Sambungan Las (Weld Joint) Sambungan las merupakan penerima logam pengisi yang didepositkan. Sambungan las dipilih berdasarkan : Lokasi Persiapan yang diperlukan Peralatan pengelasan yang digunakan Aplikasi sambungan las Sambungan las dasar terdiri atas : Butt (tumpul) Lap (tumpang) Universitas Mercu Buana 21

18 T Edge (sisi) Corner (sudut) Gambar 2.8 Sambungan Las Dasar a. Sambungan tumpul (butt joint) Dibentuk bila dua anggota sambungan yang berada kurang lebih dalam bidang yang sama didekatkan antara ujung sama lainnya. Dapat digunakan dengan atau tanpa persiapan terhadap anggota sambungan yang memiliki ketebalan yang sama ataupun berbeda. Umumnya digunakan pada subassembly selama proses fabrikasi dan proses perbaikan. Universitas Mercu Buana 22

19 Gambar 2.9 Simbol Sambungan Butt Joint b. Sambungan Sudut (Corner Joint) Merupakan sambungan las yang dibentuk bila dua anggota sambungan diposisikan membentuk sudut kurang lebih 90 0 dengan sambungan las pada bagian luar anggota sambungan. Umumnya digunakan pada konstruksi bejana tekan dan tangki. Logam pengisi dapat dibutuhkan dan dapat pula tidak bergantung pada desain dan fungsi sambungan. Universitas Mercu Buana 23

20 Gambar 2.10 Simbol Sambungan Corner Joint c. Sambungan T (T-joint) Merupakan sambungan las yang dibentuk bila dua anggota sambungan diposisikan kurang lebih 90 0 satu sama lain dalam bentuk T. Jika dimungkinkan, dilas pada kedua sisinya untuk mendapatkan kekuatan maksimum. Umumnya digunakan dalam fabrikasi struktur penopang dimana beban ditransfer ke bidang yang berbeda pada kurang lebih Universitas Mercu Buana 24

21 Gambar 2.11 Simbol Sambungan T-Joint d. Sambungan Tumpang (Lap Joint) Merupakan sambungan las yang dibentuk bila dua anggota sambungan las diposisikan saling menumpuk satu sama lain. Lebih kuat daripada sambungan tumpul, tetapi mengakibatkan terjadinya penambahan berat. Umumnya dilas kedua sisinya. Umumnya digunakan selama proses perbaikan dan untuk menambah panjang material standar ke panjang yang diperlukan. Gambar 2.12 Simbol Sambungan Lap Joint. Universitas Mercu Buana 25

22 e. Sambungan Sisi (Edge Joint) Merupakan sambungan las yang dibentuk bila sisi dua anggota sambungan akan disambung. Sisi yang dilas sejajar satu sama lain. Sering dipakai dalam menyambung struktur penopang dan struktur baja pendek. Gambar 2.13 Simbol Sambungan Edge Joint Jenis Lasan Jenis lasan terdiri dari : Groove Fillet Plug Slot Stud Spot Projection Seam Backing weld Universitas Mercu Buana 26

23 Surfacing Flange Gambar 2.14 Jenis Lasan Simbol Lasan Universitas Mercu Buana 27

24 Gambar 2.15 Simbol Lasan Universitas Mercu Buana 28

25 Gambar 2.16 Tambahan Simbol Lasan Gambar 2.17Lokasi Standar Simbol Lasan Universitas Mercu Buana 29

26 2.5.4 Posisi Pengelasan Posisi pengelasan adalah pengaturan posisi atau letak gerakan elektroda las.posisi pengelasan yang di ambil operator biasanya tergantung dari letak kampuh kampuh atau celah-celah benda kerja yang akan di las.posisi-posisi pengelasan sesuai dengan standar AWS (American Welding Society) yaitu: Gambar 2.18 Posisi Pengelasan Pergerakan Elektroda Cara pergerakan elektroda ada banyak sekali, tetapi tujuanya adalah sama yaitu mendapatkan deposit logam las dengan permukaan yang rata dan halus dan menghindari terjadinya takikan dan pencampuran terak. Gambar 2.19 Gerakan Elektroda Pola Melingkar. Universitas Mercu Buana 30

27 Gambar 2.20 Gerakan Elektroda Pola c Gambar 2.21 Gerakan elektroda pola zig zag Kekuatan Sambungan Las Dalam mendesain struktur yang difabrikasi dengan pengelasan, berbagai jenis kekuatan sambungan las harus menjadi pertimbangan, seperti kekuatan tarik, energi terserap, kuat fatik dan lain-lain tergantung pada spesifikasi yang diberikan. Kekuatan sambungan las dihitung berdasrkan tegangan boleh dengan anggapan bahwa hubungan antara tegangan dengan regangan mengikuti hukum Hooke dengan syarat tegangan terbesar yang terjadi tidak melebihi tegangan boleh yang telah ditentukan sebelumnya. A. Rumus sambungan las Butt Weld Joint karena pengaruh gaya tarik Gambar 2.22 Butt Weld Joint Universitas Mercu Buana 31

28 p 1...(2.25) tl Dimana: P = Gaya tarik yang terjadi [N] t = tebal plat l = Panjang plat [mm] [mm] 1 Tegangan tarik [N/mm 2 ] B. Rumus sambungan las Fillet Lap Joint karena pengaruh gaya tarik Gambar 2.23 Fillet Lap Joint 1 1,414 p ( t t ) l (2.26) Dimana: P = Gaya tarik yang terjadi [N] t = tebal plat [mm] Universitas Mercu Buana 32

29 l = Panjang plat [mm] 1 Tegangan tarik [N/mm 2 ] Rumus Faktor keamanan ( S ) f s S f...(2.27) maks s Tegangan yang dijinkan [N/mm 2 ] maks Tegangan maksimal sambungan las [N/mm 2 ] C. Rumus tebal leher las Gambar 2.24 Fillet weld s t 0,707 s 2...(2.28) Dimana: t = Tebal leher las s = ukuran las [mm] [mm] Universitas Mercu Buana 33

30 D. Rumus sambungan las Fillet lingkaran karena pengaruh torsi Gambar 2.25 Circular fillet weld pengaruh torsi Tr J d T 2 3 td 4 2T td 2...(2.29) Dimana : d = Diameter lingkaran T = Torsi r = Jari-jari lingkaran [mm] [N.mm] [mm] J = momen inersia polar = S = ukuran las t = Tebal leher las πtd 3 [mm 4 ] 4 [mm] [mm] = Teagangan geser [N/mm 2 ] Universitas Mercu Buana 34

31 E. Rumus sambungan las Fillet lingkaran karena pengaruh bending Gambar 2.26 Circular fillet weld pengaruh bending b M Z M td 4 2 4M td 2...(2.30) d = Diameter lingkaran M = momen bending r = Jari-jari lingkaran [mm] [N.mm] [mm] πtd 2 Z= section modulus = [mm 3 ] 4 S = ukuran las t = Tebal leher las [mm] [mm] b = Teagangan bending [N/mm 2 ] Universitas Mercu Buana 35

32 F. Rumus section modulus dan momen inersia polar Gambar 2.27 Rumus section modulus dan momen inersia polar Universitas Mercu Buana 36

bahan kimia, farmasi makanan dan minuman, minyak dan bahan bakar, industri nuklir, dan industri plastik. 2.2 Bejana Tekan Silindris Penelaahan bejana

bahan kimia, farmasi makanan dan minuman, minyak dan bahan bakar, industri nuklir, dan industri plastik. 2.2 Bejana Tekan Silindris Penelaahan bejana BAB II LANDASAN TEORI 2.1 Pengertian Bejana Tekan (Pressure Vessel). Bejana tekan atau istilah dalam dalam tehnik adalah tabung tertutup berbentuk silinder, sebagai penampung yang dapat menahan tekanan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bejana tekan merupakan suatu wadah yang berfungsi sebagai penampung fluida, baik fluida cair maupun gas. Dalam perancangan suatu bejana tekan ada beberapa hal yang

Lebih terperinci

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah.

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah. Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah. Dengan kemajuan teknologi yang semakin pesat, telah diciptakan suatu alat yang bisa menampung,

Lebih terperinci

DASAR-DASAR PENGELASAN

DASAR-DASAR PENGELASAN DASAR-DASAR PENGELASAN Pengelasan adalah proses penyambungan material dengan menggunakan energi panas sehingga menjadi satu dengan atau tanpa tekanan. Pengelasan dapat dilakukan dengan : - pemanasan tanpa

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF)

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF) 35 BAB IV PEMBAHASAN 4.1 Data Perancangan Jenis bejana tekan Tekanan kerja / Po Temperatur kerja / To Panjang silinder Diameter dalam silinder / Di Panjang bejana tekan (head to head) / z Joint efisiensi

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Las.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Las. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Sambungan Las Pertemuan 9, 10 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG STUDI KONFIGURASI LAS SUDUT PADA STRUKTUR BAJA YANG MEMIKUL MOMEN SEBIDANG BERDASARKAN SPESIFIKASI SNI 03 1729 2002 TENTANG TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG Elfrida Evalina NRP

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1

PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1 PERANCANGAN BEJANA TEKAN KAPASITAS 5 M3 DENGAN TEKANAN DESAIN 10 BAR BERDASARKAN STANDAR ASME 2007 SECTION VIII DIV 1 Riki Candra Putra Jurusan Teknik Mesin Universitas Muhammadiyah Tangerang ABSTRAK Dalam

Lebih terperinci

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN 4.1 Perhitungan Bejana Tekan Seperti yang diuraikan pada BAB II, bahwa bejana tekan yang dimaksud dalam penyusunan tugas akhir ini adalah suatu tabung tertutup

Lebih terperinci

BAB 2 SAMBUNGAN (JOINT ) 2.1. Sambungan Keling (Rivet)

BAB 2 SAMBUNGAN (JOINT ) 2.1. Sambungan Keling (Rivet) BAB SAMBUNGAN (JOINT ).1. Sambungan Keling (Rivet) Pada umumnya mesin mesin terdiri dari beberapa bagian yang disambung-sambung menjadi sebuah mesin yang utuh. Sambungan keling umumnya diterapkan pada

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Statika rangka Dalam konstruksi rangka terdapat gaya-gaya yang bekerja pada rangka tersebut. Dalam ilmu statika keberadaan gaya-gaya yang mempengaruhi sistem menjadi suatu obyek

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 32 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 PELAKSANAAN Kerja praktek dilaksanakan pada tanggal 01 Februari 28 februari 2017 pada unit boiler PPSDM MIGAS Cepu Kabupaten Blora, Jawa tengah. 4.1.1 Tahapan kegiatan

Lebih terperinci

III. METODE PENELITIAN. Penelitian dilakukan dibeberapa tempat, sebagai berikut:

III. METODE PENELITIAN. Penelitian dilakukan dibeberapa tempat, sebagai berikut: III. METODE PENELITIAN A. Tempat Penelitian Penelitian dilakukan dibeberapa tempat, sebagai berikut: 1. Pembuatan kampuh dan proses pengelasan dilakukan di Politeknik Negeri Lampung, Bandar Lampung, 2.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Bejana tekan merupakan suatu tempat untuk menampung atau menyimpan suatu fluida bertekanan. Bejana tekan dirancang agar mampu menampung atau menyimpan fluida

Lebih terperinci

Konstruksi Baja. AR-2221 Struktur, Konstruksi dan Material

Konstruksi Baja. AR-2221 Struktur, Konstruksi dan Material Konstruksi Baja AR-2221 Struktur, Konstruksi dan Material Referensi Construction Material, their Nature and Behavior. Edited by. J.M. ILLSTON, E&FN Spon An Imprint of Chapman& Hall. Structure, Daniel L.

Lebih terperinci

BAB 4 SAMBUNGAN LAS. Sambungan las (welding joint) merupakan jenis sambungan tetap. Sambungan las menghasilkan kekuatan sambungan yang besar.

BAB 4 SAMBUNGAN LAS. Sambungan las (welding joint) merupakan jenis sambungan tetap. Sambungan las menghasilkan kekuatan sambungan yang besar. BAB 4 SAMBUNGAN LAS Diktat-elmes-agustinus purna irawan-tm.ft.untar Sambungan las (welding joint) merupakan jenis sambungan tetap. Sambungan las menghasilkan kekuatan sambungan yang besar. Proses pengelasan

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Las Pertemuan - 14

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Las Pertemuan - 14 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Sambungan Las Pertemuan - 14 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle dengan studi kasus pada separator kluster 4 Fluid

Lebih terperinci

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus TUGAS AKHIR Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Di dunia industri terutama dibidang petrokimia dan perminyakan banyak proses perubahan satu fluida ke fluida yang lain yang lain baik secara kimia maupun non kimia.

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN ERHITUNGAN 4.1 erhitungan dan emeriksaan Kekuatan 4.1.1 erhitungan Tutup Bejana Dari hasil pengumpulan data, tutup bejana (head) yang dipakai adalah jenis Ellipsoidal, data yang

Lebih terperinci

BAB XX DEFORMASI PADA KONSTRUKSI LAS

BAB XX DEFORMASI PADA KONSTRUKSI LAS BAB XX DEFORMASI PADA KONSTRUKSI LAS A. Gambaran Umum Deformasi. Deformasi adalah perubahan bentuk akibat adanya tegangan dalam logam yaitu tegangan memanjang dan tegangan melintang, yang disebabkan oleh

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan teknologi di bidang konstruksi yang semakin maju tidak

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan teknologi di bidang konstruksi yang semakin maju tidak BAB I PENDAHULUAN 1.1 Latar Belakang Pengembangan teknologi di bidang konstruksi yang semakin maju tidak dapat dipisahkan dari pengelasan karena mempunyai peranan penting dalam rekayasa dan reparasi logam.

Lebih terperinci

Sumber : Brownell & Young Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : Abdul Wahid Surhim

Sumber : Brownell & Young Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : Abdul Wahid Surhim Sumber : Brownell & Young. 1959. Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : 36-57 3 Abdul Wahid Surhim *Vessel merupakan perlengkapan paling dasar dari industri kimia dan petrokimia

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput BAB II DASAR TEORI 2.1 Prinsip Dasar Mesin Pencacah Rumput Mesin ini merupakan mesin serbaguna untuk perajang hijauan, khususnya digunakan untuk merajang rumput pakan ternak. Pencacahan ini dimaksudkan

Lebih terperinci

A. Dasar-dasar Pemilihan Bahan

A. Dasar-dasar Pemilihan Bahan BAB II TINJAUAN PUSTAKA A. Dasar-dasar Pemilihan Bahan Di dalam merencanakan suatu alat perlu sekali memperhitungkan dan memilih bahan-bahan yang akan digunakan, apakah bahan tersebut sudah sesuai dengan

Lebih terperinci

SAMBUNGAN LAS 6.1 PERHITUNGAN KEKUATAN SAMBUNGAN LAS Sambungan Tumpu ( Butt Joint ).

SAMBUNGAN LAS 6.1 PERHITUNGAN KEKUATAN SAMBUNGAN LAS Sambungan Tumpu ( Butt Joint ). SAMBUNGAN LAS Mengelas adalah menyambung dua bagian logam dengan cara memanaskan sampai suhu lebur dengan memakai bahan pengisi atau tanpa bahan pengisi. Dalam sambungan las ini, yang akan dibahas hanya

Lebih terperinci

Tugas Akhir. Studi Corrosion Fatigue Pada Sambungan Las SMAW Baja API 5L Grade X65 Dengan Variasi Waktu Pencelupan Dalam Larutan HCl

Tugas Akhir. Studi Corrosion Fatigue Pada Sambungan Las SMAW Baja API 5L Grade X65 Dengan Variasi Waktu Pencelupan Dalam Larutan HCl Tugas Akhir Studi Corrosion Fatigue Pada Sambungan Las SMAW Baja API 5L Grade X65 Dengan Variasi Waktu Pencelupan Dalam Larutan HCl Oleh : Wishnu Wardhana 4305 100 024 Dosen Pembimbing: Murdjito, M.Sc.

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

BAB 3 SAMBUNGAN PAKU KELING

BAB 3 SAMBUNGAN PAKU KELING BAB 3 SAMBUNGAN PAKU KELING Paku keling (rivet) digunakan untuk sambungan tetap antara 2 plat atau lebih misalnya pada tangki dan boiler. Paku keling dalam ukuran yang kecil dapat digunakan untuk menyambung

Lebih terperinci

ELEMEN PENGIKAT SAMBUNGAN PERMANEN ( PENGELASAN & PENYOLDERAN )

ELEMEN PENGIKAT SAMBUNGAN PERMANEN ( PENGELASAN & PENYOLDERAN ) ELEMEN PENGIKAT SAMBUNGAN PERMANEN ( PENGELASAN & PENYOLDERAN ) ANGGOTA KELOMPOK 4 ELEMEN MESIN ( LAS & SOLDER ) LAS SOLDER ELEMEN MESIN ( LAS & SOLDER ) PENGERTIAN KLASIFIKASI PROSES REAKSI KIMIA PROSES

Lebih terperinci

BAB VII PENUTUP Perancangan sistem perpipaan

BAB VII PENUTUP Perancangan sistem perpipaan BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan dan analisis tegangan sistem perpipaan sistem perpipaan berdasarkan standar ASME B 31.4 (studi kasus jalur perpipaan LPG dermaga Unit 68 ke tangki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

Proses pembentukan sambungan las

Proses pembentukan sambungan las SAMBUNGAN LAS Proses pembentukan sambungan las Baja yang akan disambung dipanaskan pada ujung-ujung bagian baja yang akan disambung sampai mecapai titik lelehnya Baja yang telah cair akan menyatu membentuk

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Proses perancangan mesin peniris minyak pada kacang seperti terlihat pada gambar 3.1 berikut ini: Mulai Studi Literatur Gambar Sketsa

Lebih terperinci

Simbol Pengelasan TEKNIK LAS BAB 2 SIMBOL PENGELASAN

Simbol Pengelasan TEKNIK LAS BAB 2 SIMBOL PENGELASAN BAB 2 SIMBOL PENGELASAN Proses pengelasan merupakan proses penyambungan / pengabungan dua atau lebih bahan logam dengan menggunakan tekanan, panas, nyala atau busur listrik. Pada proses pengelasan, logam

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan analisis kekuatan bejana tekan vertikal berbasis code ASME VIII Div I terhadap variasi tekanan. Definisi bejana tekan berdasarkan

Lebih terperinci

DAFTAR ISI. i ii iii iv vi v vii

DAFTAR ISI. i ii iii iv vi v vii DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... NASKAH SOAL... HALAMAN PERSEMBAHAN... INTISARI... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN...

Lebih terperinci

PENGARUH POSISI PENGELASAN TERHADAP KEKUATAN TAKIK DAN KEKERASAN PADA SAMBUNGAN LAS PIPA

PENGARUH POSISI PENGELASAN TERHADAP KEKUATAN TAKIK DAN KEKERASAN PADA SAMBUNGAN LAS PIPA PENGARUH POSISI PENGELASAN TERHADAP KEKUATAN TAKIK DAN KEKERASAN PADA SAMBUNGAN LAS PIPA Pudin Saragih 1 Abstrak. Kekuatan sambungan las sangat sulit ditentukan secara perhitungan teoritis meskipun berbagai

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 Jurnal FEMA, Volume 1, Nomor 4, Oktober 013 PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK PENGOLAHAN LIMBAH KELAPA SAWIT DENGAN VARIABEL KAPASITAS PRODUKSI 10.000 TON/BULAN Meylia Rodiawati 1) A. Yudi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Dasar Rotating Disk

BAB II DASAR TEORI. 2.1 Konsep Dasar Rotating Disk BAB II DASAR TEORI.1 Konsep Dasar Rotating Disk Rotating disk adalah istilah lain dari piringan bertingkat yang mempunyai kemampuan untuk berputar. Namun dalam aplikasinya, penggunaan elemen ini dapat

Lebih terperinci

I. PENDAHULUAN. keling. Ruang lingkup penggunaan teknik pengelasan dalam konstruksi. transportasi, rel, pipa saluran dan lain sebagainya.

I. PENDAHULUAN. keling. Ruang lingkup penggunaan teknik pengelasan dalam konstruksi. transportasi, rel, pipa saluran dan lain sebagainya. I. PENDAHULUAN A. Latar Belakang Pengembangan teknologi di bidang konstruksi yang semakin maju tidak dapat dipisahkan dari pengelasan, karena mempunyai peranan penting dalam rekayasa dan reparasi logam.

Lebih terperinci

II. TINJAUAN PUSTAKA. seluruh kegiatan yang terdapat dalam proses perancangan. Kegiatankegiatan

II. TINJAUAN PUSTAKA. seluruh kegiatan yang terdapat dalam proses perancangan. Kegiatankegiatan II. TINJAUAN PUSTAKA A. Fase Fase Dalam Proses Perancangan Perancangan merupakan rangkaian yang berurutan, karena mencakup seluruh kegiatan yang terdapat dalam proses perancangan. Kegiatankegiatan dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Dasar-DasarPemilihanBahan Didalammerencanakansuatualatperlusekalimemperhitungkandanmemilihbahan -bahan yang akandigunakan, apakahbahantersebutsudahsesuaidengankebutuhanbaikitusecaradimensiukuranata

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1.Perencanaan Rancang Bangun Dalam merencanakan suatu alat bantu, terlebih dahulu kita harus memperhatikan faktor-faktor yang mendasari terlaksananya perencanaan alat bantu

Lebih terperinci

PENGELASAN Teknologi Pengelasan Pengelasan sebagai Kegiatan Komersial :

PENGELASAN Teknologi Pengelasan Pengelasan sebagai Kegiatan Komersial : PENGELASAN I. Teknologi Pengelasan Pengelasan : Proses penyambungan dua buah (atau Lebih) logam sejenis maupun tidak sejenis dng mencairkan (memanaskan) logam tsb di atas atau di bawah titik leburnya,

Lebih terperinci

BAB IV PERUBAHAN BENTUK DALAM PENGELASAN. tambahan untuk cairan logam las diberikan oleh cairan flux atau slag yang terbentuk.

BAB IV PERUBAHAN BENTUK DALAM PENGELASAN. tambahan untuk cairan logam las diberikan oleh cairan flux atau slag yang terbentuk. IV - 1 BAB IV PERUBAHAN BENTUK DALAM PENGELASAN SMAW adalah proses las busur manual dimana panas pengelasan dihasilkan oleh busur listrik antara elektroda terumpan berpelindung flux dengan benda kerja.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Waktu Dan Tempat Penelitian Penelitian ini dilakukan di Lab. Mekanika Struktur Jurusan Teknik Mesin Universitas Lampung untuk mensimulasikan kemampuan tangki toroidal penampang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Vessel 1. Vessel merupakan salah satu contoh dari bejana bertekanan (Pressure Vessel) yang paling sederhana, hal ini dikarenakan bagian utama dari suatu Vessel hanya terdiri dari

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : BAB V ANALISA HASIL 5.1. Evaluasi Perhitungan Secara Manual 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : - Diameter luar pipa (Do)

Lebih terperinci

BAB I PENDAHULUAN. Pengelasan adalah suatu proses penggabungan antara dua. logam atau lebih yang menggunakan energi panas.

BAB I PENDAHULUAN. Pengelasan adalah suatu proses penggabungan antara dua. logam atau lebih yang menggunakan energi panas. BAB I PENDAHULUAN 1.1. Latar Belakang Pengelasan adalah suatu proses penggabungan antara dua logam atau lebih yang menggunakan energi panas. Teknologi pengelasan tidak hanya digunakan untuk memproduksi

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Prinsip Statika Keseimbangan (Meriam& Kraige, 1986)

BAB II DASAR TEORI. Gambar 2.1 Prinsip Statika Keseimbangan (Meriam& Kraige, 1986) BAB II DASAR TEORI 2.1 Statika Statika adalah ilmu yang mempelajari tentang statika suatu beban terhadap gaya-gaya dan juga beban yang mungkin ada pada bahan tersebut. Dalam statika keberadaan gaya-gaya

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Gambaran Umum LPG LPG merupakan senyawa hydrocarbon yang dikenal sebagai butana, Propana, Isobutana atau campuran antara Butana dengan Propana. Secara umum LPG bersifat : Berat

Lebih terperinci

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun.

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun. SAMBUNGAN LAS 13.5.1 Lingkup 13.5.1.1 Umum Pengelasan harus memenuhi standar SII yang berlaku (2441-89, 2442-89, 2443-89, 2444-89, 2445-89, 2446-89, dan 2447-89), atau penggantinya. 13.5.1.2 Jenis las

Lebih terperinci

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340 JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: 2301-9271 G-340 Analisa Pengaruh Variasi Tanggem Pada Pengelasan Pipa Carbon Steel Dengan Metode Pengelasan SMAW dan FCAW Terhadap Deformasi dan Tegangan

Lebih terperinci

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya.

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya. BAB II TEORI DASAR 2.1 Hydraulic Excavator Secara Umum. 2.1.1 Definisi Hydraulic Excavator. Excavator adalah alat berat yang digunakan untuk operasi loading dan unloading. Berdasarkan sistem penggeraknya,

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN

BAB III ANALISA DAN PEMBAHASAN BAB III ANALISA DAN PEMBAHASAN 3.1. Perhitungan Ketebalan Pipa (Thickness) Penentuan ketebalan pipa (thickness) adalah suatu proses dimana akan ditentukan schedule pipa yang akan digunakan. Diameter pipa

Lebih terperinci

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis studi kasus pada pipa penyalur yang dipendam di bawah tanah (onshore pipeline) yang telah mengalami upheaval buckling. Dari analisis ini nantinya

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan analisis kekuatan bejana tekan vertikal berbasis code ASME VIII Div 1 terhadap variasi tekanan dan beban eksentris. Definisi bejana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Sesuai dengan perencanaan yaitu pembuatan air receiver tank dimana fluida dalam hal ini udara yang mempunyai tekanan disimpan didalam bejana tekan. Langkah pertama

Lebih terperinci

BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Perontok Padi 2.2 Rangka

BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Perontok Padi  2.2 Rangka BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Perontok Padi Mesin perontok padi adalah suatu mesin yang digunakan untuk mempermudah pekerjaan manusia untuk memisahkan antara jerami dengan bulir padi atau

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007) BAB II DASAR TEORI 2.1 TINJAUAN PUSTAKA Proses pengelasan semakin berkembang seiring pertumbuhan industri, khususnya di bidang konstruksi. Banyak metode pengelasan yang dikembangkan untuk mengatasi permasalahan

Lebih terperinci

BAB I PENDAHULUAN LATAR BELAKANG

BAB I PENDAHULUAN LATAR BELAKANG 1 BAB I PENDAHULUAN 1. LATAR BELAKANG Pada saat ini, banyak sekali alat-alat yang terbuat dari bahan plat baik plat fero maupun nonfero seperti talang air, cover pintu, tong sampah, kompor minyak, tutup

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Jacketed Vessel Jacketed vessel adalah bejana tekanshell tekan dengan shell tekan sekunder yang menempel pada sisi luar dinding shell. Jacket diinstal di dinding shell, head,

Lebih terperinci

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 ANALII THERMAL DAN TEGANGAN PADA PERANCANGAN BEJANA TEKAN (PREURE VEEL) UNTUK LIMBAH KELAPA AWIT DENGAN KAPAITA 10.000 TON/BULAN A. Yudi Eka Risano 1), Ahmad

Lebih terperinci

MACAM MACAM SAMBUNGAN

MACAM MACAM SAMBUNGAN BAB 2 MACAM MACAM SAMBUNGAN Kompetensi Dasar Indikator : Memahami Dasar dasar Mesin : Menerangkan komponen/elemen mesin sesuai konsep keilmuan yang terkait Materi : 1. Sambungan tetap 2. Sambungan tidak

Lebih terperinci

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : BAB V ANALISA HASIL 5.1. Evaluasi Perhitungan Secara Manual 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : - Diameter luar pipa (Do)

Lebih terperinci

Spesifikasi anyaman kawat baja polos yang dilas untuk tulangan beton

Spesifikasi anyaman kawat baja polos yang dilas untuk tulangan beton SNI 03-6812-2002 Standar Nasional Indonesia Spesifikasi anyaman kawat baja polos yang dilas untuk tulangan beton ICS 77.140.65; 91.100.01 Badan Standardisasi Nasional Daftar isi Daftar isi... i Prakata...

Lebih terperinci

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh III. METODE PENELITIAN Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh rumah tangga yaitu tabung gas 3 kg, dengan data: Tabung 3 kg 1. Temperature -40 sd 60 o C 2. Volume 7.3

Lebih terperinci

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA Willyanto Anggono 1), Hariyanto Gunawan 2), Ian Hardianto

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. DATA ALAT DAN MATERIAL PENELITIAN 1. Material Penelitian Tipe Baja : AISI 1045 Bentuk : Pelat Tabel 7. Komposisi Kimia Baja AISI 1045 Pelat AISI 1045 Unsur Nilai Kandungan Unsur

Lebih terperinci

KAPAL JURNAL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN

KAPAL JURNAL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN 1829-8370 (p) 2301-9069 (e) http://ejournal.undip.ac.id/index.php/kapal KAPAL JURNAL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN Pengujian Tarik Dan Impak Pada Pengerjaan Pengelasan SMAW Dengan Mesin Genset

Lebih terperinci

II. TINJAUAN PUSTAKA. Seperti diketahui bahwa, di dalam baja karbon terdapat ferrite, pearlite, dan

II. TINJAUAN PUSTAKA. Seperti diketahui bahwa, di dalam baja karbon terdapat ferrite, pearlite, dan II. TINJAUAN PUSTAKA A. Baja Baja adalah paduan antara unsur besi (Fe) dan Carbon (C) serta beberapa unsur tambahan lain, seperti Mangan (Mn), Aluminium (Al), Silikon (Si) dll. Seperti diketahui bahwa,

Lebih terperinci

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi 1 Analisa Tegangan pada Pipa yang Memiliki Sumuran Berbentuk Limas dengan Variasi Kedalaman Muhammad S. Sholikhin, Imam Rochani, dan Yoyok S. Hadiwidodo Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan,

Lebih terperinci

PENGARUH VARIASI JARAK DAN SUDUT KONTAK SADDLE TERHADAP DISTRIBUSI TEGANGAN PADA BEJANA TEKAN HORIZONTAL

PENGARUH VARIASI JARAK DAN SUDUT KONTAK SADDLE TERHADAP DISTRIBUSI TEGANGAN PADA BEJANA TEKAN HORIZONTAL ISSN : 2338-0284 Seminar Nasional Pendidikan Teknik Otomotif Fakultas Keguruan dan Ilmu Pendidikan - Universitas Muhammadiyah Purworejo PENGARUH VARIASI JARAK DAN SUDUT KONTAK SADDLE TERHADAP DISTRIBUSI

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dalam tekan sebelum terjadi kegagalan (Bowles, 1985).

BAB II TINJAUAN PUSTAKA. dalam tekan sebelum terjadi kegagalan (Bowles, 1985). BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah salah satu bahan konstruksi yang penting. Sifat-sifatnya yang terutama adalah kekuatannya yang tinggi dan sifat keliatannya. Keliatan (ductility) adalah kemampuan

Lebih terperinci

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR Cahya Sutowo 1.,ST.MT. Hantawan 2 Lecture 1,College student 2,Departement of machine,

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 13 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Genset merupakan mesin dengan pembakaran dalam atau disebut motor bakar ditinjau dari cara memperoleh energi thermalnya. Untuk membangkitkan listrik sebuah mesin

Lebih terperinci

Analisa Kekuatan Tarik Baja Konstruksi Bj 44 Pada Proses Pengelasan SMAW dengan Variasi Arus Pengelasan

Analisa Kekuatan Tarik Baja Konstruksi Bj 44 Pada Proses Pengelasan SMAW dengan Variasi Arus Pengelasan Analisa Kekuatan Tarik Baja Konstruksi Bj 44 Pada Proses Pengelasan SMAW dengan Variasi Arus Pengelasan Imam Basori Universitas Negeri Jakarta, Fakultas Teknik, Jurusan Teknik Mesin Jl. Rawamangun Muka,

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

PENGARUH VARIASI ARUS PENGELASAN TERHADAP SIFAT MEKANIK PADA PROSES PENGELASAN SMAW

PENGARUH VARIASI ARUS PENGELASAN TERHADAP SIFAT MEKANIK PADA PROSES PENGELASAN SMAW PENGARUH VARIASI ARUS PENGELASAN TERHADAP SIFAT MEKANIK PADA PROSES PENGELASAN SMAW Azwinur 1, Saifuddin A. Jalil 2, Asmaul Husna 3 1,2,3 Jurusan Teknik Mesin Politeknik Negeri Lhokseumawe Jl. Banda Aceh-Medan

Lebih terperinci

Pengaruh Variasi Waktu dan Tebal Plat Pada Las Titik terhadap Sifat Fisis dan Mekanis Sambungan Las Baja Karbon Rendah

Pengaruh Variasi Waktu dan Tebal Plat Pada Las Titik terhadap Sifat Fisis dan Mekanis Sambungan Las Baja Karbon Rendah TUGAS AKHIR Pengaruh Variasi Waktu dan Tebal Plat Pada Las Titik terhadap Sifat Fisis dan Mekanis Sambungan Las Baja Karbon Rendah Disusun : MT ERRY DANIS NIM : D.200.01.0055 NIRM : 01.6.106.03030.50055

Lebih terperinci

BAB II LANDASAN TEORI. Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik

BAB II LANDASAN TEORI. Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik BAB II LANDASAN TEORI 2.1 Definisi dan Teori Perpipaan 2.1.1 Definisi Sistem Perpipaan Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik ke satu atau beberapa titik lainnya digunakan

Lebih terperinci

PENENTUAN WELDING SEQUENCE TERBAIK PADA PENGELASAN SAMBUNGAN-T PADA SISTEM PERPIPAAN KAPAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

PENENTUAN WELDING SEQUENCE TERBAIK PADA PENGELASAN SAMBUNGAN-T PADA SISTEM PERPIPAAN KAPAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA Tugas Akhir PENENTUAN WELDING SEQUENCE TERBAIK PADA PENGELASAN SAMBUNGAN-T PADA SISTEM PERPIPAAN KAPAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA Disusun oleh : Awang Dwi Andika 4105 100 036 Dosen Pembimbing

Lebih terperinci

BAB VII PENUTUP Perancangan bejana tekan vertikal separator

BAB VII PENUTUP Perancangan bejana tekan vertikal separator BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle (studi kasus separator unit karaha PT. Pertamina Geothermal Energy), secara garis

Lebih terperinci

I. PENDAHULUAN. selain jenisnya bervariasi, kuat, dan dapat diolah atau dibentuk menjadi berbagai

I. PENDAHULUAN. selain jenisnya bervariasi, kuat, dan dapat diolah atau dibentuk menjadi berbagai I. PENDAHULUAN A. LATAR BELAKANG Dalam dunia industri, bahan-bahan yang digunakan kadang kala merupakan bahan yang berat. Bahan material baja adalah bahan paling banyak digunakan, selain jenisnya bervariasi,

Lebih terperinci

KARAKTERISTIK HASIL PENGELASAN PIPA DENGAN BEBERAPA VARIASI ARUS LAS BUSUR LISTRIK

KARAKTERISTIK HASIL PENGELASAN PIPA DENGAN BEBERAPA VARIASI ARUS LAS BUSUR LISTRIK KARAKTERISTIK HASIL PENGELASAN PIPA DENGAN BEBERAPA VARIASI ARUS LAS BUSUR LISTRIK Syaripuddin Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail : syaripuddin_andre@yahoo.com ABSTRAK Penelitian

Lebih terperinci

ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT 2 MENUJU HEAT EXCHANGERDI PLTU BELAWAN

ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT 2 MENUJU HEAT EXCHANGERDI PLTU BELAWAN ANALISA TEGANGAN PIPA PADA SISTEM PERPIPAAN HEAVY FUEL OIL DARI DAILY TANK UNIT 1 DAN UNIT MENUJU HEAT EXCHANGERDI PLTU BELAWAN 1, Jurusan Teknik Mesin, Universitas Sumatera Utara, Jln.Almamater Kampus

Lebih terperinci

Gambar 1.7 Pengelasan busur plasma

Gambar 1.7 Pengelasan busur plasma Gambar 1.7 Pengelasan busur plasma Suhu plasma sekitar 28.000 O C atau lebih besar, cukup panas untuk mencairkan setiap logam yang dikenal. Panas ini diperoleh akibat terkonstrasinya daya sehingga dihasilkan

Lebih terperinci

Pengujian Impak (Hentakan) Pengujian Metalografi Pengujian Korosi Parameter pada Lambung Kapal...

Pengujian Impak (Hentakan) Pengujian Metalografi Pengujian Korosi Parameter pada Lambung Kapal... DAFTAR ISI HALAMAN JUDUL... i LEMBAR PENGESAHAN DOSEN PEMBIMBING... ii LEMBAR PENGESAHAN DOSEN PENGUJI... iii HALAMAN PERSEMBAHAN... iv HALAMAN MOTTO... v KATA PENGANTAR... vi ABSTRAK... viii ABSTRACT...

Lebih terperinci

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan 2 BAB II TEORI 2.1 Tinjauan Pustaka Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan yang terjadi mempunyai nilai rasio lebih kecil atau sama dengan 1 dari tegangan yang diijinkan (allowable

Lebih terperinci

PEMBUATAN HEATING CHAMBER PADA TUNGKU KILN / HEAT TREAMENT FURNACE TYPE N 41/H

PEMBUATAN HEATING CHAMBER PADA TUNGKU KILN / HEAT TREAMENT FURNACE TYPE N 41/H PEMBUATAN HEATING CHAMBER PADA TUNGKU KILN / HEAT TREAMENT FURNACE TYPE N 41/H Djoko Kisworo Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK PEMBUATAN HEATING CHAMBER PADA TUNGKU KiLN / HEAT TREATMENT

Lebih terperinci