Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya

Ukuran: px
Mulai penontonan dengan halaman:

Download "Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya"

Transkripsi

1 1. PENDAHULUAN Jika ditemukan sumber gas yang baru, maka perlu dipertimbangkan pula untuk mengalirkannya melalui sistem perpipaan yang telah ada. Hal ini dilakukan untuk menghemat biaya pengadaan sistem perpipaan baru. Namun, jika sumber gas baru tersebut memiliki tekanan yang lebih tinggi, maka diperlukan analisis ulang apakah sistem perpipaan yang ada tersebut masih sanggup menahan beban operasi yang akan terjadi. Teknik analisis untuk menaikkan tekanan disebut dengan teknik uprating. Sebagai contoh studi kasus adalah penaikan tekanan sebuah sistem perpipaan bawah laut dari tekanan operasi maksimum 790 psig menjadi 170 psig dengan tekanan desain 189 psig. Berdasarkan kode ASME B31.8 Gas transmission and distribution piping system section tentang uprating, disebutkan bahwa tekanan operasi maksimum yang diijinkan (MAOP) tidak boleh lebih besar dari tekanan desain elemen terlemah pada bagian yang akan dinaikkan tekanannya (uprating). MAOP tidak boleh melebihi nilai terkecil dari : (1) A. tekanan desain dari elemen terlemah dari pipeline. B. tekanan yang diperoleh dari pembagian tekanan pengujian (test pressure) dengan faktor tertentu sesuai kelas lokasi (tabel 1). C. Tekanan aman maksimum yang dialami pipeline berdasarkan sejarah operasi dan perawatan. A Existing : 790 psig Future : 170 psig B Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya Sebelum menaikkan tekanan operasi maksimum yang diijinkan (MAOP), hal-hal berikut harus dilakukan: (1) 1. Desain, instalasi awal, metoda, dan data pengetesan sebelumnya, kelas lokasi, material, dan peralatan harus ditinjau untuk menentukan bahwa peningkatan yang direncanakan aman dan konsisten dengan persyaratan kode ini.. Kondisi pipeline harus ditentukan dengan survey kebocoran, inspeksi lapangan lain, dan pemeriksaan data perawatan. 3. Perbaikan, penggantian, atau alteration harus disesuaikan dengan uprating. Indonesian Pipeline Technology

2 Tabel 1. MAOP berdasarkan tekanan pengujian (1) Kelas lokasi 1. Division 1 1. Division 3 4 Tekanan untuk pipa baja test pressure 1.5 test pressure 1.10 test pressure 1.5 test pressure 1.40 test pressure 1.40 Tekanan untuk pipa plastik test test test test N.A. pressure 1.50 pressure 1.50 pressure 1.50 pressure DATA MASUKAN STUDI KASUS Berikut ini dicantumkan data-data masukan studi kasus yang dibutuhkan untuk analisis uprating pipeline..1 Data Tekanan.1.1 Existing: Tekanan operasi maksimum yang diijinkan : 790 psig Tekanan desain : 869 psig.1. Future: Tekanan operasi maksimum yang diijinkan : 1,70 psig Tekanan desain : 1,89 psig. Data Pipa..1 Riser & Tie-in Spool A NPS 1 Schedule 60 (ketebalan dinding pipa 14.75mm) API 5L-X5 Diameter luar nominal 1.75 in... Flowline NPS 1 Schedule 60 (ketebalan dinding pipa 14.75mm) API 5L-X5 Diameter luar nominal 1.75 in...3 Riser & Tie-in Spool B NPS 1 Schedule 80 (ketebalan dinding pipa mm) API 5L-X5 Diameter luar nominal 1.75 in. Indonesian Pipeline Technology

3 .3 Data Flens.3.1 Riser & Tie-in Spool A SA 105 Kelas flens 600 Diameter luar flens, A.00 in. Diameter dalam flens, B in. Ketebalan flens, t 4.81 in. Diameter lingkaran baut, C 19.5 in. Diameter gasket rata-rata, G in. Beban baut desain flens, W 18, lb..3. Riser & Tie-in Spool B SA 105 Kelas flens 900 Diameter luar flens, A 4.00 in. Diameter dalam flens, B in. Ketebalan flens, t 5.75 in. Diameter lingkaran baut, C 1.00 in. Diameter gasket rata-rata, G in. Beban baut desain flens, W 18, lb..4 Data Baut.4.1 Riser & Tie-in Spool A ASTM A-103 GR B7 Diameter baut 1.5 in. Jumlah baut 0 Faktor gasket, m Tegangan peletakan desain minimum pada gasket, y 6,000 psi Lebar gasket aktual, w in. Tegangan ijin baut pada temparetur atmosfer, S a 5,500 psi Tegangan ijin baut pada temperatur desain, S b 5,500 psi.4. Riser & Tie-in Spool B ASTM A-103 GR B7 Diameter baut in. Jumlah baut 0 Faktor gasket, m Tegangan peletakan desain minimum pada gasket, y 6,000 psi Lebar gasket aktual, w in. Tegangan ijin baut pada temparetur atmosfer, S a 5,500 psi Tegangan ijin baut pada temperatur desain, S b 5,500 psi.5 Data Gasket.5.1 Riser & Tie-in Spool A 316 SS ANSI B16.0 oval Tegangan peletakan desain minimum pada gasket, y 6,000 psi Faktor gasket, m Lebar gasket aktual, w in. Diameter dalam gasket, d i in. Luas penampang baut total yang dibutuhkan, A m in. Tekanan ijin baut pada temperatur atmosfer, f allow 5,500 psi Indonesian Pipeline Technology

4 Tegangan peletakan desain minimum untuk gasket, y Diameter rata-rata gasket, G 6,000 psi. 15 in..5. Riser & Tie-in Spool B 316 SS ANSI B16.0 oval Tegangan peletakan desain minimum pada gasket, y 6,000 psi Faktor gasket, m Lebar gasket aktual, w in. Diameter dalam gasket, d i in. Luas penampang baut total yang dibutuhkan, A m in. Tekanan ijin baut pada temperatur atmosfer, f allow 5,500 psi Tegangan peletakan desain minimum untuk gasket, y 6,000 psi. Diameter rata-rata gasket, G 15 in. 3. ANALISIS KOMPONEN KRITIS Dalam sistem perpipaan bawah laut (subsea pipeline), ada beberapa parameter kritis diantaranya: (1) analisis ekspansi dan tegangan pipa, () persyaratan ketebalan dinding pipa, (3) perhitungan flens, (4) perhitungan baut, dan (5) perhitungan gasket. 3.1 Analisis Tegangan dan Ekspansi Analisis ini menggunakan metoda elemen hingga. Program elemen hingga yang digunakan pada analisis ini adalah AutoPipe v5.0. Dalam analisis ini dihitung juga: gaya dan momen pada flens, serta gaya dan momen pada sistem penumpu riser. Model untuk analisis adalah model 3-D dengan menggunakan elemen pipa dua nodal. Karena tujuan analisis adalah untuk menentukan momen pada lokasi flens, maka corrosion allowance tidak diperhitungkan pada pemodelan. Tanah penumpu pipa dimodelkan sebagai friction support. Koefisien gesek pada arah longitudinal dan lateral adalah 0. dan 0.5. Parameter desain lingkungan yang digunakan pada analisis ini berdasarkan data selama 1-tahun, 10-tahun, 50-tahun dan 100-tahun. Sebagai contoh ditampilkan data lingkungan untuk 100-tahun. Tabel. Data lingkungan untuk 100-tahun Design Parameters (100-Year) Direction N NE E SE S SW W NW Max Mave Height (m) Period (sec) Surface Current (m/s) Mid Depth and Near Bottom Current (m/s) Tabel 3. Kedalaman air dan rentang pasang-surut Water Depth relative to Lowest Astronomical Tide (m) Highest Astronomical Tide (m) 1.60 Mean Sea Level (m) 0.00 Storm Surge (m) 0.40 Lowest Astronomical Tide (m) Indonesian Pipeline Technology

5 Tabel 4 Pertumbuhan marina yang dipertimbangkan untuk riser Depth Range Relative to MSL (m) Thickness of Marine Growth (mm) to to to to to to seabed 51 Dalam analisis ini juga dipertimbangkan adanya defleksi platform yaitu defleksi yang berhubungan dengan perpindahan top chord sebesar 500 mm dan bottom chord sejauh 35 mm. Data defleksinya adalah sebagai berikut Tabel 5 Perpindahan untuk kondisi operasi dan badai Deflection, inches Framing Level East-West North-South Oper. Storm Oper. Storm Jacket Walkway EL. (-) 46' - 00" EL. (-) 106' - 00" EL. (-) 170' - 00" EL. (-) 50' - 00" Setelah dilakukan pemodelan dengan AutoPipe v5.0 maka diperoleh tegangan kombinasi maksimum yang diperoleh pada sistem pipa hasil analisis adalah 15, psi (1089 kg/cm ). Total defleksi maksimum adalah mm. Contoh hasil tegangan kombinasi maksimum dan defleksi maksimum hasil keluaran AutoPipe v5.0 dapat dilihat pada gambar dan 3. Rangkuman nilai tegangan kombinasi dan defleksi total pada beberapa titik kritis sistem perpipaan dicantumkan pada tabel 6. Point A56 Maximum Total Comb. Stress: 15, psi (1089 kg/cm ) Location: Point A56 Gambar. Tegangan kombinasi maksimum Indonesian Pipeline Technology

6 Maximum Total Deflection: mm Location: Point C1 N Point C1 N Gambar 3 Defleksi maksimum Tabel 6 Rangkuman tegangan kritis No. Point 1 A1 N A0 N 3 A56 4 C01 N 5 C1 N Comb. Stress psi (kg/cm Total Deflection ) (mm) Existing Future Comb. Comb. Existing Future SF SF Stress Stress 5, , (418.1) (909) , , (63.) (1049) , , (673.0) (1089) , , (48.3) (756) , , (356.9) (1,007) Perhitungan Ketebalan Dinding Pipa Perhitungan ketebalan dinding pipa didasarkan pada formula yang terdapat kode ASME B31.8 section , yaitu: (1) P. D t ( 1). S. F. E. T dengan P tekanan desain, psig D diameter luar nominal pipa, inch S kekuatan yield minimum, psi F faktor desain, tabel A E faktor sambungan longitudinal, tabel A T faktor temperature derating, tabel A Indonesian Pipeline Technology

7 Hasil perhitungan ketebalan dinding pipa untuk tekanan normal, tekanan desain dan tekanan kerja maksimum yang dierbolehkan (MAOP) ditunjukkan pada tabel berikut. Tabel 7. Perhitungan ketebalan dinding pipa NO I 1.1 EXISTING LOCATION RISER & TIE-IN SPOOL A PRESSURE OF PIPE NORMAL OPERATING DESIGN FACTOR REQUIRED MINIMUM WALL THICKNESS ACTUAL MEASURED WALL THICKNESS DESIGN PRESSURE P n P d F T t a psig (kg/cm g) (55.54) 869 (61.10) 0.50 in (mm) 0.13 (5.410) in (mm) CONCLUSION 0.54 (13.3) 1. FLOWLINE 790 (55.54) 869 (61.10) (3.759) 0.56 (14.75) 1.3 RISER & TIE-IN SPOOL B 790 (55.54) 869 (61.10) (5.410) (17.450) II.1 FUTURE RISER & TIE-IN SPOOL A. FLOWLINE.3 RISER & TIE-IN SPOOL B 1,70 (10.93) 1,70 (10.93) 1,70 (10.93) 1,89 (133.0) 1,89 (133.0) 1,89 (133.0) (11.783) 0.33 (8.183) (11.783) 0.54 (13.3) 0.56 (14.75) (17.450) 3.3 Perhitungan Flens Perhitungan flens dilakukan berdasarkan aturan yang terdapat pada kode ASME VIII Divisi 1, Appendix. Sebagai contoh disini ditampilkan cara dan hasil perhitungan untuk swievel ring flange. Swievel ring flenge akan gagal jika S T lebih besar daripada S f. Formula-formula yang digunakan adalah: () Y M O ST t B ( ) 1 K log 10 K Y K 1 K 1 ( 3) A K B ( 4) M M + M + M ( 5) O D D D T D G M H h ( 6) H D B P ( 7) C B h D ( 8) M T H T ht ( 9) H T H H D ( 10) C G h T ( 11) Indonesian Pipeline Technology

8 M H h ( 1) G H G W H ( 13) C G h G ( 14) H G P ( 15) dimana : A diameter luar flens, in. B diameter dalam flens, in. C diameter lingkaran baut, in. G diameter pada reaksi gaya gasket, in. H gaya hidrostatik total, lb H D gaya hidrostatik pada bagian dalam flens, lb H G gaya gasket (perbedaan antara beban baut desain flens dan gaya hidrostatik total),lb H T perbedaan antara gaya hidrostatik total dan gaya hidrostatik pada bagian dalam flens, lb h D jarak radial dari lingkaran baut ke H D, in. h G jarak radial dari reaksi gaya gasket ke lingkaran baut, in. h T jarak radial dari lingkaran baut ke H T, in. K perbandingan antara diameter luar dan diameter dalam flens M D komponen momen akibat H D, in.-lb M G komponen momen akibat H G, in.-lb M O momen total yang bekerja pada flens, in.-lb M T komponen momen akibat H T, in.-lb P tekanan desain, psi W gaya baut desain flens, lb. Y faktor yang diperoleh dari -7.1 Hasil perhitungannya diatampilkan pada tabel berikut: NO 3.4 Perhitungan Baut Tabel 8. Perhitungan swievel ring flange LOCATION CALCULATED TANGENSIAL STRESS IN FLANGE S T G G ALLOWABLE DESIGN STRESS FOR MATERIAL OF FLANGE psi psi (kg/cm ) (kg/cm ) I EXISTING 1.1 RISER & TIE- 6, ,000 IN SPOOL A (456.31) (1,87.981) 1. FLOWLINE RISER & TIE- 5, ,000 IN SPOOL B ( ) (1,87.981) II FUTURE.1 RISER & TIE- 14, ,000 IN SPOOL A ( ) (1,87.981). FLOWLINE RISER & TIE- 11, ,000 IN SPOOL B (794.13) (1,87.981) S f CONCLUSION Perhitungan baut dilakukan berdasarkan aturan yang terdapat pada kode ASME VIII Divisi 1, Appendix. Sebagai contoh disini ditampilkan cara dan hasil perhitungan. Indonesian Pipeline Technology

9 Baut akan gagal jika D m lebih besar daripada D. Formula-formula yang digunakan adalah: () 4 Am Dm n π ( 16) Wm A 1 m1 Sb ( 17) Wm Am S ( 18) a W m1 H + H p ( 19) W m b G y ( 0) H p b G m P ( 1) H G P ( ) w b O 8 ( 3) G d 1 + w ( 4) dimana : A m luas penampang baut total yang dibutuhkan, diambil yang besar dari A m1 dan A m, sq.in. A m1 luas penampang baut total pada akar ulir (root of thread) atau penampang dengan diameter terkecil, dibutuhkan untuk kondisi operasi, sq.in. A m luas penampang baut total pada akar ulir (root of thread) atau penampang dengan diameter terkecil untuk peletakan gasket (gasket seating), sq.in. b lebar dudukan gasket efektif, in. b 0 lebar dudukan gasket dasar, in. d i diameter dalam gasket, in. G diameter pada reaksi gaya gasket, in. H gaya hidrostatik total, lb. H p gaya tekan total pada permukaan kontak-sambungan, lb. M faktor gasket, tabel -5.1 P tekanan desain, psi. S a tegangan baut yang diijinkan pada temperatur atmosfer, psi. S b tegangan baut yang diijinkan pada temperatur desain, psi. W m1 beban baut minimum yang dibutuhkan untuk kondisi operasi, lb. W m baut minimum yang dibutuhkan untuk peletakan gasket, lb. w lebar, in. y beban peletakan satuan pada gasket atau permukaan kontak-sambungan, psi. Indonesian Pipeline Technology

10 Hasil perhitungannya ditampilkan pada tabel berikut: Tabel 9. Perhitungan baut NO LOCATION PRESSURE OF PIPE NORMAL DESIGN REQUIRED DIAMETER MINIMUM OF BOLT ACTUAL DIAMETER MINIMUM OF BOLT CONCLUSION P n P d D m D psig (kg/cm g) in (mm) in (mm) I EXISTING 1.1 RISER & TIE-IN SPOOL A (55.54) (61.10) (11.956) (31.75) 1. FLOWLINE RISER & TIE-IN SPOOL B (55.54) (61.10) (11.956) (34.95) II FUTURE.1 RISER & TIE-IN 1,70 1, SPOOL A (10.93) (133.0) (17.641) (31.75). FLOWLINE RISER & TIE-IN SPOOL B 1,70 (10.93) 1,89 (133.0) (17.641) (34.95) 3.5 Perhitungan Gasket Perhitungan gasket dilakukan dengan menggunakan formula Brownel & Young. Gasket akan gagal jika w m lebih besar daripada w. Formula-formula yang digunakan adalah: (3) d d 0 i y P m ( 5) y P ( m + 1) d d 0 0 di ( 6) d i untuk kasus tekanan dalam desain: w m d 0 d i ( 7) untuk persyaratan baut: Am f allow wm b y π G ( 8) dimana: d o diameter luar gasket, in. d i diameter dalam gasket, in. w m lebar minimum gasket, in. w lebar aktual gasket, in. A m luas penampang baut total yang dibutuhkan, sq.in. f allow tekanan ijin baut pada temperatur atmosfer, psi y tegangan peletakan desain minimum untuk gasket, psi. G diameter rata-rata gasket, in. Indonesian Pipeline Technology

11 Hasil perhitungannya diatampilkan pada tabel berikut: NO LOCATION Tabel 10. Perhitungan gasket INTERNAL w BOLT PRESSURE REQUIREMENT REQUIREMENT w m STATUS w m,b STATUS in (mm) in (mm) - in (mm) - I EXISTING 1.1 RISER & TIE-IN SPOOL A (11.15) (4.071) (1.905) 1. FLOWLINE RISER & TIE-IN SPOOL B (11.15) (4.071) (1.905) II FUTURE.1 RISER & TIE-IN FAIL SPOOL A (11.15) 14.64) (4.115). FLOWLINE RISER & TIE-IN FAIL SPOOL B (11.15) (14.64) (4.115) 4. KESIMPULAN DAN SARAN 4.1 Kesimpulan Berdasarkan analisis di atas, dapat disimpulkan: Tegangan maksimum pipeline lebih kecil daripada tegangan ijin dengan faktor keamanan minimum Ketebalan dinding pipa minimum yang dibutuhkan lebih kecil daripada ketebalan dinding pipa aktual dengan perbedaan in. (.49 mm) Tegangan maksimum flens lebih rendah daripada tegangan ijin dengan faktor keamanan minimum Diameter baut minimum yang dibutuhkan lebih kecil daripada diameter baut aktual dengan perbedaan in ( mm) Dengan menggunakan Brownell & Young formula (berdasarkan tekanan internal), ditemukan bahwa lebar minimum gasket yang dibutuhkan lebih besar daripada lebar gasket aktual denga perbedaan minimum 0.14 in (3.139 mm). Namun demikian, berdasarkan persyaratan baut, lebar gasket minimum yang dibutuhkan lebih kecil daripada lebar gasket aktual. 4. Saran Saran yang diusulkan berdasarkan analisis di atas adalah : Berdasarkan formulasi Brownell & Young untuk persyaratan lebar gasket, pipeline yang ada (existing) seharusnya tidak dioperasikan dengan tekanan desain lebih dari 1661 psig. Namun demikian, rating dimensi gasket 600# dan 900# adalah sama untuk pipa 1. Jadi, kedua gasket dapat dibebani dengan rating 900#. Jika pipeline akan dioperasikan dengan tekanan desain 189 psig, direkomendasikan untuk memperkuat sambungan khususnya gasket pada tie-in A, karena elemen yang paling kritis adalah gasket. Indonesian Pipeline Technology

12 DAFTAR PUSTAKA 1. ASME B31.8, Gas Transmission and Distribution Piping System, 1999 ed., New York, ASME VIII Division 1, Rules for Construction of Pressure Vessels, 1986 ed., New York, Brownell, L.E. and Edwin H. Young, Process Equipment Design, John Wiley & Sons, Inc., New York1959. IDENTITAS PENULIS Dr. Ir. IGN Wiratmaja Puja Laboratorium Perancangan Mesin ITB Jl. Ganesa 10 Bandung Telp. (0) Indonesian Pipeline Technology

Bab 4 Pemodelan Sistem Perpipaan dan Analisis Tegangan

Bab 4 Pemodelan Sistem Perpipaan dan Analisis Tegangan Bab 4 Pemodelan Sistem Perpipaan dan Analisis Tegangan Pada bab ini akan dilakukan pemodelan dan analisis tegangan sistem perpipaan pada topside platform. Pemodelan dilakukan berdasarkan gambar isometrik

Lebih terperinci

BAB IV DATA SISTEM PERPIPAAN HANGTUAH

BAB IV DATA SISTEM PERPIPAAN HANGTUAH BAB IV DATA SISTEM PERPIPAAN HANGTUAH 4.1. Sistem Perpipaan 4.1.1. Lokasi Sistem Perpipaan Sistem perpipaan yang dianalisis sebagai studi kasus pada tugas akhir ini adalah sistem perpipaan milik Conoco

Lebih terperinci

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE Oleh: WIRA YUDHA NATA 4305 100 014 JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 ANALISA

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN

BAB III ANALISA DAN PEMBAHASAN BAB III ANALISA DAN PEMBAHASAN 3.1. Perhitungan Ketebalan Pipa (Thickness) Penentuan ketebalan pipa (thickness) adalah suatu proses dimana akan ditentukan schedule pipa yang akan digunakan. Diameter pipa

Lebih terperinci

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai BAB III METODE PENELITIAN 3.1. Diagram Alir ( Flow Chart ) Diagram alir studi perencanaan jalur perpipaan dari free water knock out (FWKO) ke pump suction diberikan pada Gambar 3.1 Mulai Perumusan Masalah

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan.

BAB IV ANALISA DAN PEMBAHASAN. Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan. BAB IV ANALISA DAN PEMBAHASAN 4.1 Perhitungan dan Analisa Tegangan 4.1.1 Perhitungan Ketebalan Minimum Ketebalan pipa dapat berbeda-beda sesuai keadaan suatu sistem perpipaan. Perbedaan ketebalan pipa

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1. Data-data Awal ( input ) untuk Caesar II Adapun parameter-parameter yang menjadi data masukan (di input) ke dalam program Caesar II sebagai data yang akan diproses

Lebih terperinci

Dosen Pembimbing: 1. Ir. Imam Rochani, M.Sc. 2. Ir. Handayanu, M.Sc., Ph.D.

Dosen Pembimbing: 1. Ir. Imam Rochani, M.Sc. 2. Ir. Handayanu, M.Sc., Ph.D. Sidang Tugas Akhir (P3) Surabaya, 7 Agustus 2014 PERANCANGAN RISER DAN EXPANSION SPOOL PIPA BAWAH LAUT: STUDI KASUS KILO FIELD PT. PERTAMINA HULU ENERGI OFFSHORE NORTHWEST JAVA Oleh: Hidayat Wusta Lesmana

Lebih terperinci

BAB VII PENUTUP Perancangan sistem perpipaan

BAB VII PENUTUP Perancangan sistem perpipaan BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan dan analisis tegangan sistem perpipaan sistem perpipaan berdasarkan standar ASME B 31.4 (studi kasus jalur perpipaan LPG dermaga Unit 68 ke tangki

Lebih terperinci

BAB 4 STUDI KASUS 4.1 UMUM

BAB 4 STUDI KASUS 4.1 UMUM BAB 4 STUDI KASUS 4.1 UMUM Platform LProcess merupakan struktur anjungan lepas pantai tipe jacket dengan struktur empat kaki dan terdiri dari dua deck untuk fasilitas Process. Platform ini terletak pada

Lebih terperinci

LAMPIRAN A GRAFIK DAN TABEL. 1. Grafik untuk menentukan dimensi optimal bejana tekan. [Ref.5 hal 273]

LAMPIRAN A GRAFIK DAN TABEL. 1. Grafik untuk menentukan dimensi optimal bejana tekan. [Ref.5 hal 273] DAFTAR PUSTAKA 1. Bednar, H. Henry.P.E. 1986. Pressure Vessel Design Handbook. Krieger Publishing Company. Florida. 2. Brownell, E. Llyod. dan Edwin, H. Young. 1959. Process Equipment Design. John Willey

Lebih terperinci

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II

TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II TUGAS AKHIR PIPELINE STRESS ANALYSIS TERHADAP TEGANGAN IJIN PADA PIPA GAS ONSHORE DARI TIE-IN SUBAN#13 KE SUBAN#2 DENGAN PENDEKATAN CAESAR II Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata

Lebih terperinci

PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR

PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR P3 PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR II P3 PIPELINE STRESS ANALYSIS ON THE ONSHORE DESIGN

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1 Perhitungan Ketebalan Minimum ( Minimum Wall Thickess) Dari persamaan 2.13 perhitungan ketebalan minimum dapat dihitung dan persamaan 2.15 dan 2.16 untuk pipa bending

Lebih terperinci

Bab 3 Data Operasi Sistem Perpipaan pada Topside Platform

Bab 3 Data Operasi Sistem Perpipaan pada Topside Platform Bab 3 Data Operasi Sistem Perpipaan pada Topside Platform Pada area pengeboran minyak dan gas bumi Lima, Laut Jawa milik British Petrolium, diketahui telah mengalami fenomena subsidence pada kedalaman

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 41 Hasil Perhitungan Untuk mendapatkan hasil perhitungan analisa tegangan pipa pada jalur pemipaan gas dapat diperoleh dengan menggunakan rumus-rumus di bawah ini : Perhitungan

Lebih terperinci

NAJA HIMAWAN

NAJA HIMAWAN NAJA HIMAWAN 4306 100 093 Ir. Imam Rochani, M.Sc. Ir. Hasan Ikhwani, M.Sc. ANALISIS PERBANDINGAN PERANCANGAN PADA ONSHORE PIPELINE MENGGUNAKAN MATERIAL GLASS-REINFORCED POLYMER (GRP) DAN CARBON STEEL BERBASIS

Lebih terperinci

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB V ANALISA HASIL. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : BAB V ANALISA HASIL 5.1. Evaluasi Perhitungan Secara Manual 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : - Diameter luar pipa (Do)

Lebih terperinci

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline Sidang Tugas Akhir Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline HARIONO NRP. 4309 100 103 Dosen Pembimbing : 1. Dr. Ir. Handayanu, M.Sc 2. Yoyok Setyo H.,ST.MT.PhD

Lebih terperinci

4 BAB IV PERHITUNGAN DAN ANALISA

4 BAB IV PERHITUNGAN DAN ANALISA 4 BAB IV PERHITUNGAN DAN ANALISA 4.1 Data Penelitian Data material pipa API-5L Gr B ditunjukkan pada Tabel 4.1, sedangkan kondisi kerja pada sistem perpipaan unloading line dari jetty menuju plan ditunjukan

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar BAB IV ANALISA DAN PEMBAHASAN 4.1 Data dan Sistem Pemodelan Sumber (referensi) data-data yang diperlukan yang akan digunakan untuk melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

Lebih terperinci

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut :

BAB V ANALISA HASIL. 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : BAB V ANALISA HASIL 5.1. Evaluasi Perhitungan Secara Manual 1. Tegangan-tegangan utama maksimum pada pipa. Dari hasil perhitungan awal dapat diketahui data-data sebagai berikut : - Diameter luar pipa (Do)

Lebih terperinci

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN

BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN BAB IV PERHITUNGAN ANALISA DAN PEMBAHASAN 4.1 Perhitungan Bejana Tekan Seperti yang diuraikan pada BAB II, bahwa bejana tekan yang dimaksud dalam penyusunan tugas akhir ini adalah suatu tabung tertutup

Lebih terperinci

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk BAB I PENDAHULUAN Sistem Perpipaan merupakan bagian yang selalu ada dalam industri masa kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk mentransportasikan fluida adalah dengan

Lebih terperinci

Gambar 5. 1 Sistem Pipeline milik Vico Indonesia

Gambar 5. 1 Sistem Pipeline milik Vico Indonesia BAB IV Studi Kasus Pada bab ini dilakukan studi kasus untuk menghitung kategori resiko dalam sebuah pipeline. Pada kesempatan kali ini penulis mengambil pipeline milik Vico Indonesia sebagai contoh untuk

Lebih terperinci

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa?

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa? PENDAHULUAN Korosi yang menyerang sebuah pipa akan berbeda kedalaman dan ukurannya Jarak antara korosi satu dengan yang lain juga akan mempengaruhi kondisi pipa. Dibutuhkan analisa lebih lanjut mengenai

Lebih terperinci

PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA

PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA *Hendri Hafid Firdaus 1, Djoeli Satrijo 2 1 Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro 2

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF)

BAB IV PEMBAHASAN. 4.1 Data Perancangan. Tekanan kerja / Po Temperatur kerja / To. : 0,9 MPa (130,53 psi) : 43ºC (109,4ºF) 35 BAB IV PEMBAHASAN 4.1 Data Perancangan Jenis bejana tekan Tekanan kerja / Po Temperatur kerja / To Panjang silinder Diameter dalam silinder / Di Panjang bejana tekan (head to head) / z Joint efisiensi

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN IV. 1 PERHITUNGAN CORROSION RATE PIPA Berdasarkan Corrosion Rate Qualitative Criteria (NACE RP0775-99), terdapat empat (4) tingkat laju korosi (hilangnya ketebalan per mm/

Lebih terperinci

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang Aulia Havidz 1, Warjito 2 1&2 Teknik Mesin, Departemen Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

DAFTAR ISI. i ii iii iv vi v vii

DAFTAR ISI. i ii iii iv vi v vii DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... NASKAH SOAL... HALAMAN PERSEMBAHAN... INTISARI... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN...

Lebih terperinci

BAB VI PEMBAHASAN DAN HASIL

BAB VI PEMBAHASAN DAN HASIL BAB VI PEMBAHASAN DAN HASIL 6.1. Persiapan Permodelan Sebelum melakukan pemodelan dan analisis, perlu dilakukan olah data terlebih dahulu dari data-data yang diperoleh untuk mempermudah dalam melakukan

Lebih terperinci

Tabel 4. Kondisi Kerja Pipa Pipe Line System Sumber. Dokumen PT. XXX Parameter Besaran Satuan Operating Temperature 150 Pressure 3300 Psi Fluid Densit

Tabel 4. Kondisi Kerja Pipa Pipe Line System Sumber. Dokumen PT. XXX Parameter Besaran Satuan Operating Temperature 150 Pressure 3300 Psi Fluid Densit BAB IV ANALISA DAN PEBAHASAN 4.1 Perhitungan Data material pipa API-5L-Gr.65 ditunjukan pada Tabel 4.1, sedangkan kondisi kerja pada sistem perpipaan pipe lin esystem di tunjukan pada Tabel 4.. Tabel 4.1

Lebih terperinci

BAB VII PENUTUP Perancangan bejana tekan vertikal separator

BAB VII PENUTUP Perancangan bejana tekan vertikal separator BAB VII PENUTUP 7.1. Kesimpulan Dari hasil perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle (studi kasus separator unit karaha PT. Pertamina Geothermal Energy), secara garis

Lebih terperinci

DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH LAUT

DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH LAUT LABORATORIUM KEANDALAN DAN KESELAMATAN JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SIDANG HASIL P3 DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013

Jurnal FEMA, Volume 1, Nomor 4, Oktober 2013 Jurnal FEMA, Volume 1, Nomor 4, Oktober 013 PERANCANGAN BEJANA TEKAN (PRESSURE VESSEL) UNTUK PENGOLAHAN LIMBAH KELAPA SAWIT DENGAN VARIABEL KAPASITAS PRODUKSI 10.000 TON/BULAN Meylia Rodiawati 1) A. Yudi

Lebih terperinci

BAB IV ANALISIS TEGANGAN PADA CABANG PIPA

BAB IV ANALISIS TEGANGAN PADA CABANG PIPA 44 BAB IV ANALISIS TEGANGAN PADA CABANG PIPA Pada suatu perangkat lunak sistem stress analysis terdapat beberapa variabel yang dapat dijadikan input untuk selanjutnya dapat dilakukan analisis terhadap

Lebih terperinci

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi 1 Analisa Tegangan pada Pipa yang Memiliki Sumuran Berbentuk Limas dengan Variasi Kedalaman Muhammad S. Sholikhin, Imam Rochani, dan Yoyok S. Hadiwidodo Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan,

Lebih terperinci

SIDANG P3 JULI 2010 ANALISA RESIKO PADA ELBOW PIPE AKIBAT INTERNAL CORROSION DENGAN METODE RBI. Arif Rahman H ( )

SIDANG P3 JULI 2010 ANALISA RESIKO PADA ELBOW PIPE AKIBAT INTERNAL CORROSION DENGAN METODE RBI. Arif Rahman H ( ) SIDANG P3 JULI 2010 ANALISA RESIKO PADA ELBOW PIPE AKIBAT INTERNAL CORROSION DENGAN METODE RBI Arif Rahman H (4305 100 064) Dosen Pembimbing : 1. Ir. Hasan Ikhwani, M.Sc 2. Ir. Daniel M. Rosyid, Ph.D Materi

Lebih terperinci

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II Asvin B. Saputra 2710 100 105 Dosen Pembimbing: Budi Agung Kurniawan,

Lebih terperinci

ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT

ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT Diyan Gitawanti Pratiwi 1 Dosen Pembimbing : Rildova, Ph.D Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut

Lebih terperinci

ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II

ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II ANALISA OVER STRESS PADA PIPA COOLING WATER SYSTEM MILIK PT. XXX DENGAN BANTUAN SOFTWARE CAESAR II TUGAS AKHIR Disusun guna memenuhi sebagian syarat memperoleh gelar Sarjana Teknik pada Fakultas Teknik

Lebih terperinci

SKRIPSI PURBADI PUTRANTO DEPARTEMEN METALURGI DAN MATERIAL FAKULTAS TEKNIK UNIVERSITAS INDONESIA GENAP 2007/2008 OLEH

SKRIPSI PURBADI PUTRANTO DEPARTEMEN METALURGI DAN MATERIAL FAKULTAS TEKNIK UNIVERSITAS INDONESIA GENAP 2007/2008 OLEH PENILAIAN KELAYAKAN PAKAI (FFS ASSESSMENTS) DENGAN METODE REMAINING WALL THICKNESS PADA PIPING SYSTEM DI FLOW SECTION DAN COMPRESSION SECTION FASILITAS PRODUKSI LEPAS PANTAI M2 SKRIPSI OLEH PURBADI PUTRANTO

Lebih terperinci

TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II

TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA GAS DARI VESSEL SUCTION SCRUBBER KE BOOSTER COMPRESSOR DENGAN MENGGUNAKAN PROGRAM CAESAR II Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana

Lebih terperinci

BAB V METODOLOGI. Mulai

BAB V METODOLOGI. Mulai BAB V METODOLOGI 5.1. Diagram Alir Pemodelan dan Pemeriksaan Tegangan, Defleksi, Kebocoran pada Flange, dan Perbandingan Gaya dan Momen Langkah-langkah proses pemodelan sampai pemeriksaan tegangan pada

Lebih terperinci

DESAIN DAN ANALISIS FREE SPAN PIPELINE

DESAIN DAN ANALISIS FREE SPAN PIPELINE DESAIN DAN ANALISIS FREE SPAN PIPELINE Nur Khusnul Hapsari 1 dan Rildova 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung Jalan Ganesha 10 Bandung 40132

Lebih terperinci

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13 BAB II DASAR TEORI 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa 4th failure February 13 1st failure March 07 5th failure July 13 2nd failure Oct 09 3rd failure Jan 11 Gambar 2.1 Riwayat

Lebih terperinci

Bab III Data Perancangan GRP Pipeline

Bab III Data Perancangan GRP Pipeline Bab III Data Perancangan GRP Pipeline 3.2 Sistem Perpipaan Sistem perpipaan yang dirancang sebagai studi kasus pada tugas akhir ini adalah sistem perpipaan penyalur fluida cair yaitu crude dan well fluid

Lebih terperinci

BAB 8. BEJANA TEKAN (Pressure Vessel)

BAB 8. BEJANA TEKAN (Pressure Vessel) BAB 8 BEJANA TEKAN (Pressure Vessel) Bejana tekan (Pressure Vessel) adalah tempat penampungan suatu fluida baik berupa cair maupun gas dengan tekanan yang lebih tinggi dari tekanan atmosfir. Bejana Tekan

Lebih terperinci

PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN kn LOGO

PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN kn LOGO www.designfreebies.org PERANCANGAN TEKNIS BAUT BATUAN BERDIAMETER 39 mm DENGAN KEKUATAN PENOPANGAN 130-150 kn Latar Belakang Kestabilan batuan Tolok ukur keselamatan kerja di pertambangan bawah tanah Perencanaan

Lebih terperinci

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK Erinofiardi, Ahmad Fauzan Suryono, Arno Abdillah Jurusan Mesin, Fakultas Teknik, Universitas Bengkulu Jl. W.R. Supratman Kandang

Lebih terperinci

UJIAN P3 TUGAS AKHIR 20 JULI 2010

UJIAN P3 TUGAS AKHIR 20 JULI 2010 UJIAN P3 TUGAS AKHIR 20 JULI 2010 ANALISA RISIKO TERHADAP PIPA GAS BAWAH LAUT KODECO AKIBAT SCOURING SEDIMEN DASAR LAUT OLEH : REZHA RUBBYANTO 4306.100.026 DOSEN PEMBIMBING : 1. Dr. Ir. Wahyudi, M. Sc

Lebih terperinci

LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II

LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II LAPORAN TUGAS AKHIR ANALISA TEGANGAN SISTEM PIPA PROCESS LIQUID DARI VESSEL FLASH SEPARATOR KE CRUDE OIL PUMP MENGGUNAKAN PROGRAM CAESAR II Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

Bab 5 Analisis Tegangan Ultimate dan Analisis Penambahan Tumpuan Pipa

Bab 5 Analisis Tegangan Ultimate dan Analisis Penambahan Tumpuan Pipa Bab 5 Analisis Tegangan Ultimate dan Analisis Penambahan Tumpuan Pipa Sistem perpipaan dikatakan telah mengalami kegagalan, salah satu alasannya jika tegangan yang terjadi pada sistem perpipaan tersebut

Lebih terperinci

ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER

ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER (Studi Kasus Crossing Pipa South Sumatera West Java (SSWJ) milik PT.Perusahaan Gas Negara (Persero)

Lebih terperinci

BAB 3 DESKRIPSI KASUS

BAB 3 DESKRIPSI KASUS BAB 3 DESKRIPSI KASUS 3.1 UMUM Anjungan lepas pantai yang ditinjau berada di Laut Jawa, daerah Kepulauan Seribu, yang terletak di sebelah Utara kota Jakarta. Kedalaman laut rata-rata adalah 89 ft. Anjungan

Lebih terperinci

PANDUAN PERHITUNGAN TEBAL PIPA

PANDUAN PERHITUNGAN TEBAL PIPA PANDUAN PERHITUNGAN TEBAL PIPA 1.1 Alur Analisa Untuk mendesain sebuah pipa yang akan digunakan untuk moda distribusi, hal pertama yang perlu dilakukan adalah menghitung tebal pipa minimum yang paling

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1. Data-Data Awal Analisa Tegangan Berikut ini data-data awal yang menjadi dasar dalam analisa tegangan ini baik untuk perhitungan secara manual maupun untuk data

Lebih terperinci

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis studi kasus pada pipa penyalur yang dipendam di bawah tanah (onshore pipeline) yang telah mengalami upheaval buckling. Dari analisis ini nantinya

Lebih terperinci

TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT

TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT TUGAS AKHIR ANALISA TEGANGAN JALUR PIPA UAP PADA PROYEK PILOT PLANT Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Starta Satu (S1) Disusun Oleh : Nama : Abdul Latif

Lebih terperinci

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan

2 BAB II TEORI. 2.1 Tinjauan Pustaka. Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan 2 BAB II TEORI 2.1 Tinjauan Pustaka Suatu sistem perpipaan dapat dikatakan aman apabila beban tegangan yang terjadi mempunyai nilai rasio lebih kecil atau sama dengan 1 dari tegangan yang diijinkan (allowable

Lebih terperinci

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II 1 Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II Andis Dian Saputro dan Budi Agung Kurniawan Jurusan Teknik

Lebih terperinci

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus

TUGAS AKHIR. Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus TUGAS AKHIR Analisa Kekuatan Sambungan Pipa Yang Menggunakan Expansion Joint Pada Sambungan Tegak Lurus Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh

Lebih terperinci

SIDANG P3 TUGAS AKHIR JURUSAN TEKNIK KELAUTAN 28 JANUARI 2010

SIDANG P3 TUGAS AKHIR JURUSAN TEKNIK KELAUTAN 28 JANUARI 2010 SIDANG P3 TUGAS AKHIR JURUSAN TEKNIK KELAUTAN 28 JANUARI 2010 Analisa Resiko pada Reducer Pipeline Akibat Internal Corrosion dengan Metode RBI (Risk Based Inspection) Oleh: Zulfikar A. H. Lubis 4305 100

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Ribuan tahun yang lalu, sistem pipa sudah dikenal dan digunakan oleh manusia untuk mengalirkan air sebagai kebutuhan air minum dan irigasi. Jadi pada dasarnya sistem

Lebih terperinci

BAB III DATA DESAIN DAN HASIL INSPEKSI

BAB III DATA DESAIN DAN HASIL INSPEKSI BAB III DATA DESAIN DAN HASIL INSPEKSI III. 1 DATA DESAIN Data yang digunakan pada penelitian ini adalah merupakan data dari sebuah offshore platform yang terletak pada perairan Laut Jawa, di utara Propinsi

Lebih terperinci

Bab IV Analisis Perancangan Struktur GRP Pipeline Berdasarkan ISO 14692

Bab IV Analisis Perancangan Struktur GRP Pipeline Berdasarkan ISO 14692 Bab IV Analisis Perancangan Struktur GRP Pipeline Berdasarkan ISO 14692 4.1 Flowchart Perancangan GRP Pipeline Menurut ISO 14692-3 bagian 7.10 perancangan sistem perpipaan dengan menggunakan material komposit

Lebih terperinci

Prasetyo Muhardadi

Prasetyo Muhardadi ANALISA KEKUATAN SISA PIPELINE AKIBAT CORROSION BERBASIS KEANDALANDI PETROCHINA-PERTAMINA TUBAN Oleh: Prasetyo Muhardadi 4305 100 039 Dosen Pembimbing: 1.Prof. Ir. Daniel M. Rosyid, PhD 2. Prof. Ir. Soegiono

Lebih terperinci

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah.

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah. Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah. Dengan kemajuan teknologi yang semakin pesat, telah diciptakan suatu alat yang bisa menampung,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Wellhead dan X-mass tree adalah peralatan yang harus dimiliki oleh sumur migas. Wellhead dipasang saat pengeboran dan X-mass tree dipasang saat sumur akan memasuki

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 32 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 PELAKSANAAN Kerja praktek dilaksanakan pada tanggal 01 Februari 28 februari 2017 pada unit boiler PPSDM MIGAS Cepu Kabupaten Blora, Jawa tengah. 4.1.1 Tahapan kegiatan

Lebih terperinci

BAB II LANDASAN TEORI. Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik

BAB II LANDASAN TEORI. Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik BAB II LANDASAN TEORI 2.1 Definisi dan Teori Perpipaan 2.1.1 Definisi Sistem Perpipaan Untuk mengalirkan suatu fluida (cair atau gas) dari satu atau beberapa titik ke satu atau beberapa titik lainnya digunakan

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1 JURNAL TEKNIK POMITS Vol. 2, No. 1, (213) ISSN: 2337-3539 (231-9271 Print) 1 Analisa Peletakan Booster Pump pada Onshore Pipeline JOB PPEJ (Joint Operating Body Pertamina Petrochina East Java) Debrina

Lebih terperinci

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E

UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E UNIVERSITAS DIPONEGORO PERANCANGAN DAN ANALISA TEGANGAN PADA BEJANA TEKAN VERTIKAL DENGAN METODE ELEMEN HINGGA TUGAS AKHIR JOKO PURNOMO L2E 007 052 FAKULTAS TEKNIK JURUSAN TEKNIK MESIN SEMARANG MARET 2012

Lebih terperinci

Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi

Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-10 1 Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi Yopy Hendra P., Daniel M Rosyid, dan Yoyok S Hadiwidodo

Lebih terperinci

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline 5.1 Analisis Tegangan dan Fleksibilitas Analisis tegangan dan fleksibilitas pipeline ini dilakukan dengan menggunakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Diagram Alir ( Flow Chart ) Mulai Perumusan Masalah Mengetahui tegangan pada system perpipaan & mengetahui jumlah penyangga pipa (pipe support) Penyiapan data yang di masukan

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. dalam tugas akhir ini adalah sebagai berikut : Document/Drawing Number. 2. TEP-TMP-SPE-001 Piping Desain Spec

BAB IV ANALISA DAN PEMBAHASAN. dalam tugas akhir ini adalah sebagai berikut : Document/Drawing Number. 2. TEP-TMP-SPE-001 Piping Desain Spec BAB IV ANALISA DAN PEMBAHASAN 4.1 Data dan Sistem Pemodelan Sumber (referensi) data-data yang diperlukan yang akan digunakan untuk melakukan perancangan sistem pemipaan dengan menggunakan program Caesar

Lebih terperinci

6 Analisis Fatigue BAB Parameter Analisis Fatigue Kurva S-N

6 Analisis Fatigue BAB Parameter Analisis Fatigue Kurva S-N BAB 6 6 Analisis Fatigue 6.1 Parameter Analisis Fatigue Analisis fatigue dilakukan untuk mengecek kekuatan struktur terhadap pembebanan siklik dari gelombang. Dengan melakukan analisis fatigue, kita dapat

Lebih terperinci

Abstrak. Kata kunci: Hydrotest, Faktor Keamanan, Pipa, FEM ( Finite Element Method )

Abstrak. Kata kunci: Hydrotest, Faktor Keamanan, Pipa, FEM ( Finite Element Method ) PERBANDINGAN PRESSURE AKTUAL HYDROTEST WELDING PIPE API 5L B PSL 1 ERW SCH 10 Ø30 TERHADAP TEGANGAN LULUH DENGAN SIMULASI NUMERIK METODE FEM ( FINITE ELEMENT METHOD ) Muhammad Irawan *, Nurul Laili Arifin

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Diagram alir studi perencanaan jalur perpipaan dari tower DA-501 ke tower DA-401 dijelaskan seperti diagram alir dibawah ini: Mulai Memasukan Sistem Perpipaan

Lebih terperinci

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping.

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah. Didalam sebuah Plant, entah itu LNG Plant, Petrochemical Plant, Fertilizer Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di Offshore,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Sejak dahulu manusia sudah mengenal sistem perpipaan, namun penggunaan sistem dan bahannya masih sangat sederhana, untuk memenuhi kebutuhan mereka secara pribadi ataupun

Lebih terperinci

SEPARATOR. Nama Anggota: PITRI YANTI ( } KARINDAH ADE SYAPUTRI ( ) LISA ARIYANTI ( )

SEPARATOR. Nama Anggota: PITRI YANTI ( } KARINDAH ADE SYAPUTRI ( ) LISA ARIYANTI ( ) SEPARATOR Nama Anggota: PITRI YANTI (03121403032} KARINDAH ADE SYAPUTRI (03121403042) LISA ARIYANTI (03121403058) 1.Separator Separator merupakan peralatan awal dalam industri minyak yang digunakan untuk

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 33 III. METODE PENELITIAN Metode penelitian adalah suatu cara yang digunakan dalam penelitian, sehingga pelaksanaan dan hasil penelitian bisa untuk dipertanggungjawabkan secara ilmiah. Penelitian ini menggunakan

Lebih terperinci

ANALISA KEGAGALAN PIPA BAJA TAHAN KARAT 316L DI BANGUNAN LEPAS PANTAI PANGKAH-GRESIK

ANALISA KEGAGALAN PIPA BAJA TAHAN KARAT 316L DI BANGUNAN LEPAS PANTAI PANGKAH-GRESIK ANALISA KEGAGALAN PIPA BAJA TAHAN KARAT 316L DI BANGUNAN LEPAS PANTAI PANGKAH-GRESIK SALMON PASKALIS SIHOMBING NRP 2709100068 Dosen Pembimbing: Dr. Hosta Ardhyananta S.T., M.Sc. NIP. 198012072005011004

Lebih terperinci

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK

PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR ABSTRAK PERANCANGAN PRESSURE VESSEL KAPASITAS 0,017 M 3 TEKANAN 1 MPa UNTUK MENAMPUNG AIR KONDENSASI BOGE SCREW COMPRESSOR Cahya Sutowo 1.,ST.MT. Hantawan 2 Lecture 1,College student 2,Departement of machine,

Lebih terperinci

Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan Caesar II

Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan Caesar II JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) F-168 Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan

Lebih terperinci

EVALUASI DISAIN INSTALASI PIPA FRESH FIRE WATER STORAGE TANK

EVALUASI DISAIN INSTALASI PIPA FRESH FIRE WATER STORAGE TANK EVALUASI DISAIN INSTALASI PIPA FRESH FIRE WATER STORAGE TANK Ir. Budi Santoso, Ir. Petrus Zacharias PRPN BATAN, Kawasan PUSPIPTEK, Gedung 71, Tangerang Selatan, 15310 ABSTRAK EVALUASI DISAIN INSTALASI

Lebih terperinci

ANALISA TEGANGAN PIPA PADA TURBIN RCC OFF GAS TO PROPYLENE PROJECT

ANALISA TEGANGAN PIPA PADA TURBIN RCC OFF GAS TO PROPYLENE PROJECT ANALISA TEGANGAN PIPA PADA TURBIN RCC OFF GAS TO PROPYLENE PROJECT ( ROPP ) PERTAMINA BALONGAN MENGGUNAKAN PROGRAM CAESAR II 5.10 Abstrak Telah dilakukan analisa tentang tegangan pipa pada turbin Rcc Off

Lebih terperinci

STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE

STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE 1 STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE Saiful Rizal 1), Yoyok S. Hadiwidodo. 2), dan Joswan J. Soedjono

Lebih terperinci

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE AKIBAT PENGARUH BEBAN ARUS DAN GELOMBANG LAUT DI PT. PERTAMINA (PERSERO) UNIT PENGOLAHAN VI BALONGAN MENGGUNAKAN METODE ELEMEN HINGGA *Felix Wahyu

Lebih terperinci

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI No. 08/ Tahun IV. Oktober 2011 ISSN 1979-2409 RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI Yatno Dwi Agus Susanto, Ahmad Paid Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK RANCANG BANGUN AUTOCLAVE

Lebih terperinci

Bab 1 Pendahuluan 1.1 Latar Belakang

Bab 1 Pendahuluan 1.1 Latar Belakang Bab 1 Pendahuluan 1.1 Latar Belakang Bahan bakar fosil yang terdiri atas gas dan minyak bumi masih menjadi kebutuhan pokok yang belum tergantikan sebagai sumber energi dalam semua industri proses. Seiring

Lebih terperinci

5 Pemodelan Struktur

5 Pemodelan Struktur Bab 5 5 Pemodelan Struktur 5.1 Konfigurasi Umum Jacket Anjungan yang dimodelkan dalam Tugas Akhir ini merupakan suatu bangunan fixed platform tipe jacket yang memiliki 4 buah kaki yang terpancang ke dalam.

Lebih terperinci

ANALISA PELETAKAN BOOSTER PUMP PADA ONSHORE PIPELINE JOB PPEJ (JOINT OPERATING BODY PERTAMINA PETROCHINA EAST JAVA)

ANALISA PELETAKAN BOOSTER PUMP PADA ONSHORE PIPELINE JOB PPEJ (JOINT OPERATING BODY PERTAMINA PETROCHINA EAST JAVA) ANALISA PELETAKAN BOOSTER PUMP PADA ONSHORE PIPELINE JOB PPEJ (JOINT OPERATING BODY PERTAMINA PETROCHINA EAST JAVA) O l e h : D eb r i n a A l f i t r i Ke n t a n i a 4 3 1 0 1 0 0 0 7 9 D o s e n Pe

Lebih terperinci

Analisa Laju Erosi dan Perhitungan Lifetime Terhadap Material Stainless Steel 304, 310, dan 321

Analisa Laju Erosi dan Perhitungan Lifetime Terhadap Material Stainless Steel 304, 310, dan 321 Analisa Laju Erosi dan Perhitungan Lifetime Terhadap Stainless Steel, 310, dan 321 pada Aliran Reject 1st Cleaner to 2nd Cleaner OCC Line Voith Unit SP 3-5 di PT. PAKERIN (Pabrik Kertas Indonesia) Budi

Lebih terperinci

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING )

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) [C]2011 : M. Noer Ilham Gaya tarik pada track stank akibat beban terfaktor, T u = 50000 N 1. DATA BAHAN PLAT SAMBUNG DATA PLAT SAMBUNG Tegangan leleh baja, f

Lebih terperinci

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK

DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK DESAIN TEGANGAN PADA JALUR PEMIPAAN GAS DENGAN PENDEKATAN PERANGKAT LUNAK Erinofiardi, Ahmad Fauzan Suryono, Arno Abdillah Jurusan Mesin, Fakultas Teknik, Universitas Bengkulu Jl. W.R. Supratman Kandang

Lebih terperinci