BAB III PERANCANGAN EVAPORATOR Perencanaan Modifikasi Evaporator

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PERANCANGAN EVAPORATOR Perencanaan Modifikasi Evaporator"

Transkripsi

1 BAB III PERANCANGAN EVAPORATOR 3.1. Perencanaan Modifikasi Evaporator Pertumbuhan pertumbuhan tube ice mengharuskan diciptakannya sistem produksi tube ice dengan kapasitas produksi yang lebih besar, untuk memenuhi permintaan pasar. Salah satu langkah yang harus dilakukan untuk mewujudkan kapasitas yang lebih besar ini adalah dengan merancang evaporator yang mampu menghasilkan tube ice dengan kapasitas yang lebih besar pula. Sehingga dalam tugas akhir perancangan ini, penulis akan merencanakan evaporator tube ice dengan kapasitas 3 ton es / jam, dengan mempergunakan evaporator tipe PK-50A buatan PATKOL Public Company Limited dengan kapasitas 50 ton es per hari ( 2 ton es per jam ) sebagai dasar modifikasi Spesifikasi Hasil Modifikasi yang Dikehendaki Spesifikasi evaporator hasil modifikasi yang dikehendaki antara lain : 1. Memiliki kapasitas produksi tube ice sebesar 3 ton / jam 2. Memiliki production cycle selama 60 menit 3. Memiliki space to production ratio yang rendah 4. Mudah dalam perawatan, terutama dalam hal pembersihan pipa pipa cetakan es 33

2 5. Harus terbuat dari material yang tidak mengalami perkaratan, sehingga tidak menghasilkan karat yang berbahaya bagi produk. 6. Memiliki efisiensi energi yang tinggi, sehingga biaya energi dalam menghasilkan produk dapat lebih rendah Dengan persyaratan di atas, diharapkan evaporator dapat bekerja sesuai dengan keinginan pengguna / operator Masalah Masalah Penting pada Evaporator 1. Pipa pipa evaporator pada mesin tube ice sekaligus berfungsi sebagai cetakan es, sehingga total volume pipa harus mencapai jumlah produksi yang diinginkan per cycle. Dalam hal ini diinginkan jumlah produksi sebanyak 3 ton / jam. 2. Pipa evaporator yang terlalu panjang akan lebih sulit dalam proses pembersihan, karena dibutuhkan brush dengan ukuran sangat panjang untuk mencapai ujung pipa 3. Diameter evaporator yang terlalu lebar akan memakan tempat yang besar, sehingga space to production ratio menjadi rendah Alternatif Bentuk Evaporator lain adalah : Beberapa alternatif bentuk evaporator yang dapat dipertimbangkan antara 34

3 1. Alternatif Bentuk 1 Modifikasi dengan menambah jumlah pipa pipa pada evaporator Gambar 3.1. Alternatif bentuk evaporator 1 Dengan penambahan jumlah pipa, otomatis akan menambah kapasitas es yang dapat dihasilkan setiap jam. Permasalahan yang perlu dipertimbangkan dengan penambahan jumlah pipa adalah diameter keseluruhan evaporator yang akan bertambah besar, sehingga membutuhkan tempat yang lebih luas untuk instalasi. 2. Alternatif Bentuk 2 Modifikasi dengan menambah panjang pipa pipa evaporator 35

4 Dengan menambah panjang pipa evaporator, otomatis dapat dicapai kapasitas yang diinginkan dengan tetap mempertahankan luas tempat Gambar 3.2. Alternatif bentuk evaporator 2 instalasi yang sama, hanya saja evaporator menjadi semakin tinggi. Hal ini dapat menjadi permasalahan pada perawatan, dan membutuhkan pompa sirkulasi yang lebih besar, karena air harus disirkulasikan ke ujung atas evaporator yang posisinya semakin tinggi. 3. Alternatif Bentuk 3 Modifikasi dengan menambah jumlah dan panjang pipa evaporator. 36

5 Dengan modifikasi ini, jumlah pipa ditambah demikian juga dengan panjang pipa sehingga dicapai dimensi dan tinggi evaporator maksimal. Gambar 3.3. Alternatif bentuk evaporator 3 4. Alternatif Bentuk 4 Modifikasi dengan merubah bentuk evaporator menjadi persegi. Dengan bentuk persegi, dapat ditempatkan jumlah pipa yang lebih banyak untuk luasan instalasi yang sama, dan secara otomatis dapat diperoleh jumlah produksi yang lebih besar. 37

6 Gambar 3.4. Alternatif bentuk evaporator 4 5. Alternatif Bentuk 5 Modifikasi dengan merubah bentuk evaporator menjadi pipa pipa horizontal. Dengan mengubah evaporator menjadi horizontal, jumlah pipa dapat lebih banyak, dan dapat meningkatkan kapasitas produksi pada evaporator. 38

7 Gambar 3.5. Alternatif bentuk evaporator 5 Dari alternatif bentuk di atas, dicoba dirangkum dalam sebuah matriks, untuk diperoleh layout awal yang paling maksimal. Dalam matriks ini, alternatif bentuk akan diberi nilai untuk menentukan kesesuaian perencanaan dengan hasil yang dikehendaki. Tuntutan perencanaan akan dijabarkan pada baris, sedangkan alternatif bentuk evaporator dijabarkan pada kolom. Penjumlahan bobot nilai seluruh kriteria (weighting factors) harus berjumlah 100% (diskalakan menjadi 1,0 pada matriks ini). Besar nilai bobot atau weighting factors akan ditentukan oleh perancang berdasarkan questioner yang dibagikan pada pengguna. Untuk setiap alternatif bentuk, perancang akan memberikan nilai rating (rating factors) untuk setiap parameter berdasarkan questioner yang dibagikan pada pengguna, yang menunjukan kesesuaian alternatif bentuk dengan tujuan perancangan yang dikehendaki. Nilai rating berkisar antara 1 sampai dengan

8 Hasil perkalian antara nilai bobot (WF) dan nilai rating (RF) disebut weighted rating factor, dan akan diisikan pada kolom kolom nilai untuk tujuan evaluasi Questioner Pemilihan Alternatif Bentuk Evaporator Berilah penilaian pada masing masing bentuk evaporator. Keterangan : 1. Weighting Factors (WF) adalah penilaian atas seberapa penting nya parameter rancangan relatif dibandingkan parameter parameter lain. Berilah nilai antara 0 sampai dengan 1. Total nilai harus berjumlah Rating Factors (RF) adalah sejauh mana alternatif bentuk dari evaporator memenuhi tuntutan parameter perancangan. Berilah nilai antara 1 sampai dengan 10. Pertanyaan yang diajukan pada questioner adalah sebagai berikut : 1. Ergonomi Menurut anda, bentuk evaporator mana yang lebih mudah dalam pengoperasian? 2. Keamanan Menurut anda, bentuk evaporator mana yang lebih aman, baik saat pengoperasian maupun perawatan? 3. Perawatan Menurut anda, bentuk evaporator mana yang lebih memudahkan saat dilakukan perawatan? 4. Instalasi 40

9 Menurut anda, bentuk evaporator mana yang lebih mudah untuk dipasang / di install? 5. Transportasi Menurut anda, bentuk evaporator mana yang lebih mudah dipindahkan / dikirim ke tempat lain? baik dengan menggunakan container ataupun truk terbuka? 6. Komponen Pendukung Menurut anda, bentuk evaporator mana yang lebih mudah untuk dibuat komponen pendukungnya? contohnya pada pembuatan ice cutter? 7. Efisiensi Menurut anda, bentuk evaporator mana yang dapat bekerja lebih efisien? Baik secara produksi maupun energi? Tabel 3.2. Rangkuman hasil questioner penentuan nilai WF dan RF No. Parameter Total WF Hasil questioner penentuan nilai rating (RF) Total RF Ergonomi 0, Keamanan 0, Perawatan 0, Instalasi 0, Transportasi 0, Komponen 0, Pendukung 7. Efisiensi 0,

10 Matriks Pengambilan Keputusan dan Pemilihan Bentuk Berdasarkan hasil questioner yang diedarkan dan hasil yang dirangkum, maka setiap alternatif bentuk diberi nilai dalam bentuk matriks pengambilan keputusan. Tabel 3.3. Matriks pengambilan keputusan atas alternatif bentuk evaporator Parameter Bobot WF Alternatif Bentuk Evaporator WF x RF Ergonomi 0,12 0,96 0,72 0,96 1, Keamanan 0,31 2,48 1,24 2,48 1,86 2,48 3. Perawatan 0,27 1,89 1,08 1,89 2,43 1,08 4. Instalasi 0,08 0,64 0,4 0,56 0,72 0,72 5. Transportasi 0,05 0,25 0,3 0,35 0,4 0,4 6. Komponen 0,12 0,72 0,96 0,96 0,24 0 Pendukung 7. Efisiensi 0,05 0,4 0,25 0,35 0,4 0,4 Nilai Total 1 7,34 4,95 7,55 7,13 5,08 Berdasarkan matriks, diperoleh kesimpulan bahwa bentuk modifikasi terbaik adalah modifikasi dengan menambah jumlah dan panjang pipa evaporator (alternatif bentuk 3), dimana dengan modifikasi ini jumlah pipa ditambah demikian juga dengan panjang pipa sehingga dicapai dimensi dan tinggi evaporator maksimal. 42

11 3.5. Layout Awal Evaporator Berdasarkan matriks pengambilan keputusan, ditentukan untuk memodifikasi evaporator dengan menambah jumlah dan panjang pipa. Dengan demikian, perancang mencoba merangkum spesifikasi awal evaporator berdasarkan modifikasi yang dilakukan pada evaporator yang sudah tersedia. Tabel 3.4. Spesifikasi awal evaporator No. Spesifikasi Spesifikasi Awal Hasil Modifikasi Keterangan 1. Kapasitas 2 ton / jam 3 ton / jam Keharusan 2. Panjang pipa evaporator 4 meter 5 meter Perkiraan 3. Jumlah pipa evaporator 602 pipa 800 pipa Perkiraan 4. Jenis pipa evaporator Seamless schedule 20 Seamless schedule 20 Alternatif 5. Diameter pipa evaporator 31,4 mm 31,4 mm Keharusan 6. Bahan pipa & dinding Stainless Stainless Alternatif evaporator Steel Steel 7. Tebal isolasi evaporator 150mm 200mm Perkiraan 3.6. Perhitungan Evaporator Setelah spesifikasi utama yang dikehendaki dijabarkan, maka langkah berikut adalah menghitung dimensi dimensi utama dari evaporator, dengan tujuan untuk memberi bentuk pada evaporator. Dimensi dimensi ini harus diperhitungkan dengan mempertimbangkan tujuan penggunaan, spesifikasi maupun keamanan dalam penggunaan evaporator. 43

12 Menghitung Ketebalan Dinding Evaporator Salah satu bagian yang paling penting dalam perencanaan evaporator adalah bagian silinder atau dinding evaporator, karena bagian ini akan mendapatkan tekanan uap yang cukup besar saat proses defrost hingga 10 bar (1 MPa). Sehingga perlu dilakukan perhitungan yang cermat untuk memastikan bahwa dinding evaporator tetap aman selama pengoperasiannya. Bahan yang dipergunakan dalam perancangan evaporator adalah stainless steel AISI type 304, dengan kekuatan tarik sebesar psi (215 MPa). yaitu : Dinding evaporator diperhitungkan terhadap dua kemungkinan kegagalan, a. Kemungkinan terbelah. Tebal dinding minimum berdasarkan kemungkinan terbelah dihitung dengan : t b D 2 σ t p D ( 1+ L) (meter) Dimana : t b = Tebal dinding terhadap kemungkinan belah; D = Diameter dalam silinder evaporator (rencana); = 1,5 meter; p = Tekanan di dalam silinder evaporator; 44

13 = 1 MPa; σ t = Tegangan tarik bahan stainless steel; = 215 Mpa L = Panjang evaporator; = 5 meter. Maka : t b 1,5 1Mpa 215Mpa ( 1+ 1,5 5) t 0,0054 meter. b b. Kemungkinan putus. Agar dinding tidak putus, maka : t p D p 4 σ t (meter) Maka : 1,5 1MPa t p 4 215MPa t 0,0017 meter. p Untuk keamanan dinding silinder evaporator dari kemungkinan belah dan putus, maka diambil tebal drum generator sebesar 0,01 meter, atau 1 cm. 45

14 Menghitung Jumlah Pipa Evaporator Berdasarkan spesifikasi awal evaporator, diketahui bahwa panjang pipa evaporator yang dikehendaki adalah sepanjang 5 meter, dengan diameter dalam pipa sebesar 3,14 cm. Diameter dalam tube ice yang diinginkan adalah sebesar 5 mm. Maka jumlah pipa evaporator dapat dihitung sebagai berikut : Diameter dalam pipa evaporator (Ti) = 3,14 cm Diameter dalam tube ice (Ei) = 0,5 cm Panjang pipa evaporator L = 5 meter Berat es yang diinginkan = kg / jam Volume es pada suhu -8 C dapat dilihat pada tabel berikut ini : Gambar 3.6. Thermal Properties of Ice Sumber : Maka volume es dengan berat 3000 kg pada -8 C adalah sebesar 3,26 m³ Dengan demikian, jumlah pipa evaporator dapat dihitung sebagai berikut : 46

15 = 1 2 ( ) 3,26 = 1 2 (0,0314 0,005 ) 5 Maka, jumlah pipa evaporator yang dibutuhkan untuk menghasilkan 3 ton es per jam adalah sebanyak : 796 buah pipa Pitch dan Layout Evaporator Untuk menentukan besar pitch pada pipa evaporator, dapat dilihat pada gambar berikut : Gambar 3.7. Pitch pada pipa evaporator 47

16 Dengan mempergunakan software Tube Sheet Layout Calculation dari didapat layout pipa sebagai berikut : Gambar 3.8. Layout pipa evaporator Sehingga didapat ukuran layout evaporator sebagai berikut : - Diameter dalam dinding evaporator : 1500 mm - Diameter luar pipa evaporator : 33 mm - Pitch antar pipa evaporator : 47,9 mm - Pitch pattern : 30 - Number of passes : 1 pass - Jarak dari dinding ke pipa evaporator : 25 mm - Jumlah pipa evaporator : 796 pipa 48

17 Gambar 3.9. Layout pipa evaporator Hasil layout yang didapat dari software Tube Sheet Layout Calculation dari akan dipergunakan sebagai bentuk susunan pipa dalam evaporator Spesifikasi Akhir Evaporator Berdasarkan perhitungan yang dilakukan, maka didapat spesifikasi akhir evaporator, yang dijadikan patokan untuk pembuatan gambar evaporator. 49

18 Tabel 3.5. Spesifikasi akhir evaporator Spesifikasi Kapasitas evaporator Diameter dalam dinding evaporator Diameter luar dinding evaporator Diameter luar pipa evaporator Diameter dalam pipa evaporator Tebal dinding evaporator Tinggi evaporator Bahan dinding evaporator AISI 304 Bahan pipa evaporator AISI 304 Pitch antar pipa evaporator Nilai 3000 kg tube ice per cycle 1500 mm 1924 mm 33 mm 31,4 mm 10 mm 5000 mm Stainless steel Stainless steel 47,9 mm Pitch pattern 30 Number of passes Jarak dari dinding evaporator ke pipa Jumlah pipa evaporator Tebal isolasi dinding evaporator Bahan isolasi evaporator 1 pass 25 mm 796 pipa 200 mm Polyurethane 3.8. Beban Pendinginan pada Evaporator Perhitungan beban pendinginan pada evaporator tube ice ini meliputi : 1. Beban pendinginan pada dinding evaporator, yaitu beban pendinginan yang timbul karena perbedaan temperature di dalam dan di luar evaporator. 50

19 2. Beban produk, yaitu beban untuk merubah air dengan suhu 25 C menjadi tube ice dengan suhu -8 C. Beban produk ini terdiri dari : a. Beban untuk menurunkan suhu air masuk dari 25 C menjadi air dengan suhu 0 C (Qa) b. Beban untuk membekukan air dengan suhu 0 C menjadi es dengan suhu 0 C (Qb) c. Beban untuk pembekuan lanjut es dengan suhu 0 C menjadi es dengan suhu -8 C (Qc) Data data di bawah ini diperlukan untuk perhitungan beban pendingin pada evaporator tube ice : Temperatur udara luar (Ts) : 30 C Temperatur air masuk (Ta) : 25 C Temperatur Produk es (Tes) : -8 C Beban Pendinginan dari Dinding Evaporator Luas dinding evaporator : Luas dinding evaporator : 1,914 5 Luas dinding evaporator : 30,05 Sedangkan total tahanan termal dihitung berdasarkan tabel : Tabel 3.6. Tahanan termal dinding evaporator No. Nama Lapisan Tebal Tahanan Termal (m jam C/kcal) Tahanan Termal (m² jam C/kcal) 1. Baja m 0,0242 0, Polyurethane 0,2 m 46,7 9,94 Tahanan Termal Total (Rtotal) 9,

20 Maka, = = 1 9,9403 = 0,1006 Sehingga beban transmisi kalor melalui dinding dapat dihitung dengan persamaan : = = 30,05 0,1006 (30 ( 8)) = 114,87 = 480,62 = 133,5 Watt Beban Pendinginan Tube Ice Berat produk air : 3000 kg Temperatur air masuk : 25 C Temperatur produk es : -8 C Panas spesifik air : 4,179 kj/kg C Panas laten air : 113,24 kj/kg C Panas spesifik es : 2,0895 kj/kg C Waktu pembekuan : 1 jam 52

21 Beban pendinginan produk terdiri atas : a. Beban untuk menurunkan suhu air dari 25 C menjadi 0 C = = , = kj/jam = ,2 Watt b. Beban untuk merubah air bersuhu 0 C menjadi es bersuhu 0 C = = ,24 1 = kj/jam = ,7 Watt c. Beban untuk merubah air bersuhu 0 C menjadi es bersuhu 0 C = ,0895 (0 ( 8)) = 1 = kj/jam = Watt Maka beban pendinginan produk total adalah sebesar : = + + = , , = ,9 Watt 53

22 Beban Pendinginan Total Maka beban pendinginan total dapat dihitung sebagai berikut : = + = ,9 = ,4 Watt 3.9. Gambar Detail Evaporator Gambar detail evaporator akan dilampirkan pada halaman lampiran 54

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Keluatan Institut Teknolgi Sepuluh Nopember Surabaya 2011

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah. dengan globalisasi perdagangan dunia. Industri pembuatan Resin sebagai

BAB I PENDAHULUAN Latar Belakang Masalah. dengan globalisasi perdagangan dunia. Industri pembuatan Resin sebagai BAB I PENDAHULUAN 1.1. Latar Belakang Masalah. Perkembangan Industri kimia di Indonesia sudah cukup maju seiring dengan globalisasi perdagangan dunia. Industri pembuatan Resin sebagai bahan bakar cat yang

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN 83 BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Dari perancangan berdasarkan perhitungan yang telah dilakukan, dapat diambil kesimpulan: 1. Untuk Organic Rankine Cycle alat penukar kalor yang biasa digunakan

Lebih terperinci

BAB III DESAIN SISTEM REFRIGERASI ADSORPSI

BAB III DESAIN SISTEM REFRIGERASI ADSORPSI BAB III DESAIN SISTEM REFRIGERASI ADSORPSI 3.1 SISTEM REFRIGERASI ADSORPSI Desain dan peralatan sistem refrigerasi dengan menggunakan prinsip adsropsi yang direncanakan pada percobaan kali ini dapat dilihat

Lebih terperinci

= Perubahan temperatur yang terjadi [K]

= Perubahan temperatur yang terjadi [K] BAB II DASAR TEORI 2.1 KALOR Kalor adalah salah satu bentuk energi. Jika suatu zat menerima atau melepaskan kalor, maka ada dua kemungkinan yang akan terjadi. Yang pertama adalah terjadinya perubahan temperatur

Lebih terperinci

KAJIAN EKSPERIMEN COOLING WATER DENGAN SISTEM FAN

KAJIAN EKSPERIMEN COOLING WATER DENGAN SISTEM FAN KAJIAN EKSPERIMEN COOLING WATER DENGAN SISTEM FAN Nama : Arief Wibowo NPM : 21411117 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Rr. Sri Poernomo Sari, ST., MT. Latar Belakang

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES 34 BAB III SPESIFIKASI PERALATAN PROSES 3.1. Tangki Tangki Bahan Baku (T-01) Tangki Produk (T-02) Menyimpan kebutuhan Menyimpan Produk Isobutylene selama 30 hari. Methacrolein selama 15 hari. Spherical

Lebih terperinci

BAB III PERANCANGAN.

BAB III PERANCANGAN. BAB III PERANCANGAN 3.1 Beban Pendinginan (Cooling Load) Beban pendinginan pada peralatan mesin pendingin jarang diperoleh hanya dari salah satu sumber panas. Biasanya perhitungan sumber panas berkembang

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA

BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA 37 BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA Pada bab ini dijelaskan bagaimana menentukan besarnya energi panas yang dibawa oleh plastik, nilai total laju perpindahan panas komponen Forming Unit

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

BAB III PERANCANGAN GREEN MEDICAL BOX PORTABLE

BAB III PERANCANGAN GREEN MEDICAL BOX PORTABLE BAB III PERANCANGAN GREEN MEDICAL BOX PORTABLE Green Medical Box Portable dirancang dengan menggunakan sistem refrigerasi yang terintegrasi dengan box. Box terdiri dari dua tingkat, tingkat pertama/bawah

Lebih terperinci

BAB 4 ANALISA KONDISI MESIN

BAB 4 ANALISA KONDISI MESIN BAB 4 ANALISA KONDISI MESIN 4.1. KONDENSOR Penggunaan kondensor tipe shell and coil condenser sangat efektif untuk meminimalisir kebocoran karena kondensor model ini mudah untuk dimanufaktur dan terbuat

Lebih terperinci

RANCANGAN BANGUN MODEL MESINPENDINGIN TERPADU PENGHASIL ES SERUT

RANCANGAN BANGUN MODEL MESINPENDINGIN TERPADU PENGHASIL ES SERUT RANCANGAN BANGUN MODEL MESINPENDINGIN TERPADU PENGHASIL ES SERUT Abstrak Agus Slamet, Wahyu Djalmono P. Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. Soedarto,S.H.,Tembalang, KotakPos 6199/SMG,

Lebih terperinci

SKRIPSI APLIKASI PENUKAR KALOR PADA MODIFIKASI SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL IKAN 30 GT

SKRIPSI APLIKASI PENUKAR KALOR PADA MODIFIKASI SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL IKAN 30 GT SKRIPSI APLIKASI PENUKAR KALOR PADA MODIFIKASI SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL IKAN 30 GT Dosen Pembimbing : Ir. Alam Baheramsyah, M.Sc. Sutopo Purwono F. ST, M.Eng, Ph.D Priyanto / 4209100083

Lebih terperinci

BAB IV PEMILIHAN MATERIAL DAN INSTALASI

BAB IV PEMILIHAN MATERIAL DAN INSTALASI BAB IV PEMILIHAN MATERIAL DAN INSTALASI 4.1 SANDWICH PANEL Tugas pertama dari perancangan sandwich panel adalah memilih material insulasi yang tepat. Hal ini sangat penting karena fungsi utama pemilihan

Lebih terperinci

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap BAB III METODE PENELETIAN Metode yang digunakan dalam pengujian ini dalah pengujian eksperimental terhadap alat destilasi surya dengan memvariasikan plat penyerap dengan bahan dasar plastik yang bertujuan

Lebih terperinci

BAB III DESAIN DAN MANUFAKTUR

BAB III DESAIN DAN MANUFAKTUR BAB III DESAIN DAN MANUFAKTUR 3.1 KONSEP DESAIN Pada desain alat ini, digunakan temperatur cool box tanpa beban, sekitar 2-5 0 C sebagai acuan. Desain ini juga merupakan perbaikan dari desain sebelumnya.berdasarkan

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

REKAYASA MODEL MESIN PENDINGIN IKAN TANGKAPAN NELAYAN DENGAN MEMANFAATKAN KELEBIHAN DAYA MESIN DIESEL PENGGERAK PROPELER PERAHU

REKAYASA MODEL MESIN PENDINGIN IKAN TANGKAPAN NELAYAN DENGAN MEMANFAATKAN KELEBIHAN DAYA MESIN DIESEL PENGGERAK PROPELER PERAHU REKAYASA MODEL MESIN PENDINGIN IKAN TANGKAPAN NELAYAN DENGAN MEMANFAATKAN KELEBIHAN DAYA MESIN DIESEL PENGGERAK PROPELER PERAHU Agus Slamet, Wahyu Djalmono P. Jurusan Teknik Mesin Politeknik Negeri Semarang

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 32 BB III METODOLOGI PENELITIN Metode yang digunakan dalam pengujian ini adalah pengujian eksperimental terhadap lat Distilasi Surya dengan menvariasi penyerapnya dengan plastik hitam dan aluminium foil.

Lebih terperinci

BAB III PERHITUNGAN DAN PEMILIHAN PERALATAN

BAB III PERHITUNGAN DAN PEMILIHAN PERALATAN BAB III PERHITUNGAN DAN PEMILIHAN PERALATAN Setelah melakukan perancangan terhadap mesin-mesin refrigerasi yang akan digunakan, maka tahap berikutnya adalah melakukan perhitungan terhadap kebutuhan-kebutuhan

Lebih terperinci

PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK

PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK Arda Rahardja Lukitobudi Jurusan Teknik Refrigerasi dan Tata Udara

Lebih terperinci

Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun.

Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun. SELAMAT ATAS PILIHAN ANDA MENGGUNAKAN PEMANAS AIR (WATER HEATER) DOMO Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun. Bacalah buku petunjuk pengoperasian

Lebih terperinci

BAB VII PENUTUP Perancangan sistem perpipaan

BAB VII PENUTUP Perancangan sistem perpipaan BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan dan analisis tegangan sistem perpipaan sistem perpipaan berdasarkan standar ASME B 31.4 (studi kasus jalur perpipaan LPG dermaga Unit 68 ke tangki

Lebih terperinci

Bab III Rancangan dan Prosedur Percobaan

Bab III Rancangan dan Prosedur Percobaan Bab III Rancangan dan Prosedur Percobaan Seperti yang telah ditentukan dalam bab sebelumnya, penghematan dilakukan dengan menggunakan selubung pengumpul aliran gas hasil pembakaran di sekitar panci. Percobaan

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

ANALISA PERHITUNGAN BEBAN KALOR DAN PEMILIHAN KOMPRESOR DALAM PERANCANGAN AIR BLAST FREEZER UNTUK MEMBEKUKAN ADONAN ROTI DENGAN KAPASITAS 250 KG/JAM

ANALISA PERHITUNGAN BEBAN KALOR DAN PEMILIHAN KOMPRESOR DALAM PERANCANGAN AIR BLAST FREEZER UNTUK MEMBEKUKAN ADONAN ROTI DENGAN KAPASITAS 250 KG/JAM ANALISA PERHITUNGAN BEBAN KALOR DAN PEMILIHAN KOMPRESOR DALAM PERANCANGAN AIR BLAST FREEZER UNTUK MEMBEKUKAN ADONAN ROTI DENGAN KAPASITAS 250 KG/JAM Erwin Dermawan 1, Syawaluddin 2, Muhammad Reza Abrori

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB IV HASIL DAN ANALISA

BAB IV HASIL DAN ANALISA BAB IV HASIL DAN ANALISA 4.1 Hasil dan Analisa pengujian Pengujian yang dilakukan menghasilkan data data berupa waktu, temperatur ruang cool box, temperatur sisi dingin peltier, dan temperatur sisi panas

Lebih terperinci

STUDI PERENCANAAN JACKETED STORAGE SYSTEM MEMANFAATKAN CO 2 CAIR SEBAGAI REFRIGERAN

STUDI PERENCANAAN JACKETED STORAGE SYSTEM MEMANFAATKAN CO 2 CAIR SEBAGAI REFRIGERAN LOGO STUDI PERENCANAAN JACKETED STORAGE SYSTEM MEMANFAATKAN CO 2 CAIR SEBAGAI REFRIGERAN Bravo Yovan Sovanda 4209 100 021 DOSEN PEMBIMBING : Ir. Alam Baheramsyah, M.Sc Taufik Fajar Nugroho, ST, MSc Contents

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kajian Pustaka Conveyor merupakan suatu alat transportasi yang umumnya dipakai dalam proses industri. Conveyor dapat mengangkut bahan produksi setengah jadi maupun hasil produksi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Perancangan Dan Pembuatan Mesin preheat pengelasan gesek dua buah logam berbeda jenis yang telah selesai dibuat dan siap untuk dilakukan pengujian dengan beberapa

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03 BAB III SPESIFIKASI ALAT 1. Tangki Penyimpanan Spesifikasi Tangki Metanol Tangki Asam Tangki Metil Sulfat Salisilat Kode T-01 T-02 T-03 Menyimpan Menyimpan asam Menyimpan metil metanol untuk 15 sulfat

Lebih terperinci

METODOLOGI PERANCANGAN. Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA. 1. Daya maksimum (N) : 109 dk

METODOLOGI PERANCANGAN. Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA. 1. Daya maksimum (N) : 109 dk METODOLOGI PERANCANGAN 3.1. Spesifikasi TOYOTA YARIS Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA YARIS memiliki spesifikasi sebagai berikut : 1. Daya maksimum (N) : 109 dk. Putaran

Lebih terperinci

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage BAB 5. HASIL DAN PEMBAHASAN Prinsip Kerja Instalasi Instalasi ini merupakan instalasi mesin pendingin kompresi uap hibrida yang berfungsi sebagai mesin pendingin pada lemari pendingin dan pompa kalor pada

Lebih terperinci

Studi Eksperimental Sistem Kondensasi Uap Hasil Evaporasi pada Sistem Desalinasi Tenaga Matahari

Studi Eksperimental Sistem Kondensasi Uap Hasil Evaporasi pada Sistem Desalinasi Tenaga Matahari Studi Eksperimental Sistem Kondensasi Uap Hasil Evaporasi pada Sistem Desalinasi Tenaga Matahari Oleh: Khilmi Affandi NRP. 4211106016 Dosen Pembimbing 1: Sutopo Purwono Fitri, S.T., M.Eng, Ph.D NIP : 1975

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES BAB III SPESIFIKASI PERALATAN PROSES 3.1. Furnace : F : Tempat terjadinya reaksi cracking ethylene dichloride menjadi vinyl chloride dan HCl : Two chamber Fire box : 1 buah Kondisi Operasi - Suhu ( o C)

Lebih terperinci

METODE PENELITIAN. Teknik Pertanian, Fakultas Pertanian, Universitas Lampung. Batch Dryer, timbangan, stopwatch, moisturemeter,dan thermometer.

METODE PENELITIAN. Teknik Pertanian, Fakultas Pertanian, Universitas Lampung. Batch Dryer, timbangan, stopwatch, moisturemeter,dan thermometer. III. METODE PENELITIAN A. Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Maret 2013, di Laboratorium Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung B. Alat dan Bahan Alat yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

BAB IV ANALISA EKSPERIMEN DAN SIMULASI

BAB IV ANALISA EKSPERIMEN DAN SIMULASI BAB IV ANALISA EKSPERIMEN DAN SIMULASI Selama percobaan dilakukan beberapa modifikasi atau perbaikan dalam rangka usaha mendapatkan air kondensasi. Semenjak dari memperbaiki kebocoran sampai penggantian

Lebih terperinci

IV. METODOLOGI PENELITIAN

IV. METODOLOGI PENELITIAN IV. METODOLOGI PENELITIAN 4.1 Waktu dan Tempat Pengujian dilakukan pada bulan Desember 2007 Februari 2008 bertempat di Laboratorium Energi dan Elektrifikasi Pertanian Institut Pertanian Bogor (IPB) yang

Lebih terperinci

EFEKTIFITAS PERPINDAHAN PANAS PADA DOUBLE PIPE HEAT EXCHANGER DENGAN GROOVE. Putu Wijaya Sunu*, Daud Simon Anakottapary dan Wayan G.

EFEKTIFITAS PERPINDAHAN PANAS PADA DOUBLE PIPE HEAT EXCHANGER DENGAN GROOVE. Putu Wijaya Sunu*, Daud Simon Anakottapary dan Wayan G. EFEKTIFITAS PERPINDAHAN PANAS PADA DOUBLE PIPE HEAT EXCHANGER DENGAN GROOVE Putu Wijaya Sunu*, Daud Simon Anakottapary dan Wayan G. Santika Department of Mechanical Engineering, Bali State Polytechnic,

Lebih terperinci

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN 0 o, 30 o, 45 o, 60 o, 90 o I Wayan Sugita Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail : wayan_su@yahoo.com ABSTRAK Pipa kalor

Lebih terperinci

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA Rasyid Atmodigdo 1, Muhammad Nadjib 2, TitoHadji Agung Santoso 3 Program Studi S-1 Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI No. 08/ Tahun IV. Oktober 2011 ISSN 1979-2409 RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI Yatno Dwi Agus Susanto, Ahmad Paid Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK RANCANG BANGUN AUTOCLAVE

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perencanaan Proses perencanaan mesin pembuat es krim dari awal sampai akhir ditunjukan seperti Gambar 3.1. Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Muhamad dangga A 2108 100 522 Dosen Pembimbing : Ary Bachtiar Krishna

Lebih terperinci

Presentasi Tugas Akhir

Presentasi Tugas Akhir Presentasi Tugas Akhir Modifikasi Alat Penunjuk Titik Pusat Lubang Benda Kerja Dengan Berat Maksimal Kurang Dari 29 Kilogram Untuk Mesin CNC Miling Oleh : Mochamad Sholehuddin NRP. 2106 030 033 Program

Lebih terperinci

Gambar 3.1 Diagram alir penelitian 16

Gambar 3.1 Diagram alir penelitian 16 BAB III. METODE PENELITIAN A. Desain penelitian Pelaksanaan penelitian ini dilakukan melalui beberapa tahapan sebagai berikut : a. Tahap desain proses dan teknologi b. Tahap perancangan teknologi ( pirolisator

Lebih terperinci

4.1. Menghitung Kapasitas Silinder

4.1. Menghitung Kapasitas Silinder BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Menghitung Kapasitas Silinder Pada perencangan alat uji kekentalan plastik ini sampel akan dilebur didalam silinder. Untuk itu dibutuhkan perhitungan untuk mencari

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Perhitungan Daya Motor 4.1.1 Torsi pada poros (T 1 ) T3 T2 T1 Torsi pada poros dengan beban teh 10 kg Torsi pada poros tanpa beban - Massa poros; IV-1 Momen inersia pada poros;

Lebih terperinci

BAB III SPESIFIKASI ALAT

BAB III SPESIFIKASI ALAT digilib.uns.ac.id 47 BAB III PROSES 3.1. Alat Utama Tabel 3.1 Spesifikasi Reaktor Kode R-01 Mereaksikan asam oleat dan n-butanol menjadi n-butil Oleat dengan katalis asam sulfat Reaktor alir tangki berpengaduk

Lebih terperinci

SISTEM REFRIGERASI. Gambar 1. Freezer

SISTEM REFRIGERASI. Gambar 1. Freezer SISTEM REFRIGERASI Sistem refrigerasi sangat menunjang peningkatan kualitas hidup manusia. Kemajuan dalam bidang refrigerasi akhir-akhir ini adalah akibat dari perkembangan sistem kontrol yang menunjang

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES 47 BAB III SPESIFIKASI ALAT PROSES 3.1. Alat Utama Tabel 3.1 Spesifikasi Reaktor Kode R-01 Mereaksikan asam oleat dan n-butanol menjadi n-butil Oleat dengan katalis asam sulfat Reaktor alir tangki berpengaduk

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat Bahan 3.3 Prosedur Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat Bahan 3.3 Prosedur Penelitian 17 3 METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian telah dilaksanakan pada bulan Desember 2010 sampai dengan Juni 2011, bertempat di Laboratorium Surya, Bagian Teknik Energi Terbarukan, Departemen

Lebih terperinci

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA TUGAS AKHIR PENGUJIAN MODEL WATER HEATER FLOW BOILING DENGAN VARIASI GELEMBUNG UDARA Diajukan Untuk Memenuhi Tugas Dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Mesin Fakultas Teknik Univesitas

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

PROGRAM STUDI TEKNOLOGI MEKANIK INDUSTRI PROGRAM DIPLOMA-IV FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA 2008

PROGRAM STUDI TEKNOLOGI MEKANIK INDUSTRI PROGRAM DIPLOMA-IV FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA 2008 KARYA AKHIR ANALISA STUDY TENTANG MESIN PENGGORENGAN DENGAN MENGGUNAKAN THERMOSIPHON REBOILER PADA PABRIK MIE INSTANT DENGAN KAPASITAS OLAH PABRIK 4. BUNGKUS /HARI LAMHOT AMRIS SAGALA 546 KARYA AKHIR YANG

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 32 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 PELAKSANAAN Kerja praktek dilaksanakan pada tanggal 01 Februari 28 februari 2017 pada unit boiler PPSDM MIGAS Cepu Kabupaten Blora, Jawa tengah. 4.1.1 Tahapan kegiatan

Lebih terperinci

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM : LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC Nama Praktikan : Utari Handayani NPM : 140310110032 Nama Partner : Gita Maya Luciana NPM : 140310110045 Hari/Tgl Percobaan

Lebih terperinci

Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun.

Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun. SELAMAT ATAS PILIHAN ANDA MENGGUNAKAN PEMANAS AIR (WATER HEATER) DOMO Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun. Bacalah buku petunjuk pengoperasian

Lebih terperinci

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan V. SPESIFIKASI ALAT Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan pabrik furfuril alkohol dari hidrogenasi furfural. Berikut tabel spesifikasi alat-alat yang digunakan.

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES digilib.uns.ac.id BAB III SPESIFIKASI ALAT PROSES 3.1. Spesifikasi Alat Utama 3.1.1 Mixer (NH 4 ) 2 SO 4 Kode : (M-01) : Tempat mencampurkan Ammonium Sulfate dengan air : Silinder vertical dengan head

Lebih terperinci

TEORI SAMBUNGAN SUSUT

TEORI SAMBUNGAN SUSUT TEORI SAMBUNGAN SUSUT 5.1. Pengertian Sambungan Susut Sambungan susut merupakan sambungan dengan sistem suaian paksa (Interference fits, Shrink fits, Press fits) banyak digunakan di Industri dalam perancangan

Lebih terperinci

BAB I PENDAHULUAN. kelembaban seperti yang terjadi pada penggunaan mesin-mesin refrigerasi.

BAB I PENDAHULUAN. kelembaban seperti yang terjadi pada penggunaan mesin-mesin refrigerasi. BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Es telah lama dikenal oleh manusia, dan dipergunakan untuk berbagai keperluan pendinginan. Penggunaan es sebagai bahan pendingin menawarkan beberapa keunggulan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Perancangan 4.1.1 Gambar Rakitan (Assembly) Dari perancangan yang dilakukan dengan menggunakan software Autodesk Inventor 2016, didapat sebuah prototipe alat praktikum

Lebih terperinci

KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR

KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR I Wayan Sugita Program Studi Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail

Lebih terperinci

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA PERANCANGAN DAN ANALISA PERFORMANSI SISTEM KOMPRESI PENDINGIN ABSORPSI DENGAN MEMANFAATKAN PANAS GAS BUANG MESIN DIESEL PADA KAPAL NELAYAN IKAN MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) DOSEN

Lebih terperinci

BAB. V SPESIFIKASI PERALATAN

BAB. V SPESIFIKASI PERALATAN BAB. V SPESIFIKASI PERALATAN A. Peralatan Proses Peralatan proses pabrik Dekstrosa dengan kapasitas 60.000 ton/tahun terdiri dari: 1. Tangki Penyimpanan Manihot U. (ST-101) Tabel. 5.1 Spesifikasi Tangki

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Gas alam adalah bahan bakar fosil bentuk gas yang sebagian besar terdiri dari metana (CH4). Pada umumnya tempat penghasil gas alam berlokasi jauh dari daerah dimana

Lebih terperinci

EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK

EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK Jurusan Mesin, Fakultas Teknik, Universitas Negeri Semarang Abstrak. Penelitian ini bertujuan untuk mengetahui besarnya

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 27 BAB III METODOLOGI PENELITIAN 3.1 PENDAHULUAN Metode penelitian merupakan cara atau prosedur yang berisi tahapan tahapan yang jelas yang disusun secara sistematis dalam proses penelitian. Tiap tahapan

Lebih terperinci

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Definisi Vaksin Vaksin merupakan bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

OPTIMALISASI MESIN PENDINGIN UDARA UNTUK MULTI RUANG ALI RIDHO

OPTIMALISASI MESIN PENDINGIN UDARA UNTUK MULTI RUANG ALI RIDHO OPTIMALISASI MESIN PENDINGIN UDARA UNTUK MULTI RUANG ALI RIDHO 6307030004 LATAR BELAKANG Udara sejuk dalam ruangan merupakan kebutuhan pokok bagi setiap individu di jaman pemanasan global saat ini. Daya

Lebih terperinci

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48 PENGARUH SIRIP CINCIN INNER TUBE TERHADAP KINERJA PERPINDAHAN PANAS PADA HEAT EXCHANGER Sujawi Sholeh Sadiawan 1), Nova Risdiyanto Ismail 2), Agus suyatno 3) ABSTRAK Bagian terpenting dari Heat excanger

Lebih terperinci

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga IDG Agus Tri Putra (1) dan Sudirman (2) (2) Program Studi Teknik Pendingin dan Tata Udara, Jurusan

Lebih terperinci

Lampiran 1. Perhitungan kebutuhan panas

Lampiran 1. Perhitungan kebutuhan panas LAMPIRAN 49 Lampiran 1. Perhitungan kebutuhan panas 1. Jumlah Air yang Harus Diuapkan = = = 180 = 72.4 Air yang harus diuapkan (w v ) = 180 72.4 = 107.6 kg Laju penguapan (Ẇ v ) = 107.6 / (32 x 3600) =

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

LAMPIRAN 1 Evaluasi Dengan Software Csicol

LAMPIRAN 1 Evaluasi Dengan Software Csicol 60 LAMPIRAN 1 Evaluasi Dengan Software Csicol Pertama yang dilakukan ialah dengan menginputkan dimensi kolom dan gaya dalam yang didapat dari ETABS pada CSICOL. Berikut langkah input pada program CSICOL.

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN 4.2 MESIN EXTRUSI MOLDING CETAK PELLET PLASTIK

BAB IV PERHITUNGAN DAN PEMBAHASAN 4.2 MESIN EXTRUSI MOLDING CETAK PELLET PLASTIK 30 BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1 PENDAHULUAN Hasil rancang bangun mesin akan ditampilkan dalam Bab IV ini. Pada penelitian ini Prodak yang di buat adalah Mesin Cetak Pellet Plastik Plastik, Hasil

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilakukan di laboratorium Energi dan Elektrifikasi Pertanian serta di dalam rumah tanaman yang berada di laboratorium Lapangan Leuwikopo,

Lebih terperinci

III. METODE PENELITIAN. Desember 2011 di bengkel Mekanisasi Pertanian Jurusan Teknik Pertanian

III. METODE PENELITIAN. Desember 2011 di bengkel Mekanisasi Pertanian Jurusan Teknik Pertanian III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian ini dilaksanakan pada bulan September 2011 sampai dengan bulan Desember 2011 di bengkel Mekanisasi Pertanian Jurusan Teknik Pertanian Fakultas Pertanian

Lebih terperinci

Perancangan Mesin Pengangkut Produk Bertenaga Listrik (Electric Low Loader) PT. Bakrie Building Industries BAB III

Perancangan Mesin Pengangkut Produk Bertenaga Listrik (Electric Low Loader) PT. Bakrie Building Industries BAB III BAB III PERANCANGAN MESIN PENGANGKUT PRODUK BERTENAGA LISTRIK (ELECTRIC LOW LOADER) PT. BAKRIE BUILDING INDUSTRIES 3.1 Latar Belakang Perancangan Mesin Dalam rangka menunjang peningkatan efisiensi produksi

Lebih terperinci

1 Pengukuran dan analisa..., Ivan Adhiwena, FT UI, 2008 Universitas Indonesia

1 Pengukuran dan analisa..., Ivan Adhiwena, FT UI, 2008 Universitas Indonesia BAB I PENDAHULUAN 1.1 LATAR BELAKANG Wilayah kedaulatan dan yuridiksi Indonesia membentang luas di cakrawala kathulistiwa dari 95 o sampai 141 o bujur timur dan 6 o lintang Utara sampai 11 o lintang selatan,

Lebih terperinci

DESAIN DAN ANALISA PERFORMA GENERATOR PADA REFRIGERASI ABSORBSI UNTUK KAPAL PERIKANAN

DESAIN DAN ANALISA PERFORMA GENERATOR PADA REFRIGERASI ABSORBSI UNTUK KAPAL PERIKANAN DESAIN DAN ANALISA PERFORMA GENERATOR PADA REFRIGERASI ABSORBSI UNTUK KAPAL PERIKANAN Oleh: Dhony Prabowo Setyawan Dosen pembimbing : Ir. Alam Baheramsyah, Msc. Abstrak Nelayan tradisional Indonesia menggunakan

Lebih terperinci

BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN

BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN 3.1 PERANCANGAN ALAT 3.1.1 Design Tabung (Menentukan tebal tabung) Tekanan yang dialami dinding, ΔP = 1 atm (luar) + 0 atm (dalam) = 10135 Pa F PxA

Lebih terperinci

PERANCANGAN POROS DIGESTER UNTUK PABRIK KELAPA SAWIT DENGAN KAPASITAS OLAH 12 TON TBS/JAM DENGAN PROSES PENGECORAN LOGAM

PERANCANGAN POROS DIGESTER UNTUK PABRIK KELAPA SAWIT DENGAN KAPASITAS OLAH 12 TON TBS/JAM DENGAN PROSES PENGECORAN LOGAM 1 PERANCANGAN POROS DIGESTER UNTUK PABRIK KELAPA SAWIT DENGAN KAPASITAS OLAH 12 TON TBS/JAM DENGAN PROSES PENGECORAN LOGAM SKRIPSI Skripsi Yang Diajukan untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

Bab 1. PENDAHULUAN Latar Belakang

Bab 1. PENDAHULUAN Latar Belakang 1 Bab 1. PENDAHULUAN 1.1. Latar Belakang Perkembangan Industri kimia di Indonesia sudah cukup maju seiring dengan globalisasi perdagangan dunia. Industri pembuatan Nylon yang merupakan salah satu industri

Lebih terperinci

BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA

BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA Data analisa dan perhitungan dihitung pada jam terpanas yaitu sekitar jam 11.00 sampai dengan jam 15.00, untuk mengetahui seberapa besar pengaruh

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci