JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: ( Print) F-312

dokumen-dokumen yang mirip
Evaluasi Safety Integrity Level Pada Element Element Sistem Pengendalian Level Ammonia Stripper Di Pabrik I PT Petrokimia Gresik

Dewi Widya Lestari

Analisa safety, manajemen resiko dan pengendalian pada sistem pengendalian level LP

Kata Kunci Risk Management, boiler, HAZOP, emergency response plan, SIL

STUDI PERFORMANSI SISTEM PENGENDALIAN TEMPERATUR, RELIABILITY DAN SAFETY PADA HEAT EXCHANGER PT. PETROWIDADA GRESIK

SISTEM MANAJEMEN PERAWATAN UNIT MMU PUMP DAN OIL SHIPPING PUMP

STUDI RELIABILITY, SAFETY, DAN QUALITY PADA WASTE HEAT BOILER (WHB) DI PT.PETROKIMIA GRESIK

STUDI PERFORMANSI PADA FOTOTERAPI UNIT DI RSU HAJI SURABAYA. Nur Muflihah*)

STUDI RELIABILITY, AVAILABILITY DAN MAINTAINABILITY PADA PEMBANGKIT LISTRIK TENAGA GAS PAYO SILINCAH UNIT 1 JAMBI

PENENTUAN INTERVAL WAKTU PERAWATAN PENCEGAHAN PADA PERALATAN SUB UNIT SINTESA UNIT UREA DI PT X MENGGUNAKAN SIMULASI MONTE CARLO

Perancangan Sistem Pemeliharaan Menggunakan Metode Reliability Centered Maintenance (RCM) Pada Pulverizer (Studi Kasus: PLTU Paiton Unit 3)

Oleh: Gita Eka Rahmadani

ANALISA SAFETY,MANAJEMEN RESIKO DAN PENGENDALIAN PADA SISTEM PENGENDALIAN LEVEL LP DRUM WASTE HEAT BOILER PT.PETROKIMIA GRESIK

STUDI KEANDALAN DAN KETERSEDIAAN PEMBANGKIT LISTRIK TENAGA UAP UNIT 2 PT. PLN (Persero) SEKTOR PEMBANGKITAN BELAWAN

LOSS OF LOAD PROBABILITY (LOLP) INDEX UNTUK MENGANALISIS KEANDALAN PEMBANGKIT LISTRIK (Studi Kasus PT Indonesia Power UBP Suralaya)

Rancang Bangun Perangkat Lunak Reliability- Centered Maintenance untuk Gardu Induk

Identifikasi Bahaya dan Penentuan Kegiatan Perawatan Pada Tower Crane 50T Menggunakan Metode RCM II (Studi Kasus Perusahaan Manufaktur Kapal)

Seminar Nasional IENACO ISSN: USULAN PENENTUAN KEBUTUHAN SPARE PARTS MESIN COMPRESSOR BERDASARKAN RELIABILITY PT.

Prosiding Seminar Nasional Manajemen Teknologi XXIV Program Studi MMT-ITS, Surabaya 23 Januari 2016

Optimasi Preventive Maintenance pada Mesin Tuber. JurusanStatistika ITS

LEVEL DAN SISTEM PROTEKSI PADA PERTAMINA (PERSERO) RU IV CILACAP

Diagram 3.1 Flowchart Metodologi Pemecahan Masalah (Lanjutan)

PERANCANGAN PENJADWALAN PREVENTIVE MAINTENANCE PADA PT. ARTHA PRIMA SUKSES MAKMUR

BAB 3 METODOLOGI PEMECAHAN MASALAH

ANALISA KEANDALAN PADA PERALATAN UNIT PENGGILINGAN AKHIR SEMEN UNTUK MENENTUKAN JADWAL PERAWATAN MESIN (STUDI KASUS PT. SEMEN INDONESIA PERSERO TBK.

LOSS OF LOAD PROBABILITY (LOLP) INDEX UNTUK MENGANALISIS KEANDALAN PEMBANGKIT LISTRIK (Studi Kasus PT Indonesia Power UBP Suralaya)

BAB 3 METODOLOGI PENELITIAN

ANALISIS RELIABILITY DAN SAFETY INTEGRITY LEVEL (SIL) PADA SYNTHESIS GAS COMPRESSOR 103-J DI PABRIK I PT PETROKIMIA GRESIK

BAB 3 METODOLOGI PENELITIAN

BAB III METODOLOGI PEMECAHAN MASALAH

PERHITUNGAN PLANT RELIABILITY DAN RISIKO DI PABRIK PHONSKA PT.PETROKIMIA GRESIK

Jurnal Telematika, vol. 10 no. 2, Institut Teknologi Harapan Bangsa, Bandung ISSN:

RANCANG BANGUN PERANGKAT LUNAK RELIABILITY-CENTERED MAINTENANCE (RCM) UNTUK GARDU INDUK

Perencanaan Jadwal Perawatan Pencegahaan untuk Mengurangi Laju Biaya Pemeliharaan Komponen Bearing C3

ANALISIS INTERVAL PERAWATAN KOMPONEN KRITIS MESIN TRIMMING UNTUK MEMINIMUMKAN BIAYA PERAWATAN

APLIKASI METODE LOGIKA FUZZY PADA PEMODELAN DAN ANALISA KEANDALAN SISTEM GAS BUANG BOILER UNIT 3 DI PT. PJB UNIT PEMBANGKITAN GRESIK

BAB 3 METODOLOGI PENELITIAN

ANALISA KEANDALAN, KEAMANAN DAN MANAJEMEN RESIKO PADA PEMBANGKIT LISTRIK TENAGA GAS BLOK 2.2 DI PLTGU PT

BAB 3 METODOLOGI PENELITIAN

ANALISA PERAWATAN BERBASIS RESIKO PADA SISTEM PELUMAS KM. LAMBELU

Ayrton Humardhani P Pembimbing Dr.Bambang Lelono Widjiantoro, ST, MT.

OPTIMASI PREVENTIVE MAINTENANCE DENGAN PSO (PARTICLE SWARM OPTIMIZATION) PADA SEMI LEAN SOLUTION PUMP 107-JC DI PABRIK I PT.

PENENTUAN INTERVAL WAKTU PEMELIHARAAN PENCEGAHAN BERDASARKAN ALOKASI DAN OPTIMASI KEHANDALAN PADA CONTINUES SOAP MAKING

PERENCANAAN PEMELIHARAAN MESIN PRODUKSI DENGAN MENGGUNAKAN METODE RELIABILITY CENTERED MAINTENANCE

OPTIMASI JADWAL PERAWATAN PENCEGAHAN PADA MESIN TENUN UNIT SATU DI PT KSM, YOGYAKARTA

Jurnal Ilmiah Widya Teknik Vol No ISSN

PERENCANAAN PREVENTIVE MAINTENANCE KOMPONEN CANE CUTTER I DENGAN PENDEKATAN AGE REPLACEMENT (Studi Kasus di PG Kebon Agung Malang)

PENERAPAN PREVENTIVE MAINTENANCE UNTUK MENINGKATKAN RELIABILITY PADA BOILER FEED PUMP PLTU TARAHAN UNIT 3 & 4 TUGAS SARJANA

BAB 4 HASIL DAN PEMBAHASAN. merupakan mesin paling kritis dalam industri pengolahan minyak sawit. Pabrik

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

Seminar Nasional IENACO 2015 ISSN

TUGAS AKHIR TF

Kata Kunci Life Cycle Cost (LCC), Overall Equipment Effectiveness (OEE), Six Big Losses

BAB II LANDASAN TEORI Pengertian perawatan Jenis-Jenis Perawatan Metode Reliability Centered Maintenance (RCM)...

ANALISIS HAZARD AND OPERABILITY (HAZOP) UNTUK DETEKSI BAHAYA DAN MANAJEMEN RISIKO PADA UNIT BOILER (B-6203) DI PABRIK III PT.

BAB 3 METODOLOGI PENELITIAN

Desain Interface DCS. Tipe Alarm Waktu Display Screen Alarm Buzzer Alarm D Blinking Indicator Off Alarm 2 30 D Blinking Label On

BAB III METODOLOGI PENELITIAN

PERTEMUAN #1 PENGANTAR DAN PENGENALAN PEMELIHARAAN DAN REKAYASA KEANDALAN 6623 TAUFIQUR RACHMAN TKT316 PEMELIHARAAN DAN REKAYASA KEANDALAN

Penjadwalan Pemeliharaan Mesin Pengelasan Titik Bergerak Menggunakan Metode Realibility Centered Maintenance (RCM)

DAFTAR ISI HALAMAN JUDUL LEMBAR PENGESAHAN PEMBIMBING LEMBAR PENGESAHAN PENGUJI SURAT KETERANGAN PERUSAHAAN LEMBAR PENGAKUAN PERSEMBAHAN

Penjadwalan Maintenance Menggunakan Metode Reliability Centered Maintenance II (RCM II) pada Mesin Pendingin Sabroe Di PT. SMART Tbk.

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), ( X Print) B 1

IDENTIFIKASI RISIKO PADA BOILER COAL FIRING SYSTEM FASILITAS PEMBANGKIT PT PJB UNIT PEMBANGKITAN PAITON

Penjadwalan Predictive Maintenance dan Biaya Perawatan Mesin Pellet di PT Charoen Pokphand Indonesia - Sepanjang

4.1.7 Data Biaya Data Harga Jual Produk Pengolahan Data Penentuan Komponen Kritis Penjadualan Perawatan

II DI PT. PERTAMINA RU IV CILACAP

PENENTUAN INTERVAL WAKTU PENGGANTIAN SUB-SUB SISTEM MESIN HEIDELBERG CD 102 DI PT. X

USULAN INTERVAL PERAWATAN KOMPONEN KRITIS PADA MESIN PENCETAK BOTOL (MOULD GEAR) BERDASARKAN KRITERIA MINIMASI DOWNTIME

BAB II TINJAUAN PUSTAKA. diharapkan, membutuhkan informasi serta pemilihan metode yang tepat. Oleh

PENENTUAN INTERVAL WAKTU PEMELIHARAAN PENCEGAHAN BERDASARKAN ALOKASI DAN OPTIMASI KEHANDALAN PADA PERALATAN SEKSI PENGGILINGAN E

ANALISA RELIABILITY BERBASIS LOGIKA FUZZY PADA SISTEM MAIN ENGINE KAPAL TUGAS AKHIR

PENJADWALAN PREVENTIVE MAINTENANCE MESIN B.FLUTE PADA PT AMW

Studi Implementasi RCM untuk Peningkatan Produktivitas Dok Apung (Studi Kasus: PT.Dok dan Perkapalan Surabaya)

ANALISIS KEANDALAN KOMPONEN KRITIS LIFT NPX UNTUK MENENTUKAN JADWAL PERAWATAN PENCEGAHAN YANG OPTIMUM

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF

BAB III METODOLOGI PENELITIAN. Langkah perancangan yang akan dilakukan adalah sebagai berikut: produksi pada departemen plastik

Perancangan Aktivitas Pemeliharaan Dengan Reliability Centered Maintenance II (Studi Kasus : Unit 4 PLTU PT. PJB Gresik)

BAB 3 METODE PEMECAHAN MASALAH

Analisis Keandalan Mechanical Press Shearing Machine di Perusahaan Manufaktur Industri Otomotif

ANALISIS PREVENTIVE MAINTENANCE DAN RANCANGAN SISTEM INFORMASI PADA MESIN DIE CASTING

BAB 3 METODOLOGI PENELITIAN. menggunakan data stagnasi mesin yang dicatat oleh perusahaan. Penelitian

ANALISIS INTERVAL PERAWATAN KOMPONEN KRITIS UNIT MESIN STITCHING UNTUK MEMINIMUMKAN BIAYA PERAWATAN DAN MENINGKATKAN PRODUKTIVITAS

JURNAL TEKNIK INDUSTRI VOL. 5, NO. 2, DESEMBER 2003:

ANALISIS MANAJEMEN PERAWATAN UNTUK PERHITUNGAN AVAILABILITAS SISTEM AC TOSHIBA RPU 4003X PADA KERETA API ARGOGEDE DI PT KAI

OPTIMASI PREVENTIVE MAINTENANCE PADA MESIN TUBER DAN BOTTOMER DENGAN METODE ANALISIS RELIABILITAS DI PT X

Evaluasi Deviasi dari Aproksimasi Frekuensi Kejadian Perawatan Korektif dan Preventif

STUDI KEANDALAN (RELIABILITY) PEMBANGKIT LISTRIK TENAGA UAP (PLTU) LABUHAN ANGIN SIBOLGA

BAB III METODELOGI PENELITIAN

Studi Analisis Keandalan Sistem Distribusi Tenaga Listrik Surabaya Menggunakan Metode Latin Hypercube Sampling

BAB 3 METODOLOGI PENELITIAN

Disusun Oleh : Firman Nurrakhmad NRP Pembimbing : Totok Ruki Biyanto, PhD. NIP

ada, apakah bisa dikatakan nilai yang didapat sudah baik atau tidak, serta mengetahui indeks keandalan ditinjau dari sisi pelanggan.

Perancangan Sistem Pengendalian Level Pada Steam drum dengan Menggunakan Kontroller PID di PT Indonesia Power Ubp Sub Unit Perak-Grati

INTERVAL PENGGANTIAN PENCEGAHAN SUKU CADANG BAGIAN DIESEL PADA LOKOMOTIF KERETA API PARAHYANGAN * (STUDI KASUS DI PT. KERETA API INDONESIA)

Desy Ambar Yunanta ( )

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012

Analisis Keandalan Pada Boiler PLTU dengan Menggunakan Metode Failure Mode Effect Analysis (FMEA)

OPTIMALISASI INTERVAL WAKTU PENGGANTIAN KOMPONEN MESIN PACKER TEPUNG TERIGU KEMASAN 25 KG DI PT X

PENETAPAN JADWAL PERAWATAN MESIN SPEED MASTER CD DI PT. DHARMA ANUGERAH INDAH (DAI)

Transkripsi:

JURNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) F-32 Evaluasi Reliability dan Safety pada Sistem Pengendalian Level Syn Gas 2ND Interstage Separator Di PT. Petrokimia Gresik Dewi Nur Rahmawati, Ya umar, dan M. Ilyas Hs Jurusan Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60 E-mail: yaumar@ep.its.ac.id Abstrak Telah dilakukan evaluasi reliability dan safety pada sistem pengendalian level separator. Tujuan dilakukan tugas akhir ini yaitu untuk mengetahui evaluasi perhitungan reliability dan nilai SIL yang terpakai pada sistem pengendalian level separator. Metode yang digunakan yaitu metode kuantitatif. Synthesis gas compressor adalah plant untuk menaikkan pressure dari 30 kg/cm 2 menjadi 80 kg/cm 2. Plant ini terdiri dari 4 tingkat yang didalamnya terdapat cooler dan separator. Separator merupakan tabung bertekanan yang digunakan untuk memisahkan gas dengan air. Didalam separator diharapkan tidak terdapat air karena air dapat menyebabkan vibrasi dikompressor. Dari hasil evaluasi didapatkan nilai reliability terendah dimiliki oleh komponen LV 59 sebesar 0,58574 selama 8760 jam. Untuk tingkat safety komponen sistem pengendalian level separator berada pada SIL, namun pada komponen LV 59 dilakukan penurunan nilai PFD dengan metode redundant yang semula nilai PFD-nya 0,05220 menjadi 0,00892 sehingga nilai SIL-nya menjadi SIL 2. Berdasarkan batas acuan nilai reliability untuk dilakukan preventive maintenance sebesar 0,8 maka untuk komponen LV 59 memiliki waktu preventive maintenance 900 jam atau 2,5 bulan, LT 59 t = 3900 jam atau 9 bulan, dan LIC 59 t = 7300 jam atau 2 tahun. Dengan biaya preventive maintenance keseluruhan komponen sebesar Rp. 56.20,00 pertahunnya. Kata Kunci : Separator, Reliability dan Safety I. PENDAHULUAN D idalam pabrik amoniak terdapat plant synthesis gas compressor. Synthesis gas compressor adalah plant untuk menaikkan pressure dari 30 kg/cm 2 menjadi 80 kg/cm 2. Plant ini terdiri dari 4 tingkat yang didalamnya terdapat cooler dan separator. Separator itu sendiri merupakan tabung bertekanan yang digunakan untuk memisahkan gas CO 2, Ar, N 2, CH 4, CO, H 2, NH 3 dengan air kodensat. Berdasarkan hasil pemisahannya separator ini dinamakan separator dua fasa karena hanya memisahkan gas dan air. Untuk tingkat separator mengatur pressure dari 30 kg/cm 2 menjadi 54 kg/cm 2. Untuk tingkat 2 separator mengatur pressure dari 54 kg/cm 2 menjadi 00 kg/cm 2. Untuk tingkat 3 separator mengatur pressure dari 00 kg/cm 2 menjadi 60 kg/cm 2 dan untuk tingkat 4 separator mengatur pressure dari 60 kg/cm 2 menjadi 80 kg/cm 2. Penulis tugas akhir melakukan evaluasi reliability dan safety pada sistem pengendalian level di separator (05 F2) yang berada pada tingkat 2. Proses awal dari plant ini yaitu gas dari separator tingkat yang memiliki temperature 34 o C didinginkan oleh cooling water (6C) sehingga temperature menjadi 32 o C. Kemudian didinginkan lagi oleh amoniak chiller (NH 3 ) sehingga suhu menjadi 2 o C. Dari proses pendinginan tersebut terjadi peristiwa kondensibel. Dimana gas dan air kondensat tersebut dialirkan ke separator. Di separator antara gas dan air dipisahkan karena didalam separator diharapkan tidak terdapat kondensat atau air sama sekali. Karena jika terdapat air maka akan terjadi vibrasi yang sangat keras dikompressor. Maka dari itu level separator dijaga sangat ketat, dan setpoint dari level tersebut yaitu 5%. Gas dari separator tingkat 2 dialirkan ke separator tingkat 3 [5]. Synthesis gas compressor ini sudah beroperasi lama sejak tahun 994 dan memiliki waktu beroperasi yang sangat panjang. Oleh karena itu perlu dilakukan tinjau ulang dari tiap-tiap komponen yang berpengaruh pada sistem pengendalian level separator. Untuk mengantisipasi kegagalan yang ditimbulkan dalam proses produksi maka diperlukan evaluasi reliability dan safety dari setiap komponen yang berada pada sistem pengendalian level separator. Dari hasil evaluasi dapat dilakukan rekomendasi berupa penjadwalan ulang preventive maintenance dari tiap-tiap komponen, menurunkan nilai PFD yang sudah terpasang karena dengan menurunkan nilai PFD dari plant tersebut mampu menjaga safety dari sistem pengendalian level separator, dan rincian beban biaya yang ditanggung perusahaan ketika melakukan preventive maintenance. II. METODOLOGI PENELITIAN A. Peninjauan Lapangan dan Pengambilan Data Peninjauan lapangan dilakukan secara langsung untuk mengidentifikasi plant yang sering mengalami kegagalan selama proses awal plant berdiri. Kemudian dilakukan pengumpulan data perusahaan berupa P&ID, PFD dan spesifikasi komponen. B. Analisa Data Evaluasi Reliability Penentuan Time to Failure Data yang digunakan adalah data maintenance PT. Petrokimia Gresik yang berupa data waktu terjadinya kegagalan dari tahun 2005 sampai 202. Penentuan Distribusi Time to Failure Didalam langkah ini dapat diketahui kemungkinan terjadinya kerusakan pada waktu tertentu. Dan dapat diketahui distribusi yang terpakai dalam tiap komponen. Untuk

JURNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) F-33 menentukan distribusinya digunakan Reliasoft Weibull ++ Version 6. Evaluasi Reliability R(t) Tiap-Tiap Dari hasil reliasoft weibull diketahui distribusi yang digunakan pada tiap-tiap komponen yaitu distribusi weibull 2 dan weibull 3 kemudian dilakukan perhitungan nilai reliability dengan menggunakan persamaan seperti dibawah ini []: Distribusi weibull dua parameter Fungsi kehandalan distribusi weibull yaitu : R(t) = exp () Waktu rata rata kegagalan distribusi weibull adalah: MTTF = θ (2) Distribusi weibull tiga parameter Fungsi kehandalan distribusi weibull yaitu : R(t) = exp (3) Waktu rata rata kegagalan distribusi weibull adalah: MTTF = t 0 + θ (4) Penentuan Time to Repair Untuk mencari nilai TTR maka terlebih dahulu mengetahui berapa lama waktu perbaikan dari masing-masing komponen. Data tersebut didapatkan dari data maintenance dari PT. Petrokimia Gresik. Penentuan Distribusi Time to Repair Setelah didapatkan data TTR kemudian data tersebut didistribusikan kedalam Reliasoft Weibull++ Version 6 yang nantinya tiap komponen memiliki distribusi masing-masing. Dari hasil penentuan distribusi didapatkan distribusi perbaikan menggunakan weibull 2 dan weibull 3. Sedangkan untuk mencari nilai MTTR dari ditribusi perbaikan tersebut menggunakan persamaan dibawah ini : Distribusi weibull dua parameter Rata-rata perbaikan dari distribusi weibull yaitu: MTTR = (5) Distribusi weibull tiga parameter Rata-rata perbaikan dari distribusi weibull yaitu: MTTR = t 0 + (6) Evaluasi Maintainability Dari data distribusi TTR dapat digunakan untuk menentukan nilai maintainability dari masing-masing komponen dengan memasukkan nilai kedalam persamaan (7) atau (8) sesuai dengan parameter distribusi yang telah didapatkan. Maintainability distribusi weibull dua parameter yaitu : M(t) = - e (7) Maintainability distribusi weibull tiga parameter yaitu : M(t) = - e (8) Setelah didapatkan hasil uji distribusi kemudian dicari nilai availability menggunakan persamaan dibawah ini untuk mengetahui ketersediaan suatu komponen [2]. A(i) = (9) Evaluasi Reliability dengan Preventive Maintenance Pada Tiap-Tiap Level Separator Evaluasi preventive maintenance disini diharapkan agar dapat menjaga nilai reliability dari tiap-tiap komponen pengendalian level separator. Evaluasi ini didapat dari komponen yang belum dilakukan preventive maintenance dengan komponen yang sudah dilakukan preventive maintenance dengan pedoman nilai kehandalan sebesar 0,80. Hasil nilai reliability dan waktu operasional tersebut kemudian dibuat visualisasi berupa grafik. Evaluasi Safety Penentuan Nilai λ (lamda) Masing-Masing Setelah mendapatkan parameter distribusinya kemudian menghitung nilai λ masing-masing komponen selama waktu operasi mulai dari 0 jam sampai 57680 jam. Dan cara perhitungannya dapat mengunakan persamaan 0 atau sesuai distribusi laju kegagalan yang diperoleh pada masingmasing komponen []. Laju kegagalan distribusi weibull dua parameter yaitu : λ(t) = (0) Laju kegagalan distribusi weibull tiga parameteryaitu : λ(t) = () Penentuan nilai PFD Dari Masing-Masing Setelah diketahui nilai laju kegagalan dari masing-masing komponen kemudian dilakukan perhitungan nilai PFD dari masing-masing komponen dengan menggunakan persamaan 2. PFDAvg element = (2) Untuk mencari nilai dari Risk Reduction Factor (RRF) menggunakan persamaan (3) [3] RRF = (3) Dari nilai PFD tersebut dapat diketahui range nilai safety integrity level (SIL) sesuai dengan standard IEC 6508 [2]. Evaluasi Manajemen Resiko Prosedur yang dilakukan untuk mengetahui analisa manajemen resiko seperti yang dijabarkan dibawah ini : Penentuan Kriteria Resiko Dalam penentuan kriteria resiko menggunakan data maintenance yang ada diperusahaan. Karena penentuan resiko merupakan faktor penting dalam penelitian resiko. Penentuan kriteria resiko dibagi menjadi dua yaitu penentuan konsekuensi resiko dan penentuan nilai likelihood resiko. Evaluasi Availability Penentuan Konsekuensi Resiko

JURNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) F-34 Penentuan nilai konsekuensi resiko dibagi menjadi dua yaitu berdasarkan kerugian waktu dan kerugian biaya perbaikan. Penentuan Likelihood Resiko Perhitungan nilai likelihood resiko dilakukan dengan menggunakan perhitungan nilai MTTF dari tiap-tiap komponen dengan menggunakan persamaan dibawah ini. Nilai Likelihood = (4) Penentuan Resiko Tenaga Kerja Setelah dicari nilai konsekuensi resiko dan nilai likelihood resiko kemudian dapat dicari nilai total konsekuensi yang harus ditanggung PT.Petrokimia Gresik. Cara perhitungannya seperti persamaan dibawah ini [4] : RTK = Likelihood x MTTR x Total upah perjam (5) III. ANALISA DATA DAN PEMBAHASAN A. Evaluasi Kuantitatif Data yang digunakan adalah data maintenance PT. Petrokimia Gresik yang berupa data waktu terjadinya kegagalan dari tahun 2005 sampai 202. Data data overhaull dari tahun 994 sampai 202. Planned Start Tabel. Nilai TTF dan TTR dari LV 59 TTF Planned Completion (Jam) 05/0/994 05/0/994 TTR (Jam) 0/0/2005 3/0/2005 8792 4 8/03/2008 25/03/2008 27840 7 02/0/2008 04/0/2008 4584 2 20/02/200 27/02/200 2096 7 7/0/202 8/0/202 6632 0,5 Berdasarkan data kegagalan LT 59 maka dilakukan pengujian distribusi waktu kegagalan dan perbaikan. Didapatkan bahwa distribusi waktu kegagalan yang paling sesuai adalah distribusi weibull 2 dengan parameter β =,4306 dan η = 4092. Sehingga didapatkan nilai MTTF = 63307,4. Distribusi perbaikan yang paling sesuai adalah weibull 3 dengan parameter β = 3,523, η = 6,7379 dan γ = -3,364. Sehingga didapatkan nilai MTTR = 4,58832. Planned Start 05/0/994 05/0/994 Tabel 3. Nilai TTF dan TTR dari LIC 59 Planned TTF Completion (Jam) TTR (Jam) 03/02/2005 05/02/2005 88488 5 20/0/200 23/0/200 43440 5 8/03/202 8/03/202 8840 2 Berdasarkan data kegagalan LIC 59 maka dilakukan pengujian distribusi waktu kegagalan dan perbaikan. Didapatkan bahwa distribusi waktu kegagalan yang paling sesuai adalah distribusi weibull 2 dengan parameter β =,2460 dan η = 6029. Sehingga didapatkan nilai MTTF =000,2. Distribusi perbaikan yang paling sesuai adalah weibull 2 dengan parameter β = 2,05, dan η = 4,625. Sehingga didapatkan nilai MTTR = 6,306. Evaluasi Fungsi Reliability LV 59 Dari tiap-tiap komponen dilakukan perhitungan nilai kehandalan. Dan hasil perhitungannya divisualisasikan kedalam gambar seperti yang terlihat dibawah ini : 0/02/20 0/02/20 836 2 08/06/202 /06/202 832 4 2/06/202 2/06/202 24 2 Berdasarkan data kegagalan LV 59 maka dilakukan pengujian distribusi waktu kegagalan dan perbaikan. Didapatkan bahwa distribusi waktu kegagalan yang paling sesuai adalah distribusi weibull 3 dengan parameter β = 0,7772, η = 22060 dan γ = -0,92. Sehingga didapatkan nilai MTTF = 57055,9. Distribusi perbaikan yang paling sesuai adalah weibull 3 dengan parameter β = 2,8305, η = 7,39 dan γ = -2,43. Sehingga didapatkan nilai MTTR = 6,39663. Gambar.. Nilai R(t) LV 59 Planned Start Tabel 2. Nilai TTF dan TTR dari LT 59 Planned TTF Completion (Jam) TTR (Jam) 05/0/994 05/0/994 05/0/2005 09/0/2005 96432 4 8/03/2008 25/03/2008 27936 4 20/02/200 23/02/200 6728 2

JURNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) F-35 Gambar. 2. Nilai R(t) LT 59 Gambar. 6. Hasil maintainability LIC 59 Gambar. 3. Nilai R(t) LIC 59 Dari gambar tersebut dapat dilihat ketika waktu 8760 jam nilai reliability ketiga komponen itu mengalami penurunan yang pesat. Ketika waktu 8760 jam komponen LV 59 memiliki nilai reliability sebesar 0,58574, komponen LT 59 sebesar 0,89622, komponen LIC 59 sebesar 0,83422. Dari ketiga komponen tersebut dapat disimpulkan bahwa komponen LV 59 yang memiliki nilai reliablity terendah. Dari grafik tersebut dapat dilihat bahwa pada komponen LIC 59 mempunyai kemampuan melakukan perawatan sebesar 7 jam. Sedangkan availability (ketersediaan) komponen LIC 59 sebesar 0,99994. Evaluasi Preventive Maintenance Evaluasi Maintainability dan Availability Gambar. 4. Hasil maintainability LV 59 Dari gambar tersebut dapat dilihat bahwa pada komponen LV 59 mempunyai kemampuan melakukan perawatan sebesar 6 jam. Sedangkan availability (ketersediaan) komponen LV 59 sebesar 0,99989. Gambar. 7. Hasil Preventive Maintenance dari LV 59 Setelah dilakukan perhitungan nilai reliability dengan menggunakan preventive maintenance dapat diketahui untuk komponen LV 59 memiliki waktu preventive maintenance 900 jam sekali. Jadi komponen tersebut harus dilakukan preventive maintenance setiap 2,5 bulan. Gambar.8. Hasil Preventive Maintenance dari LT 59 Grafik. 5. Hasil maintainability LT 59 Dari perhitungan tersebut dapat diketahui bahwa komponen LT 59 memiliki waktu preventive maintenance rutin setiap interval minimal 3900 jam atau 9 bulan. Dari gambar tersebut dapat dilihat bahwa pada komponen LT 59 mempunyai kemampuan melakukan perawatan sebesar 2 jam. Sedangkan availability (ketersediaan) komponen LT 59 sebesar 0,99993. Gambar. 9. Hasil Preventive Maintenance dari LIC 59 Dari perhitungan tersebut dapat diketahui bahwa komponen LIC 59 memiliki waktu preventive maintenance rutin setiap interval minimal 7300 jam atau 2 tahun.

JURNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) F-36 B. Evaluasi Safety Didalam mencari nilai safety dari sistem pengendalian level separator terlebih dahulu dilakukan penentuan Failure Rate (λ), Probabilty Failure on Demand (PFD), dan Safety Integrity Level (SIL) pada komponen-komponen yang terdapat didalam level separator. Tabel 4. Hasil Perhitungan Evaluasi Safety pada saat Ti = 8760 jam dan Ti = 57680 jam Instru ment t (jam) λ(t) PFD RRF SIL 5,4624 SIL 8760 0,0000422 0,8463 LV 0,55887 SIL 59 57680 0,0000227,78933 2,75870 SIL 8760 0,000079 0,07838 LT 0,20480 SIL 59 57680 0,000062 4,89763 LIC 59 7,72964 SIL 8760 0,000029 0,05640 SIL 57680 0,0000262 2,0674 0,483760 Dari tabel 4 dapat dilihat hasil perhitungan dari nilai Failure Rate (λ), Failure on Demand (PFD), dan Risk Reduction Factor (RRF) selama kurun waktu 8760 jam dan 48920 jam. Dari ketiga komponen LV 59, LT 59 dan LIC 59 dapat dilihat tingkat keamanan SIL-nya berada pada SIL. Pada waktu 8760 jam nilai laju kegagalan yang tertinggi dimiliki oleh komponen LV 59 sebesar 0,0000422 dan terendahnya dimiliki oleh komponen LIC sebesar 0,000029. Untuk nilai PFD yang tertinggi dimiliki oleh LV 59 dengan nilai 0,8463. Dari nilai PFD tersebut dapat diketahui bahwa komponen LV 59 masih berada pada range nilai SIL. Sedangkan nilai PFD terendah dimiliki oleh LIC 59 dengan nilai 0,05640, nilai PFD tersebut juga berada pada range nilai SIL. Untuk nilai Risk Reduction Factor (RRF) yang tertinggi dimiliki oleh komponen LIC 59 dengan nilai 7,72964 sedangkan nilai Risk Reduction Factor (RRF) terendah dimiliki oleh komponen LV 59 dengan nilai sebesar 5,4624. Dari perhitungan tersebut dapat dilihat jika semakin besar laju kegagalan suatu peralatan maka kemungkinan terjadinya gagal berfungsi akan semakin besar dan tingkat penurunan resikonya akan semakin kecil. Sehingga penanganan preventive maintenance-nya akan semakin rutin, karena penanganan preventive maintenance yang rutin dapat memperbesar tingkat penurunan resikonya. Maka dari itu untuk komponen LV 59 dilakukan penurunan nilai PFD dengan cara redundant atau paralel komponen agar mengurangi nilai laju kegagalan dan menjaga keamanannya. Untuk komponen LT 59 dan LIC 59 tidak perlu dilakukan penurunan nilai PFD dengan cara redundant atau paralel komponen karena dilihat dari grafik preventive maintenance bahwa garis biru yang menunjukkan nilai kehandalan tanpa preventive maintenance dengan garis hijau yang menunjukkan real plant memiliki nilai yang mendekati, oleh sebab itu cukup dilakukan penjadwalan ulang preventive maintenance-nya tiap komponen tersebut. Penurunan PFD Untuk menentukan PFD awal dari tiap-tiap komponen LV 59, LT 59 dan LIC 59 maka menggunakan PFD preventive maintenance ketika LV 59 berada pada waktu 900 jam, untuk LT 59 ketika berada pada wktu 3900 jam, dan untuk komponen LIC 59 menggunakan nilai PFD ketika waktu 7300 jam. Tabel 5. PFD Redundant dari level separator Instrument PFD Awal PFD Redundant LV 59 0,05220 0,00892 LT 59 0,572 - LIC 59 0,369 - C. EvaluasiManajemen Resiko Penentuan likelihood Resiko Dalam penentuan likelihood resiko waktu yang digunakan selama satu tahun. Likelihood sendiri bergantung dari frekuensi kerusakan dalam plant selama waktu operasional. Tabel 6. Nilai MTTF dan Likelihood Resiko Pada Sistem Pengendalian Level Separator Nama MTTF (Jam) Likelihood (kali/8 tahun) LV 59 57055,9 2,7636 LT 59 63307,4 2,49070 LIC 59 000,2,55964 Penentuan Konsekuensi Resiko Kerugian berdasarkan waktu Jika terjadi suatu kerusakan akan mengakibatkan kerugian waktu yang terbuang secara sia-sia. Untuk mencari kerugian waktu dapat dicari dengan menggunakan MTTR. MTTR dapat dicari dari nilai TTR kemudian didistribusikan direliashoft weibull. Tabel 7. Nilai MTTR dan Likelihood Resiko Pada Sistem Pengendalian Level Separator Nama MTTR (Jam) Likelihood (kali/ tahun) LV 59 6,39663 0,5352 LT 59 4,58832 0,3836 LIC 59 6,306 0,08664 Kerugian Berdasarkan Biaya Perbaikan Selain kerugian terhadap waktu juga harus memperhatikan kerugian terhadap biaya pergantian komponen. Biaya pergantian komponen merupakan biaya yang harus ditanggung oleh perusahaan dalam pengadaan komponen sampai komponen dalam dipergunakan kembali. Dibawah ini merupakan harga masing-masing dari komponen yang terpasang. Tabel 8. Biaya Penggantian Pada Sistem Pengendalian Level Separator Nama Biaya Pergantian LV 59 Rp. 70.000.000,00 LT 59 Rp. 7.000.000,00 LIC 59 Rp. 783.000.000,00

JURNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) F-37 Total Rp. 870.000.000,00 Biaya Tenaga Kerja Kerugian biaya tenaga kerja diperhitungkan berdasarkan banyaknya biaya tenaga kerja yang melakukan perbaikan dan upah yang diberikan untuk setiap tenaga kerja yang menangani perbaikan komponen pengendalian level. Tabel 9. Rincian Banyaknya Tenaga Kerja dan Upah yang Diterima setiap Tenaga Kerja Nama Jumlah Tenaga Total Upah Per jam Kerja LV 59 3 Rp. 89.00,00 LT 59 3 Rp. 96.600,00 LIC 59 3 Rp. 96.600,00 Total Rp. 282.300,00 Tabel 0. Rincian Total Konsekuensi Nama Konsekuensi Resiko Per tahun LV 59 Rp. 87.497,5 LT 59 Rp. 6.325,54 LIC 59 Rp. 5.33,44 Total Rp. 200.36,3 Tabel. Biaya Untuk Melakukan Redundant Instrument Jumlah Biaya Penambahan LV 59 B Rp. 70.000.000,00 Gate Valve 5 Rp. 7.500.000,00 Globe Valve Rp. 3.000.000,00 Total Rp. 80.500.000,00 Instru ment LV 59 LT 59 LIC 59 Jumlah Tenaga Kerja Tabel 2. Biaya Preventive Maintenance Tiap Tahun Upah Tenaga Kerja Per Jam Preventive Maintenan ce Per Tahun Total 3 Rp. 29.700,00 4,6 Rp.409.860,00 3 Rp. 32.200,00 0,6 Rp. 57.960,00 3 Rp. 32.200,00 0,5 Rp. 48.300,00 Total Rp.56.20,00 Dari hasil perhitungan total konsekuensi didapatkan bahwa biaya yang harus dikeluarkan pabrik PT. Petrokimia Gresik ketika komponen sistem pengendalian level separator mengalami kegagalan yaitu sebesar Rp. 200.36,3. Ketika melakukan penurunan nilai PFD dengan me-redundant atau paralel komponen LV 59 maka biaya yang harus dikeluarkan PT. Petrokimia Gresik yaitu sebesar Rp. 80.500.000,00 seperti yang terlihat pada tabel dengan komponen utama LV 59 sedangkan gate valve dan globe valve merupakan manual valve yang difungsikan ketika ada proses maintenance pada level valve. Untuk biaya preventive maintenance total dari komponen LV 59, LT 59, dan LIC 59 setiap tahun adalah Rp. 56.20,00. Perhitungannya dapat dilihat ditabel 2. IV. KESIMPULAN Dari hasil analisa data yang telah dilakukan pada tugas akhir ini maka dapat diambil kesimpulan sebagai berikut : Dari hasil evaluasi selama 8760 jam didapatkan nilai reliability untuk komponen LV 59 sebesar 0,58574, komponen LT 59 sebesar 0,89622, dan komponen LIC 59 sebesar 0,83422. Dari ketiga komponen tersebut dapat dilihat bahwa komponen LV 59 yang memiliki nilai reliability terendah. Nilai SIL komponen LV 59, LT 59 dan LIC 59 berada pada SIL, kemudian untuk komponen LV 59 dilakukan penurunan nilai PFD dengan metode redundant yang semula nilai PFD-nya 0,05220 kemudian diturunkan menjadi 0,00892 sehingga nilai SIL-nya naik menjadi SIL 2. Untuk komponen LT 59 dan LIC 59 tidak dilakukan redundant karena pada grafik preventive maintenance garis biru dan garis hijau posisinya hampir sejajar itu berarti menunjukkan real plant-nya masih berada dalam kondisi cukup baik namun butuh rutinitas preventive maintenance. Berdasarkan batas acuan nilai reliability untuk dilakukan preventive maintenance sebesar 0,8 maka untuk komponen LV 59 memiliki waktu minimal preventive maintenance 900 jam atau 2,5 bulan, untuk komponen LT 59 memiliki waktu minimal 3900 jam atau 9 bulan, dan untuk komponen LIC 59 memiliki waktu minimal 7300 jam atau 2 tahun. Beban biaya preventive maintenance yang harus ditanggung PT. Petrokimia Gresik secara keseluruhan untuk loop sistem pengendalian level separator setiap tahunnya adalah sebesar Rp. 56.20,00. DAFTAR PUSTAKA [] Ebeling, Charles E. 997. An Introduction to Reliability and Maintainability Engineering, The McGraw-Hill Companies : Singapore [2] Globe, William M. 998. Control System Safety Evaluation & Reliability. The United States of Amerika : Amerika [3] Gulland, W. G. 2004. Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons. Proceedings of the Safety-Critical Systems Symposium : London [4] Wisandiko, Anugrah Okta. 20. Analisa Kehandalan, Keamanan, dan Manajemen Resiko Pada Pembangkit Listrik Tenaga Gas Blok 2.2 Di PLTGU PT. PJB UP Gresik Dengan Menggunakan Pendekatan Kuantitatif, Surabaya : Teknik Fisika FTI ITS [5] Anonim. 992. Piping & Instrumentation Flow Diagram Synthesis Gas Compression 2ND Stage Unit Amoniak. PT. Petrokimia Gresik.