PENENTUAN AZIMUT PADA PENGAMATAN BINTANG DENGAN METODE DIURNAL CIRCLE

dokumen-dokumen yang mirip
PENENTUAN AZIMUTH PADA PENGAMATAN BINTANG DENGAN METODE DIURNAL CIRCLE. Oleh : Yoel Prawiro C Pembimbing :

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print) A-202

ANALISIS KETELITIAN AZIMUT PENGAMATAN MATAHARI DAN GLOBAL POSITIONING SYSTEM (GPS) (Studi Kasus: Kampus ITS Sukolilo, Surabaya)

Perbandingan Akurasi Prediksi Pasang Surut Antara Metode Admiralty dan Metode Least Square

OPTIMASI JARING PADA PENGUKURAN ORDE-3 MENGGUNAKAN PERATAAN PARAMETER

Analisis Perbedaan Perhitungan Arah Kiblat pada Bidang Spheroid dan Ellipsoid dengan Menggunakan Data Koordinat GPS

PERBANDINGAN AKURASI PREDIKSI PASANG SURUT ANTARA METODE ADMIRALTY DAN METODE LEAST SQUARE

Perbandingan Penentuan Volume Suatu Obyek Menggunakan Metode Close Range Photogrammetry Dengan Kamera Non Metrik Terkalibrasi Dan Pemetaan Teristris

STUDI KEANDALAN ALAT ETS GOWIN TKS 202 DALAM PENGUKURAN SITUASI. Mikho Henri Darmawan,Ir.Chatarina N.MT, Danar Guruh P.ST,MT

Oleh : Ida Ayu Rachmayanti, Yuwono, Danar Guruh. Program Studi Teknik Geomatika ITS Sukolilo, Surabaya

ANALISA PETA LINGKUNGAN PANTAI INDONESIA (LPI) DITINJAU DARI ASPEK KARTOGRAFIS BERDASARKAN PADA SNI

CORPORATE SOCIAL RESPONSIBLE

IMPLEMENTASI BAHASA PEMROGRAMAN UNTUK PERHITUNGAN DAN PENGGAMBARAN MENGGUNAKAN DATA LAPANGAN HASIL PENGUKURAN DENGAN TS

Defry Mulia

BAB 1 Pendahuluan 1.1.Latar Belakang

Tugas Akhir. Andhika Prastyadi N Teknik Geomatika FTSP ITS

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB IV ANALISIS SISTEM HISAB ARAH KIBLAT DR. ING KHAFID DALAM PROGRAM MAWĀQIT 2001

BAB IV ANALISIS FORMULA PENENTUAN ARAH KIBLAT DENGAN THEODOLIT DALAM BUKU EPHEMERIS HISAB RUKYAT 2013

Pembuatan Alur Pelayaran dalam Rencana Pelabuhan Marina Pantai Boom, Banyuwangi

BAB I PENDAHULUAN. 1.1 Latar Belakang

2014 PROGRAM PEMBUATAN KONTUR ANOMALI GAYABERAT MENGGUNAKAN METODE MESH POLYGON

MENGENAL GERAK LANGIT DAN TATA KOORDINAT BENDA LANGIT BY AMBOINA ASTRONOMY CLUB

Pemetaan Situasi dengan Metode Koordinat Kutub di Desa Banyuripan, Kecamatan Bayat, Kabupaten Klaten

BAB I PENDAHULUAN. Karyawan merupakan salah satu sumber daya manusia yang digunakan

KLASIFIKASI PENGUKURAN DAN UNSUR PETA

STUDI PERUBAHAN SUHU PERMUKAAN LAUT (SPL) MENGGUNAKAN SATELIT AQUA MODIS

IDA AYU RACHMAYANTI T.GEOMATIKA FTSP-ITS 2009

BAB I PENDAHULUAN. menjadi informasi dan didistribusikan untuk pemakai. apapun seiring dengan perkembangan teknologi. Semakin tingginya wawasan

Pemetaan Eksterior Gedung 3 Dimensi (3D) Menggunakan Electronic Total Station (ETS)

Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech ASH111661

Studi Perbandingan GPS CORS Metode RTK NTRIP dan Total Station dalam Pengukuran Volume Cut and Fill

Tugas 1. Survei Konstruksi. Makalah Pemetaan Topografi Kampus ITB. Krisna Andhika

Jurnal Geodesi Undip Agustus 2013

PEMETAAN LOKASI OBJEK PAJAK UNTUK PAJAK BUMI DAN BANGUNAN MENGGUNAKAN TEKNOLOGI SENSOR FUSION PADA PERANGKAT BERGERAK DENGAN SISTEM OPERASI ANDROID

ANALISA PERUBAHAN TATA GUNA LAHAN WILAYAH SURABAYA BARAT MENGGUNAKAN CITRA SATELIT QUICKBIRD TAHUN 2003 DAN 2009

PENGECEKAN KETEGAKAN KOLOM BANGUNAN DENGAN METODE PEMOTONGAN SISI. D.Bambang Sudarsono Jurusan Teknik Sipil Fakultas Teknik Unika Soegijapranata

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB III METODOLOGI PENELITIAN

PERANGKAT LUNAK UNTUK PERHITUNGAN SUDUT ELEVASI DAN AZIMUTH ANTENA STASIUN BUMI BERGERAK DALAM SISTEM KOMUNIKASI SATELIT GEOSTASIONER

BAB I PENDAHULUAN. A.Latar Belakang. B. Tujuan Praktikum

BAB. XVI. THEODOLIT 16.1 Pengertian 16.2 Bagian Theodolit

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-Titik Kerangka Dasar Pemetaan Skala Besar

5. BOLA LANGIT 5.1. KONSEP DASAR SEGITIGA BOLA

Kata Kunci : Landreform, Pengukuran, Pemetaan

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. Ilmu falak merupakan ilmu yang sangat penting dalam kehidupan kita.

Analisa Perbandingan Volume Cut and Fill menggunakan Total Station dan GPS CORS (Continouosly Operating Reference Station) Metode RTK NTRIP

BAB IV ANALISIS SISTEM HISAB AWAL BULAN QAMARIAH DR. ING. KHAFID DALAM PROGRAM MAWAAQIT. A. Analisis terhadap Metode Hisab Awal Bulan Qamariah dalam

PERHITUNGAN VOLUME DAN SEBARAN LUMPUR SIDOARJO DENGAN CITRA IKONOS MULTI TEMPORAL 2011

Analisa Ketelitian Geometric Citra Pleiades Sebagai Penunjang Peta Dasar RDTR (Studi Kasus: Wilayah Kabupaten Bangkalan, Jawa Timur)

Bab III Pelaksanaan Penelitian

BAB I PENDAHULUAN. manusia, salah satunya adalah komputer. Saat ini suatu sistem aplikasi komputer

B A B IV HASIL DAN ANALISIS

Pertemuan 3. Penentuan posisi titik horizontal dan vertikal

Jurusan Teknik Geomatika Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

PROGRAM APLIKASI FALAKIYAH DENGAN fx-7400g PLUS

PROGRAM PERHITUNGAN TULANGAN GESER JOIN BETON BERTULANG MENGGUNAKAN MICROSOFT VISUAL BASIC 6.0

BAB IV APLIKASI DAN UJI AKURASI DATA GLOBAL POSITIONING SYSTEM (GPS) DAN AZIMUTH MATAHARI PADA SMARTPHONE BERBASIS ANDROID UNTUK HISAB ARAH KIBLAT

BAB 1 PENDAHULUAN. keras (hardware) maupun perangkat lunak (software) sudah semakin pesat dan

BAB IV ANALISIS PERBANDINGAN HISAB IRTIFA HILAL MENURUT ALMANAK NAUTIKA DAN NEWCOMB

BAB III METODE PENELITIAN

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA AQUA MODIS

PROGRAM APLIKASI FALAKIYAH Bagian IV : APLIKASI PERHITUNGAN UNTUK PENGGUNAAN SUNDIAL MIZWALA dengan Casio Power Graphic Fx-7400g Plus

MEMBUAT PROGRAM APLIKASI FALAK DENGAN CASIO POWER GRAPHIC fx-7400g PLUS Bagian II : Aplikasi Perhitungan untuk Penggunaan Teodolit

PENGGUNAAN CITRA SATELIT RESOLUSI TINGGI UNTUK PEMBUATAN PETA DASAR SKALA 1:5.000 KECAMATAN NGADIROJO, KABUPATEN PACITAN

BAB I PENDAHULUAN. mempunyai dampak dalam meningkatkan efektifitas dan efesiensi dalam

BAB I PENDAHULUAN I.1. Latar Belakang I.2. Maksud dan Tujuan

BAB IV ANALISIS PERHITUNGAN ARAH KIBLAT DENGAN MENGGUNAKAN AZIMUT PLANET. A. Algoritma Penentuan Arah Kiblat dengan Metode Azimut Planet

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-titik Kerangka Dasar Pemetaan Skala Besar

BAB I PENDAHULUAN. berpengaruh dalam keuntungan yang didapat oleh perusahaan tersebut. Untuk

Perbandingan Hasil Pengolahan Data GPS Menggunakan Hitung Perataan Secara Simultan dan Secara Bertahap

3. METODE PENELITIAN. Penelitian ini dilakukan di laboratorium dan lapangan. Penelitian di

BAB I PENDAHULUAN I.1. Latar Belakang

APLIKASI SISTEM INFORMASI GEOGRAFIS UNTUK PENGATURAN SPOOR DAN JADWAL KEBERANGKATAN KERETA API

ANALISA BATAS DAERAH ALIRAN SUNGAI DARI DATA ASTER GDEM TERHADAP DATA BPDAS (STUDI KASUS : SUB DAS BUNGBUNTU DAS TAROKAM)

Abstrak PENDAHULUAN.

BAB IV PENGUJIAN DAN ANALISIS SISTEM

BAB I PENDAHULUAN. yang disebabkan oleh faktor manusia (human error). Salah satu bidang yang

PENGEMBANGAN POTENSI WISATA ALAM KABUPATEN TULUNGAGUNG DENGAN SISTEM INFORMASI GEOGRAFIS

BAB 1 PENDAHULUAN. Sekretariat Badan Geologi adalah divisi yang bergerak melaksanakan

Pengujian Ketelitian Hasil Pengamatan Pasang Surut dengan Sensor Ultrasonik (Studi Kasus: Desa Ujung Alang, Kampung Laut, Cilacap)

Pemetaan dimana seluruh data yg digunakan diperoleh dengan melakukan pengukuran-pengukuran dilapangan disebut : Pemetaan secara terestris Pemetaan yan

MODUL KULIAH ILMU UKUR TANAH JURUSAN TEKNIK SIPIL POLIBAN

BAB IV LAPORAN HASIL PENELITIAN. A. Penentuan Arah Kiblat Menggunakan Azimut Bintang dan Planet

BAB IV UJI AKURASI AWAL WAKTU SHALAT SHUBUH DENGAN SKY QUALITY METER. 4.1 Hisab Awal Waktu Shalat Shubuh dengan Sky Quality Meter : Analisis

BAB I PENDAHULUAN. analisis terhadap sesuatu serta peristiwa-peristiwa yang terjadi dimuka bumi.

BAB I PENDAHULUAN. dampaknya dapat kita lihat betapa kompleksnya persoalan persoalan dalam

STUDI TENTANG PENGUKURAN DAN PEMETAAN PADA PELAKSANAAN LANDREFORM DI INDONESIA. Ali Pebriadi

Edwin Martha P. 1, Chatarina Nurjati S. 1, dan Roedy Rudianto 2. Abstrak

Studi Perbandingan Total Station dan Terrestrial Laser Scanner dalam Penentuan Volume Obyek Beraturan dan Tidak Beraturan

BAB I PENDAHULUAN. menimbulkan masalah karena Rasulullah saw. ada bersama-sama sahabat dan

BAB I PENDAHULUAN. berjalan lancar, cepat, tepat dan pastinya mudah. dengan transaksi keuangan dengan tepat dan akurat. Sebagai contoh penulis

BAB IV ANALISIS PENENTUAN ARAH KIBLAT DENGAN LINGKARAN JAM TANGAN ANALOG. A. Prinsip Penentuan Arah Kiblat dengan Menggunakan Lingkaran Jam

ANALISA PERBANDINGAN KETELITIAN PENGUKURAN KERANGKA KONTROL HORISONTAL ORDE-4 MENGGUNAKAN GPS GEODETIK METODE RAPID STATIC DENGAN TOTAL STATION

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. Stasiun TV dan Radio di Kota Medan. Diharapkan dengan dibuatnya tugas akhir

BAB I PENDAHULUAN. 1.1 Latar Belakang

PROGRAM APLIKASI FALAKIYAH DENGAN fx-7400g PLUS

ALGORITMA DAN DIAGRAM ALIR

Transkripsi:

Jurnal PENENTUAN AZIMUT PADA PENGAMATAN BINTANG DENGAN METODE DIURNAL CIRCLE Yoel Prawiro,M. Taufik, Mansur Muhamadi. aaaaaaaaaaaaaaaaaaaaaprogram Studi Teknik Geomatika, FTSP - ITS Abstrak Sudut azimuth merupakan sudut yang banyak digunakan dalam pekerjaan geodesi. Untuk mendapatkan sudut azimuth dapat diperoleh dengan berbagai cara salah satunya melalui pengamatan bintang. Pada pengamatan bintang sendiri terdapat beberapa metode yang dapat dipakai. Metode yang paling sering dipakai ialah metode Tinggi Bintang. Salah satu metode yang baru adalah metode Diurnal Circle. Dalam penelitian ini data yang didapat, dihitung dengan metode Diurnal Circle menggunakan bahasa program Fortran, lalu dibandingkan dengan hasil penghitungan metode Tinggi Bintang. Dari penghitungan metode Diurnal Circle pengamatan 1 bintang memberikan perbedaan hasil azimuth terhadap metode Tinggi Bintang sebesar 15,5 detik dan dengan pengamatan 2 bintang memberi perbedaan sebesar 4 menit 26,5 detik. Presisi dan akurasi meningkat seiring dengan semakin lamanya interval waktu pengamatan. Selain itu, semakin dekat jarak kutub bintang dengan kutub, maka presisi menurun dan akurasinya meningkat. Kata Kunci : Azimut, Diurnal Circle, Tinggi Bintang 1. Pendahuluan 1.1.Latar Belakang Sejak ratusan tahun yang lalu peradaban manusia sudah menggunakan benda-benda langit seperti matahari dan bintang untuk menentukan posisi suatu titik. Para pelaut mula-mula,menggunakan gugusan bintang-bintang dilangit sebagai papan penunjuk jalan. Jauh sesudah itu seorang astronomer dan matematikawan berkebangsaan Arab, Al-Khwarizmi dengan teori aljabarnya, pada tahun 800-an membuat model matematik untuk menentukan posisi dengan rumus yang sekarang dikenal dengan ilmu ukur sudut atau trigonometri. Semenjak itulah orang melakukan pengamatan bintang yang lebih akurat untuk menentukan posisi kapal di malam hari dan sekaligus juga pembuatan peta. Dalam melakukan penentuan posisi, tidak dapat mengabaikan yang namanya azimut. Padahal, pekerjaan-pekerjaan yang menyangkut kemampuan disiplin ilmu geodesi membutuhkan suatu penentuan azimut. Salah satu cara dalam menentukan azimut adalah dengan melakukan pengamatan benda-benda langit, yang umum dilakukan ialah terhadap matahari dan bintang. Dalam beberapa hal pengamatan bintang lebih sering dipakai. Dalam pengamatan bintang terdapat banyak metode antara lain metode sudut waktu, metode tinggi bintang dan salah satu metode yang relatif baru yaitu metode Diurnal Circle. Metode ini akan diperkenalkan lebih lanjut, namun sebelumnya dibandingkan terlebih dahulu dengan metode-metode lain yang sudah umum dipakai. Proses penghitungan dengan metode Diurnal Circle membutuhkan langkah-langkah yang cukup panjang dan rumit, apabila dilakukan secara manual membutuhkan banyak waktu. Oleh karena itu dibuat suatu program aplikasi untuk membantu mempercepat proses penghitungannya. 1.2. Perumusan Masalah Berdasarkan latar belakang diatas, maka permasalahan yang timbul adalah : Apakah metode Diurnal Circle dapat digunakan untuk menentukan azimut dan seberapa besar keakuratannya bila dibandingkan dengan metode lain. 1.3. Batasan Masalah Batasan permasalahan dari penelitian ini adalah :

1. Mengolah data pengamatan posisi bintang dengan metode Tinggi Bintang, Sudut Waktu, dan Diurnal Circle. 2. Membuat program untuk mempermudah proses penghitungan azimuth dari pengamatan posisi bintang dengan metode Diurnal Circle menggunakan bahasa program Fortran. 3. Pengambilan data dilakukan digedung Teknik Geomatika-ITS, (belahan bumi bagian selatan) dengan titik acuannya antena menara BRI Tower (jarak ± 10 km dari titik berdiri alatpengolahan data tidak dilakukan terhadap bintang terdekat dengan kutub, tetapi masing masing bintang dihitung datanya. 4. Menyelidiki hubungan keakuratan penghitungan dengan deklinasi maupun jarak kutub bintang. 1.4. Tujuan Penelitian Tujuan dari penelitian ini adalah untuk mengetahui berapa nilai azimuth yang diperoleh dari penghitungan dengan metode Diurnal Circle. 1.5. Manfaat Penelitian Manfaat yang ingin diperoleh dari penelitian ini adalah mempelajari secara langsung mengenai proses penghitungan azimuth dari pengamatan bintang dengan menggunakan metode Diurnal Circle 2. Peralatan dan Bahan 2.1. Peralatan Peralatan yang digunakan dalam penelitian ini antara lain: 1.Perangkat Keras (Hardware) a.personal Computer AMD Turion X2 b.memory DDR 1 GB. c.harddisk 160 GB. d.printer Canon IP-1980. e.theodolite Wild T0 no seri.168151 f.theodolite Wild T2 no seri.240327 g.barometer. h.termometer. i. Kompas merk Suunto. 2.Perangkat Lunak (Software) a.sistem Operasi Windows Vista b.microsoft Office 2007 c.program Watfor 77 2.2. Bahan 1.Data pengukuran sudut horisontal dan vertikal bintang. 2.Data suhu, tekanan, dan waktu pengamatan. 3.Informasi data mengenai bintang yang tampak aa(didapat dari peta bintang- Software CyberSky). 2.3. Lokasi Penelitian Penelitian ini dilakukan di lokasi kampus Institut Teknologi Sepuluh Nopember (ITS), lebih tepatnya di gedung Teknik Geomatika. Secara geografis, kampus ITS terletak di 7 16 47 LS dan 112 47 41 BT. 2.3. Metodologi Penelitian 2.3.1. Tahapan Metodologi Penelitian Tahapan metodologi penelitian yang akan dilaksanakan dalam kegiatan penelitian ini adalah seperti pada diagram alir gambar 1. Tahap Identifikasi dan Perumusan Masalah Tahap Pengumpulan Data Tahap Pengolahan Data Tahap Analisa Kesimpulan dan Saran Gambar.1. Diagram Alir Metodologi Penelitian Berikut adalah penjelasan diagram alir: 1. Tahap Identifikasi dan Perumusan Masalah Tahap ini merupakan tahapan awal dari penelitian yang dilakukan. Tahap ini terdiri dari perumusan masalah yaitu menentukan masalah apa yang timbul dan harus dipecahkan melalui penelitian ini. Penetapan tujuan dari diadakannya. penelitian, batasan dari penelitian dan manfaat yang diperoleh dari penelitian. Selain itu, pada tahapan ini juga mempelajari segala bentuk literatur yang berhubungan dengan software maupun teori pengamatan astronomi.

2. Tahap Pengumpulan Data Tahapan ini dilakukan pengumpulan data yang berkaitan, antara lain : - Data bacaan sudut horisotal dan vertikal dari posisi bintang. - Data suhu udara (dalam C), tekanan udara (dalam mmhg), dan waktu pengamatan. 3. Tahap Pengolahan Data Pada tahapan ini dilakukan pengolahan data yang telah didapat dengan metode Tinggi Bintang, metode Sudut Waktu, keduanya dihitung secara manual dengan menggunakan program Microsoft Excel. Sementara metode Diurnal Circle diolah pakai program aplikasi. 4. Tahap Analisa Pada tahap ini dilakukan analisa penghitungan dengan metode tinggi bintang terhadap metode Diurnal Circle yang dibuat dalam program aplikasi. 5. Hasil dan Kesimpulan Dalam tahap akhir ini merupakan hasil yang diperoleh dari penelitian ini dan kekurangan maupun kendala yang dihadapi. 2.3.2. Tahapan Pengolahan Data Tahapan yang akan dilakukan pada gambar 2. MULAI INPUT Peta Bintang Gambar 2. Diagram alir Tahapan Pengolahan AAAAAAIData. Penjelasan diagram alir gambar 3.2 1. Mulai Pada tahap ini dilakukan persiapan data yang akan diolah,persiapan meliputi penyiapan alat, pembacaan tekanan udara dan suhu,pengamatan pada peta bintang. 2. Input Data Data yang akan dimasukkan meliputi bacaan sudut horisontal nvdan vertikal, bacaan suhu dan tekanan saat pengamatan,bacaan horisontal titik yang akan dicari azimutnya, waktu pengamatan, deklinasi bintang, kedudukan lintang pengamat dan bacaan xchorisontal titik tercari dengan bintang. b. Input Data meliputi juga pembacaan peta bintang. Cara aamembaca peta bintang dapat dilihat dilampiran. 3. Penggunaan Metode. Memulai pengolahan data, kesemua data jxiyang telah diddapat dimasukkan kerumus dalam metode Tinggi bintang, sudut waktu, maupun metode Diurnal Circle. Dalam Metode Diurnal Circle sendiri ada dua cara penghitungan, masing-masing dianalisa dan masingmasing cara dibuat zxperbandingan interval waktu pengamatan. Untuk hal ini dipakai interval waktu 30,45,60,dan 90 menit (perkiraan kasar). 4. Kesimpulan Dari masing-masing pengolahan data tersebut diambil csikesimpulan semua hasil yang telah didapat. Metode Tinggi Bintang Program Aplikasi Metode Diurnal Circle 2.3.3. Tahapan Penghitungan dengan Program Tahapan penghitungan dengan program aplikasi dapat dilakukan dengan dua cara, yang dijelaskan pada gambar 3. Cara 1 Cara 2 45 30 60 90 2 Bintang 60 90 KESIMPULAN

Input: titik acuan, horisontal, vertikal, suhu,tekanan Process: Koreksi dan Least Square Output: azimut dan lintang Masuk Pilih: 1. 1 Bintang 2. 2 Bintang selesai Input: titik acuan, horisontal, vertikal, Process: Koreksi dan Least Square Output: azimut dan lintang horisontalnya. Dicocokkan dengan peta bintang, dibaca juga titik sasaran dan dibaca tekanan udara saat pengukuran, suhu saat pengukuran. Lalu ke alat Wild T2, diarahkan ke titik sasaran, kunci bacaan horisontal pada 0 0 0. Dicatat bacaan horisontalnya dan vertikalnya utnuk tiap posisi bintang, dicatat jam pada saat pembidikan pertama. 4. Setelah lewat dengan durasi beberapa menit (ditentukan sendiri oleh pengamat),lalu dibidik lagi bintang yang sama namun sebagai posisi kedua, dicatat jam pengamatan kedua, bacaan horisontal dan vertikalnya. Apabila dikehendaki dapat dibidik juga untuk bintang yang lain dengan prosedur yang sama persis. 3.Hasil dan Analisa 3.1. Hasil Dari metode Tinggi Bintang Tabel 1.Hasil Penghitungan Azimut dengan Metode Tinggi Bintang. Gambar 3. Diagram Alir Tahapan Penghhitungan dengan Program Aplikasi 2.3.4. Langkah Pengambilan Data di Lapangan Tahap-tahap pengambilan data dengan metode Diurnal Circle adalah sebagai berikut : 1. Pertama kali ditentukan sebuah titik utama, untuk titik dapat digunakan Benchmark atau menggunakan titik buatan. Titik ini merupakan titik tempat berdirinya alat theodolit. Dalam praktikum titik dibuat pada lantai 4 teras gedung Geomatika ITS. 2. Ditentukan lagi titik kedua, dapat menggunakan Benchmark atau titik buatan, arah titik kedua ini terserah.dalam Praktikum yang dijadikan titik acuan adalah antenna menara BRI Tower (Jl. Basuki Rachmat),jarak sekitar 10 km dari ITS. 3. Dari titik poin 1, Teodolit Wild T2 didirikan, pada sampingnya didirikan juga Wild T0. Pada Wild T0 dilakukan penguncian azimut.lalu diarahkan ke bintang yang diamati misalnya bintang Canopus,baca BINTANG AZIMUTH TINGGI BINTANG PUKUL DER MEN DET Canopus 22.56.30 268 47 17,3 23.30.30 268 47 22,6 23.50.30 268 46 54,4 00.14.30 268 46 17,3 00.37.30 268 47 12,4 00.53.30 268 46 31,5 01.15.30 268 46 49,4 01.27.30 268 46 40,5 01.38.30 268 46 35,4 02.13.30 268 46 53,2 Capella 23.35.30 268 47 27,3 23.54.30 268 46 59,2 00.17.30 268 47 8,6 00.41.30 268 47 23,4 01.02.30 268 46 57,9 01.19.30 268 47 36,1 01.31.30 268 47 49,2 01.58.30 268 48 39,7 02.10.30 268 48 22,7 Azimut yang benar dari penghitungan dengan metode tinggi bintang, didapatkan hasil: Rata-rata azimut = 268 47 12,5 Standar Deviasi = 0 0 36,42

3.2. Penghitungan Diurnal Circle. 3.2.1. Penghitungan dengan cara 1 Tabel 2. Hasil perhitungan azimut dengan metode Diurnal Circle cara 1 Bintang Canopus Capella Interval KOMBINASI HASIL AZIMUT waktu (') DER MEN DET 30 45 60 1,2,4 269 17 44,34 3,4,6 268 8 14,26 3,5,7 268 59 34,34 2,4,6 268 17 6,09 1,6,7 268 36 32,57 1,3,6 268 45 20,00 2,5,8 268 51 1,92 4,7,11 268 50 18,02 90 1,5,11 268 47 40,96 30 45 60 2,4,5 268 35 22,97 4,5,7 268 50 21,13 5,7,9 269 17 6,95 6,8,10 268 50 53,55 2,4,6 268 45 54,69 3,5,8 268 55 39,54 4,6,9 268 53 39,76 5,8,11 268 47 50,17 2,5,9 268 53 19,27 4,7,11 268 47 23,59 3,6,10 268 42 11,14 90 2,6,11 268 43 32,67 Dari perhitungan azimuth dengan metode Diurnal Circle cara 1 pada tabel 2, didapatkan hasil rata rata azimuth yang benar sebesar 268 47 28, dengan standar deviasi sebesar = ± 0 15 39,08. Dari hasil pengamatan ini diambil beberapa kombinasi terbaik, lalu dihitung tingkat presisinya. Hasil penghitungan presisi dapat dilihat pada tabel 3. Tabel 3. Tingkat presisi hasil azimut dengan aaaaaaaaicara 1 iterhadap Interval Waktu Interval (') Azimut der men Det SD 30 268 21 48,6 13' 34,36" 45 268 52 44,5 6' 49,82" 60 268 49 19,6 3' 59,63" 90 268 45 37 2' 4" 3.2.2. Penghitungan Dengan Cara 2 Tabel 4. Hasil perhitungan azimut dengan aaaaaaaaametode Diurnal Circle cara 2. Interval Pengamatan HASIL AZIMUT waktu (') BINTANG DER MEN DET 60 90 1 268 45 35,3 2 268 29 28,7 3 268 51 31,8 1 268 41 20 2 268 45 54,4 Dari perhitungan dengan metode Diurnal Circle cara 2, didapatkan hasil rata rata azimuth yang benar sebesar = 268 42 46, dengan standar deviasi sebesar = ± 0 8 15,9 Tabel 5. Tingkat presisi hasil azimut dengan aaaaaaaaicara 2 terhadap interval waktu. Interval (') Azimut der men det SD (") 60 268 37 32 8'3,3" 90 268 43 37,2 2' 17,2" 3.3. Penghitungan Tingkat Akurasi 3.3.1. Penghitungan Akurasi Cara 1 Penghitungan Akurasi ini digunakan untuk mengetahui penyimpangan hasil yang didapat antara metode Diurnal Circle dengan metode tinggi Bintang, baik yang didapat dengan cara 1 maupun cara 2. Hasil akurasi untuk cara 1 dapat dilihat pada tabel 6. Tabel 6. Hasil Penghitungan Akurasi untuk aaaaaaaacara 1 Azimut Waktu der men det 30' 45' 60' 90' 268 8 14,26 268 35 22,97 268 59 34,34 268 45 54,69 268 45 19,98 268 53 19,266 268 47 41 268 43 33 RMS error 40'43,52" 12'25,91" 6'23,64" 3'41,34"

Standar Deviasi (derajat) Standar Deviasi (derajat) Akurasi (derajat) 3.3.2. Penghitungan Akurasi Cara 2 Hasil dari penghitungan akurasi untuk cara 2dapat dilihat pada tabel 7. Tabel 7. Hasil Penghitungan Akurasi untuk aaaaaaaaicara 2 Interval Azimut RMS Waktu der men det error 60' 90' 268 29 28,7 268 37 32 268 41 20 268 43 37,2 20'11,88" 6' 53,05" 3.4. Evaluasi Presisi, Perbedaan dan Keakuratan dari Diurnal Circle Hasil yang telah dibahas pada bagian 3.2. dan 3.3, dibuat grafik yang menggambarkan keadaan tersebut. 0,25 0,20 0,15 0,10 0,05 0,00 Grafik Presisi Terhadap Interval Waktu Untuk Cara 1 0 50 100 Interval Waktu (menit) Standar Deviasi atau Presisi Gambar 1. Grafik presisi dibandingkan Interval Waktu untuk cara 1 Gambar 1 menyatakan nilai presisi yang didapat terhadap interval waktu. Dari gambar dapat diambil hasil presisi pada menit ke-30 adalah 13 34,36, pada menit ke-45 6 49,82, pada menit ke-60 3 59,63, dan pada menit ke- 90 2 4. Dari hasil ini dapat ditarik kesimpulan presisi meningkat seiring dengan makin lamanya interval pengamatan. Sedangkan gambar 2,menyatakan suatu hubungan antara akurasi hasil azimut yang diperoleh terhadap interval waktu untuk cara 1. Dari gambar dapat dinyatakan bahwa akurasi pada menit 30 dicapai dengan hasil 40 43,52, pada menit ke 45 dengan nilai 12 25,91,pada menit ke 60 dengan nilai 6 23,64, dan pada menit ke 90 dengan nilai 3 41,34. Dari hasil ini dapat disimpulkan bahwa akurasi meningkat seiring dengan meningkatnya interval waktu pengamatan. 0,8 0,6 0,4 0,2 0 Grafik Akurasi Terhadap Interval Waktu Untuk Cara 1 0 50 100 Interval Waktu (menit) Akurasi Gambar 2. Grafik akurasi dibandingkan Interval Waktu untuk cara 2 Untuk Cara 2, hasil presisi yang didapat digambarkan dalam gambar 3. Dari gambar didapat hasil presisi pada menit ke 60 senilai 8 3,3. Sedangkan pada menit ke 90 senilai 2 17,2. Dari hasil ini dapat disimpulkan bahwa presisi meningkat seiring dengan semakin lamanya interval waktu pengamatan. 0,15 0,1 0,05 Grafik Presisi Terhadap Interval Waktu untuk Cara 2 0 0 20 40 60 80 100 Interval Waktu (menit) Standar Deviasi atau Presisi Gambar 3.Grafik Presisi dibandingkan dengan Interval Waktu untuk Cara 2. Sedangkan hasil akurasi yang didapat dengan cara 2 digambarkan dalam gambar 4. Dari gambar dapat dinyatakan bahwa akurasi pada menit 60 dicapai dengan hasil 20 11,88 dan pada menit ke 90 dengan nilai 6 53,05. Dari hasil ini dapat disimpulkan bahwa akurasi meningkat seiring dengan meningkatnya interval waktu pengamatan.

Nilai (derajat) Akurasi (derajat) Grafik Akurasi Terhadap Interval Waktu Untuk Cara 2 0,4 0,3 0,2 0,1 0 Gambar 4. Grafik Akurasi Terhadap Interval Waktu untuk Cara 2. 3.5. Hubungan Presisi dan Akurasi Terhadap Jarak Kutub Bintang Tabel 8. Presisi dan akurasi terhadap jarak aaaaaaaaikutub Bintang 0 20 40 60 80 100 Interval Waktu (menit) Akurasi Canopus Capella der men det der men det Deklinasi(δ) -52 42 5 46 0 25 Jarak Kutub (90 - δ) 37 17 55 43 59 35 Azimut Dari Diurnal Circle 268 43 43,6 268 50 49,8 Azimut Tinggi Bintang 268 47 12,5 268 47 12,5 Standar Deviasi 0 21 2,62 0 10 9,84 Perbedaan 0 3 28,9 0 3 37,3 Akurasi 0 3 3,04 0 5 2,09 Penghitungan dari presisi dan akurasi jarak kutub bintang dapat dilihat pada tabel 8. Sedangkan untuk lebih merealisasikan, maka dinyatakan dengan grafik yang dapat dilihat pada gambar 5. Grafik Presisi dan Akurasi Terhadap Jarak Kutub Bintang 0,4 Dari gambar 5,dapat disimpulkan bahwa semakin dekat jarak kutub bintang dengan kutub utara atau selatan, maka presisi menurun dan akurasinya meningkat dan sebaliknya semakin jauh jarak kutub bintang dengan dengan kutub utara atau selatan, maka presisi meningkat dan akurasinya menurun. 4. Kesimpulan 1.Pengamatan 1 bintang selama interval waktu 30,45,60,dan 90imenit memberikan hasil presisi dan akurasi yang meningkat seiring dengan bertambahnya interval waktu. 2. Pengamatan 2 bintang selama interval waktu 60 dan 90 menit aaimemberikan hasil presisi dan akurasi yang meningkat seiring dengan bertambahnya interval waktu. 3. Semakin dekat jarak kutub bintang dengan kutub utara atau selatan,presisi akan menurun dan akurasinya meningkat. 5. Daftar Pustaka Abidin,H.Z. 2001. Geodesi Satelit. Pradnya aaaaaiparamita. Jakarta. Brinker,C, dan Wolf P.R.1997. Dasar-Dasar aaaaaipengukuran Tanah. Penerbit Erlangga. aaaaaijakarta. Clendinning, J, dan Olliver,J,G.1975. Principles of Surveying. Van Nostrand Reinhold Comp. Berkshire. Jur. Teknik Geodesi ITB. 1988. Almanak Matahari dan Bintang 1988 : Astronomi untuk Ukur Tanah. ITB.Bandung. Kaufmann,W.J. 1994. Universe.WH Freeman & Co. New York. Kissam,P. 1956. Surveying For Civil Engineers. Mc.Graw Hill. New York. 0,2 0 36 38 40 42 44 46 Presisi Jarak Kutub (derajat) Akurasi Muhamadi, M. 1982. Determining Azimuth and Latitude, and Predicting The Position Of A Star by Using Diurnal Circle Method. Tesis Program Master of Science-Univ.of Wisconsin. Wisconsin-Madison. Gambar 5. Grafik Presisi dan Akurasi terhadap aaaaaaaaaijarak Kutub suatu Bintang

Sinaga,I. 1977.Pedoman Posisi dan Azimuth Astronomi Geodesi. ITB. Bandung. Snow, T.P, dan Brownsberger K. R. 1997. Universe Origins & Evolution. Woodsworth Publ. Co. New York. Susila,N. 1983. Pemrograman Komputer Fortran IV. Satelit Offset. Bandung. Sutyanto,W.1984. Astrofisika: Mengenal Bintang. ITB. Bandung. Villanueva,K.J.1981. Pengantar Kedalam Astronomi Geodesi., ITB.Bandung. Wirshing. 1995.Pengantar Pemetaan (Seri buku Schaum), Penerbit Erlangga. Jakarta.